
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 6 Issue 2 Feb. 2017, Page No. 20308-20312

Index Copernicus Value (2015): 58.10, DOI: 10.18535/ijecs/v6i2.28

Ms. Anuja A. Bhat, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20308-20312 Page 20308

Review on 32-Bit IEEE 754 Complex Number Multiplier Based on

FFT Architecture using BOOTH Algorithm
Ms. Anuja A. Bhat

1
, Prof. Mangesh N.Thakare

2

1(Department of EXTC, B. D. College of Engineering,Sewagram Wardha ,RTMNU, INDIA)

bhatanuja@gmail.com
2(Department of EXTC, B. D. College of Engineering, Sewagram Wardha ,RTMNU, INDIA)

mnt_ent@rediffmail.com

ABSTRACT: In this paper, we have shown an review of High Speed, less power and less delay 32-bit IEEE 754 Floating Point

Complex Multiplier using Booth Algorithm which includes 32-bit Floating Point Adder, Subtractor and Multiplier. Multiplication

is an important fundamental function in many Digital Signal Processing (DSP) applications such as convolution, Fast Fourier

Transform (FFT), filtering and in microprocessors in its arithmetic and logic unit (ALU). Since multiplication dominates the

execution time of most DSP algorithms, so there is a need of high speed multiplier. The main objective of this research is to

reduce delay, power and to increase the speed. The coding will be done in VHDL, synthesis and simulation will be done using

Xilinx ISE simulator.

KEYWORD: Adder, Subtractor , Multiplier , VHDL, Xilinx.

1. INTRODUCTION
 The fundamental and the core of all the digital signal

processors (DSPs) are its multipliers, and the speed of the

DSPs is mainly determined by the speed of its multiplier.

Multipliers are key components of many high performance

systems such as microprocessors, FIR filters, digital signal

processors, etc. Performance of a system is generally

determined by the performance of the multiplier because the

multiplier is generally the slowest element in the system.

Since multiplication dominates the execution time of most

DSP application so there is need of high speed multiplier.

Complex number operations are the backbone of many

digital signal processing algorithms, which mostly depend

on extensive number of multiplication. Complex

multiplication is of immense importance in Digital Signal

Processing (DSP) and Image Processing (IP).To implement

the hardware module of Discrete Fourier Transformation

(DFT), Discrete Cosine Transformation (DCT), Discrete

Sine Transformation (DST) and modern broadband

communications; large numbers of complex multipliers are

required.

1.1 COMPLEX NUMBER MULTIPLICATION
 Complex number multiplication is performed using

four real number multiplications and two additions/

subtractions. In real number processing, carry needs to be

propagated from the least significant bit (LSB) to the most

significant bit (MSB) when binary partial products are

added. Therefore, the addition and subtraction after binary

multiplications limit the overall speed. Furthermore,

multiplier is generally the most area consuming. Hence,

optimizing the area and speed of the multiplier is a major

design issue. However, speed and area are usually

conflicting constraints so that improving speed results

mostly in larger areas. A whole spectrum of multipliers with

different area speed constraints has been designed with fully

serial multipliers at one end of the spectrum and fully

parallel Multipliers at the other end. Multipliers have

moderate performance in both speed and area. Binary

floating point numbers multiplication is one of the basic

functions used in digital signal processing (DSP)

application.

Example: - A = 3 + 2j& B = 1 + 7j

 C = A * B

 C = (3 + 2j)(1 + 7j)

 C= (3×1) + (3×7j) + (2j×1) + (2j×7j)

 C= 3 + 21j + 2j + 14j
2

 C = 3 + 21j + 2j - 14 ---(since j
2
 = -1)

 C = -11 + 23j

1.2 IEEE 754 FORMAT
The IEEE 754 standard provides the format for

representation of Binary Floating point numbers in

computers. The Binary Floating point numbers are

represented in Single precision and Double precision

formats. The Single precision format consists of 32 bits and

the Double precision format consists of 64 bits. The formats

are composed of 3 fields; Sign, Exponent and Mantissa..

Following figure shows IEEE Format for single and double

precision bit.

SIGN

EXPONENT

MANTISSA

 1BIT 8BIT 23BIT

Fig 1.1 : IEEE Format for single precision

http://www.ijecs.in/
mailto:mnt_ent@rediffmail.com

DOI: 10.18535/ijecs/v6i2.28

Ms. Anuja A. Bhat, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20308-20312 Page 20309

 The performance of any processor depends upon its

power dissipation and delay, so there is always the need of

high speed multipliers and the performance of any floating

point multiplier depends upon the performance of mantissa

calculation unit. Floating point arithmetic is considered to be

a very interesting topic for researchers as floating point

numbers are widely used in many applications and they are

also able to retain their resolution and accuracy as compared

to fixed point numbers.

 Nowadays, almost every language has a floating point

data type, computers from PCs to supercomputers have

floating point compilers and every operating system must

respond to floating point exceptions. The major application

areas of floating point numbers today are in the field of

medical applications, image processing, motion sensing,

scientific computing, audio applications, DSP applications

etc. These applications usually involve floating point

calculations with single as well as double precision format.

The double precision format nowadays very commonly used

on PCs, because it has wider range of numbers compared to

single precision. For this reason, most of the designers of

computer systems provide support for executing double-

precision format along with single- precision format. Today,

the need for faster processing speed is continuously driving

the researchers towards major improvements in existing

technologies, as well as to search for new algorithms also.

With day to day development and advancement in

technology, there is a need to design and implement low

power multiplier using Booth algorithm technique.

1.3 BOOTH ALGORITHM
 Multiplication is an important fundamental function in

arithmetic operation. Signed multiplication is a careful

process. With unsigned multiplication there is no need to

take the sign of the number into consideration. However in

signed multiplication the same process cannot be applied

because the signed number is in a 2‟s compliment form

which would yield an incorrect result if multiplied in a

similar fashion to unsigned multiplication. That‟s where

Booth‟s algorithm comes in. Booth‟s algorithm preserves

the sign of the result.

 Booth‟s algorithm is a well known method for 2‟s

complement multiplication. It speeds up the process by

analyzing multiple bits of multiplier at a time. This widely

used scheme for two‟s complement multiplication was

designed by Andrew D. Booth in 1951. Booth algorithm is

an elegant way for this type of multiplication which treats

both positive and negative operands uniformly. It allows n

bit multiplication to be done using fewer than n additions or

subtractions, thereby making possible faster multiplication.

Booth‟s multiplication algorithm is a multiplication

algorithm that multiplies two signed binary numbers in

two‟s complement notation.

 There are 2 methods that you should know before

attempting Booth‟s algorithm. Right shift circulant and

right-shift arithmetic.

Right-shift circulant (RSC), is simply shifting the bit, in a

binary string, to the right 1 bit position and take the last bit

in the string and append it to the beginning of the string.

Example:

10110

after right-shift circulant now equals – 01011

Right-shift arithmetic (RSA), is where you add 2 binary

number together and shift the result to the right 1 bit

position.

Example:

0100

+0110

result = 1010

Now shift all bits right and put the first bit of the result at

the beginning of the new

string:

result 1010

shift 11010

 According to Booth‟s multiplication algorithm among

the two input binary numbers the one with minimum

number of bit changes is considered as multiplier and the

other as a multiplicand in order to reduce the time taken for

calculating the multiplication product.

The steps for performing booth multiplication are as

follows:

 Let the multiplicand be „B‟ and multiplier be „Q‟.

Assume initially value of „A‟ and „Q-1‟ is zero.

The main step is to check last two bits.

There will be iterations according to the number of

multiplier.

For example, if the multiplier is of 2-bit then 2

Iterations will be done, for 4-bit multiplier 4 iterations

are done, and so on.

Now, the algorithm starts, first the last two digits are

checked and if the two bits are “00” or “11” the only

Arithmetic Right Shift is done.

And if the last two bits are “01”, then A is added with

B, and result is stored into A.

If the last two bits are “10”, then A is subtracted from

B, and result is stored into A.

Finally, the result obtained is coded in binary form

which gives the desired output.

In this way multiplication of any two numbers is

performed using booth algorithm.

Example :-

 Multiply 14 * -5 using 5-bit numbers.

 14 in binary : 01110

 -14 in binary : 10010

 5 in binary : 00101

 -5 in binary : 11011

 Result : -70 in binary : 11101 11010 (10-bit result).

2.RELATED WORK
 In this paper, the author proposed a design of complex

floating point multiplier technique. The FFT/IFFT results

shown by using this technique consumes very less resources

in terms of slices, flipflops and multipliers to provide a cost

effective solution for DSP applications. The proposed

design has a high efficiency and high accuracy [1].

 This paper presents the methods required to implement

a high speed and high performance parallel complex number

multiplier. The designs are structured using Radix-4

Modified Booth Algorithm and Wallace tree. These two

techniques are employed to speed up the multiplication

process as their capability to reduce partial products

generation to 11/2 and compress partial product term by a

DOI: 10.18535/ijecs/v6i2.28

Ms. Anuja A. Bhat, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20308-20312 Page 20310

ratio of 3:2. Carry save-adders (CSA) is used to enhance the

speed of addition process for the system [2].

 In this paper, the author presented a high speed complex

multiplier design (ASIC) using Vedic Mathematics. The

idea for designing the multiplier and adder/ subtractor unit is

adopted from ancient Indian mathematics"Vedas". The

partial products and sums are generated in one step which

reduces the carry propagation from LSB to MSB. The

implementation of the Vedic mathematics and their

application to the complex multiplier ensure substantial

reduction of propagation delay in comparison with DA

based architecture and parallel adder based implementation

which are most commonly used architectures [3].

 This paper presented designing of complex number

multiplier .An ancient Indian mathematics "Vedas" is used

for designing the multiplier unit. The Urdhva Tiryakb-hyam

sutra (method) was selected for implementation complex

multiplication. Any multi-bit multiplication can be reduced

down to single bit multiplication and addition by using

Urdhva Tiryakbhyam sutra is performed by vertically and

crosswise. The partial products and sums are generated in

single step which reduces the carry propagation from LSB to

MB by using these formulas [4].

 This paper presented a design of efficient complex

number multiplier using the Veda Sutra “

UrdhvaTiryakbhyam” from ancient Indian vedic

mathematic .The fundamental and core of all digital signal

processor DSP‟s are its multiplier and the speed of DSP‟s is

determined by the speed of its multiplier, the

“UrdhvaTiryakbhyam” method has been selected for

implementation. Multiplication using this sutra is performed

vertically or crosswise.The partial products and sums are

generated in one step, which reduces the carry propagation

from LSB to MSB [6].

 This paper proposed the work deals with the design and

implementation of complex multiplier / mixers using Field

Programmable Gate Array (FPGA) chip with low cost and

high speed . Here two devices of FPGA are chosen

to implement the design for achieving the task of mixer

system implementation. To achieve high speed data, a

parallel two multiplier is user with Wallace Tree method

[10].

 This paper proposed the design of 8-bit vedic multiplier

using the techniques of Ancient Indian Vedic mathematics

that have been modified to improve the performance. The

work in this paper has proved the efficiency of

UrdhvaTiryakbhyam Vedic method for multiplication which

strikes a difference in the actual process of multiplication

itself [11].

3. PROPOSED WORK
 The Proposed work is to design a high speed 32-bit

IEEE 754 Floating Point Complex Multiplier using Booth

algorithm. Complex multiplier can be composed with four

real multipliers, one adder and one sub-tractor. The complex

number always consists of two terms one is real and another

is imaginary. For the complex multiplier these two terms are

very necessary. This block diagram mainly consists of four

floating point Booth algorithm. Following figures shows a

proposed block diagram the implementation of 32 bit

floating point complex multiplier.

 Fig 1.2 : Proposed Block Diagram of 32 Bit Floating Point

Complex Multiplier.

MODULE 1 : FLOATING POINT ADDER (FPA)

The following flowchart shows the operation of FPA

Fig 1.3 : Flowchart of floating point adder

Performing Floating Point Addition Result = X + Y = (Xm *

2^Xe) + (Ym * 2^Ye) involves the following steps :

1) Align binary point :

 Initial result exponent : the larger of Xe,

Ye

 Compute exponent difference : Ye – Xe

 If Ye > Xe Right shift Xm that many

positions to form Xm 2 ^Xe -Ye

DOI: 10.18535/ijecs/v6i2.28

Ms. Anuja A. Bhat, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20308-20312 Page 20311

 If Xe > Ye Right shift Ym that many

positions to form Ym 2^Ye – Xe

2) Compute sum of aligned mantissas :

i.e Xm*2^Xe-Ye + Ym or Xm+Xm*2^Ye-Xe

3) If normalization of result is needed, then a

normalization steps follows :

 Left shift result, decrement result

exponent (eg. if result is 0.001xx..) or

 Right shift result, increment result

exponent (eg. if result is 10.1xx..)

Continue until MSB of data is 1

4) Check result exponent :

 If larger than maximum exponent allowed

return exponent overflow

 If smaller than minimum exponent

allowed return exponent underflow

5) If result mantissa is 0, may need to set the exponent

to zero by a special step to return a proper zero.

 Example :

 X=2345.125 =100100101001.001 represented as:

 Y=0.75 =0.11 represented as:

Xe > Ye initial result exponent = Ye = 10001010 =

138base10

Xe - Ye = 10001010 - 01111110 = 00000110 = 12base 10

Shift Ym 12base10 postions to the right to form Ym =
0.00000000000110000000000

Xm + Ym = 1.00100101001001000000000 +

0.00000000000110000000000

 =1. 00100101001111000000000

Result is

 If the exponents differ by more than 24,the smaller

number will be shifted right entirely out of the

mantissa field,producing a zero mantissa.

-The sum will then equal the larger number.

-Such truncation errors occur when the numbers

differ by a factor of more than 2^24,which is

approximately 1.6*10^7.

-Thus,the precision of IEEE single precision

floating point arithmetic is approximately 7

decimal digits.

 Negative mantissa are handled by first converting

to 2`s complement and then performing the

addition.

-After the addition is performed,the result is

converted back to sign-magnitude form.

 When adding numbers of opposite sign,cancelltion

may occur,resulting in a sum which is arbitrarily

small,or even zero if the numbers are equal in

magnitude.

-Normalization in this case may require shifting

bye the total number of bits in the

mantissa,resulting in a large loss of accuracy.

 Fig 1.4 : Simulation results of floating point adder

4. CONCLUSION AND FUTURE SCOPE

 The multiplier is designed for a less delay and less

power consumption. Hence, a 32-bit IEEE 754 Complex

Multiplier with high speed will be the probable outcome of

this work.Also we can design and simulate this project in

64-bit using double precision floating point complex

multiplier. But it‟s complexity is more.This project can be

implemented on FPGA / CPLD kit.

REFERENCES

0 10001010 00100101001001000000000

0 01111110 10000000000000000000000

0 10001010 00100101001111000000000

DOI: 10.18535/ijecs/v6i2.28

Ms. Anuja A. Bhat, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20308-20312 Page 20312

1. L P. Thakare , Dr. A Y. Deshmukh , “Area Efficient Complex
Floating Point Multiplier For Reconfigurable FFT/IFFT

Processor Based On Vedic Algorithm ”, Science Direct / 7th

International Conference on Communication, Computing and
Virtualization 2016.

2. Rizalafande CheIsmail ,Razaidi Hussin , “High Performance
Complex Number Multiplier Using Booth-Wallace Algorithm ”,

ICSE2006 Proc. 2006, Kuala Lumpur, Malaysia.

3. Prabir Saha , Arindam Banerjee , Partha Bhattacharyya , Anup

Dandapat , “ High Speed ASIC Design of Complex Multiplier

Using Vedic Mathematics ” , Proceeding of the 2011 IEEE
Students' Technology Symposium 14-16 January, 2011,

lITKharagpur .

4. Rajashri K. Bhongade, Sharada G .Mungale, Karuna Bogawar ,

“ Vhdl Implementation and Comparison of Complex Mul-tiplier

Using Booth’s and Vedic Algorithm ” , COMPUSOFT, An
international journal of advanced computer technology, 3 (3),

March-2014 (Volume-III, Issue-III) .

5. Rajashri Bhongade ,S.G.Mungale , Karuna Bogavar ,

“Performance Evaluation of High Speed Complex Multiplier
Using Vedic Mathematics ”,International Journal of Innovative

Research in Advanced Engineering (IJIRAE)Volume 1 Issue 1

(April 2014).

6. Laxman P. Thakare , A. Y. Deshmukh , Gopichand D. Khandale

, “VHDL Implementation of ComplexNumber Multiplier Using
Vedic Mathematics ”, Springer 2014.

7. Gopichand D. Khandale , Laxman P. Thakare , Dr. A. Y.

Deshmukh , “Performance Evaluation of Complex Multiplier
Using Advance Algorithm ”, International Journal of Electronics

and Computer Science Engineering 1018 Available Online at

www.ijecse.org ISSN- 2277-1956.

8. Ankush Nikam, Swati Salunke, Sweta Bhurse , “Design and
Implementation of 32bit Complex Multiplier using Vedic

Algorithm”, International Journal of Engineering Research &

Technology (IJERT) ISSN: 2278-0181 Vol. 4 Issue 03, March-
2015 644.

9. Man Yan (Raymond) Kong , J.M. Pierre Langlois , Dhamin Al-
Khalili , “Efficient FPGA Implementation of Complex

Multipliers using the Logarithmic Number System ”,2008 IEEE.

10. Ali Mohammed Hassan Al-Bermani , Raya Kahtan Mohamed ,

“Design And Implementation Of High Speed Complex Multiplier

Using Fpga”, The 1st Regional Conference of Eng. Sci. NUCEJ
Spatial ISSUE vol.11,No.1, 2008 pp91-97.

11. Swaroop A. Gandewar , Mamta Sarde , “Design Of Vedic
Multiplier For Complex Numbers For Enhanced Computation

Using Vhdl”, International Journal of Industrial Electronics and

Electrical Engineering, ISSN: 2347-6982 Volume-2, Issue-5,
May-2014.

