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ABSTRACT:  In this paper, we have shown an review of High Speed, less power and less delay 32-bit IEEE 754 Floating Point 

Complex Multiplier using Booth Algorithm which includes 32-bit Floating Point Adder, Subtractor and Multiplier. Multiplication 

is an important fundamental function in many Digital Signal Processing (DSP) applications such as convolution, Fast Fourier 

Transform (FFT), filtering and in microprocessors in its arithmetic and logic unit (ALU). Since multiplication dominates the 

execution time of most DSP algorithms, so there is a need of high speed multiplier. The main objective of this research is to 

reduce delay, power and to increase the speed. The coding will be done in VHDL, synthesis and simulation will be done using 

Xilinx ISE simulator. 
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1. INTRODUCTION 
       The fundamental and the core of all the digital signal 

processors (DSPs) are its multipliers, and the speed of the 

DSPs is mainly determined by the speed of its multiplier. 

Multipliers are key components of many high performance 

systems such as microprocessors, FIR filters, digital signal 

processors, etc. Performance of a system is generally 

determined by the performance of the multiplier because the 

multiplier is generally the slowest element in the system. 

Since multiplication dominates the execution time of most 

DSP application so there is need of high speed multiplier. 

Complex number operations are the backbone of many 

digital signal processing algorithms, which mostly depend 

on extensive number of multiplication. Complex 

multiplication is of immense importance in Digital Signal 

Processing (DSP) and Image Processing (IP).To implement 

the hardware module of Discrete Fourier Transformation 

(DFT), Discrete Cosine Transformation (DCT), Discrete 

Sine Transformation (DST) and modern broadband 

communications; large numbers of complex multipliers are 

required. 

 

1.1 COMPLEX NUMBER MULTIPLICATION 
        Complex number multiplication is performed using 

four real number multiplications and two additions/ 

subtractions. In real number processing, carry needs to be 

propagated from the least significant bit (LSB) to the most 

significant bit (MSB) when binary partial products are 

added. Therefore, the addition and subtraction after binary 

multiplications limit the overall speed. Furthermore, 

multiplier is generally the most area consuming. Hence, 

optimizing the area and speed of the multiplier is a major 

design issue. However, speed and area are usually 

conflicting constraints so that improving speed results 

mostly in larger areas. A whole spectrum of multipliers with 

different area speed constraints has been designed with fully 

serial multipliers at one end of the spectrum and fully 

parallel Multipliers at the other end. Multipliers have 

moderate performance in both speed and area. Binary 

floating point numbers multiplication is one of the basic 

functions used in digital signal processing (DSP) 

application. 

Example: -   A = 3 + 2j& B = 1 + 7j 

                      C = A * B 

                      C = (3 + 2j)(1 + 7j) 

                      C= (3×1) + (3×7j) + (2j×1) + (2j×7j) 

                      C= 3 + 21j + 2j + 14j
2
 

                      C = 3 + 21j + 2j - 14 ---(since j
2
 = -1) 

                      C = -11 + 23j  

 

 

 

1.2 IEEE 754 FORMAT 
The IEEE 754 standard provides the format for 

representation of Binary Floating point numbers in 

computers. The Binary Floating point numbers are 

represented in Single precision  and Double precision 

formats. The Single precision format consists of 32 bits and 

the Double precision format consists of 64 bits. The formats 

are composed of 3 fields; Sign, Exponent and Mantissa.. 

Following figure shows IEEE Format for single and double 

precision bit. 
 

           

SIGN 

             

EXPONENT  

               

MANTISSA 

 

       1BIT           8BIT                          23BIT 

 

Fig 1.1  : IEEE Format for single precision 
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       The performance of any processor depends upon its 

power dissipation and delay, so there is always the need of 

high speed multipliers and the performance of any floating 

point multiplier depends upon the performance of mantissa 

calculation unit. Floating point arithmetic is considered to be 

a very interesting topic for researchers as floating point 

numbers are widely used in many applications and they are 

also able to retain their resolution and accuracy as compared 

to fixed point numbers. 

       Nowadays, almost every language has a floating point 

data type, computers from PCs to supercomputers have 

floating point compilers and every operating system must 

respond to floating point exceptions. The major application 

areas of floating point numbers today are in the field of 

medical applications, image processing, motion sensing, 

scientific computing, audio applications, DSP applications 

etc. These applications usually involve floating point 

calculations with single as well as double precision format. 

The double precision format nowadays very commonly used 

on PCs, because it has wider range of numbers compared to 

single precision. For this reason, most of the designers of 

computer systems provide support for executing double- 

precision format along with single- precision format. Today, 

the need for faster processing speed is continuously driving 

the researchers towards major improvements in existing 

technologies, as well as to search for new algorithms also. 

With day to day development and advancement in 

technology, there is a need to design and implement low 

power multiplier using Booth algorithm technique. 

 

1.3 BOOTH ALGORITHM 
          Multiplication is an important fundamental function in 

arithmetic operation. Signed multiplication is a careful 

process. With unsigned multiplication there is no need to 

take the sign of the number into consideration. However in 

signed multiplication the same process cannot be applied 

because the signed number is in a 2‟s compliment form 

which would yield an incorrect result if multiplied in a 

similar fashion to unsigned multiplication. That‟s where 

Booth‟s algorithm comes in. Booth‟s algorithm preserves 

the sign of the result.  

          Booth‟s algorithm is a well known method for 2‟s 

complement multiplication. It speeds up the process by 

analyzing multiple bits of multiplier at a time. This widely 

used scheme for two‟s complement multiplication was 

designed by Andrew D. Booth in 1951. Booth algorithm is 

an elegant way for this type of multiplication which treats 

both positive and negative operands uniformly. It allows n 

bit multiplication to be done using fewer than n additions or 

subtractions, thereby making possible faster multiplication. 

Booth‟s multiplication algorithm is a multiplication 

algorithm that multiplies two signed binary numbers in 

two‟s complement notation. 

         There are 2 methods that you should know before 

attempting Booth‟s algorithm. Right shift circulant and 

right-shift arithmetic. 

Right-shift circulant (RSC), is simply shifting the bit, in a 

binary string, to the right 1 bit position and take the last bit 

in the string and append it to the beginning of the string. 

Example: 

10110 

after right-shift circulant now equals – 01011 

Right-shift arithmetic (RSA), is where you add 2 binary 

number together and shift the result to the right 1 bit 

position. 

Example: 

0100 

+0110 

result = 1010 

Now shift all bits right and put the first bit of the result at 

the beginning of the new 

string: 

result 1010 

shift 11010                               

       

        According to Booth‟s multiplication algorithm among 

the two input binary numbers the one with minimum 

number of bit changes is considered as multiplier and the 

other as a multiplicand in order to reduce the time taken for 

calculating the multiplication product. 

The steps for performing booth multiplication are as 

follows:  

        Let the multiplicand be „B‟ and multiplier be „Q‟.  

Assume initially value of „A‟ and „Q-1‟ is zero.  

The main step is to check last two bits.  

There will be iterations according to the number of 

multiplier.  

For example, if the multiplier is of 2-bit then 2 

Iterations will be done, for 4-bit multiplier 4 iterations 

are done, and so on.  

Now, the algorithm starts, first the last two digits are 

checked and if the two bits are “00” or “11” the only 

Arithmetic Right Shift is done.  

And if the last two bits are “01”, then A is added with 

B, and result is stored into A.  

If the last two bits are “10”, then A is subtracted from 

B, and result is stored into A.  

Finally, the result obtained is coded in binary form 

which gives the desired output.  

In this way multiplication of any two numbers is 

performed using booth algorithm.  

Example :- 

                 Multiply   14 * -5   using 5-bit numbers. 

                                 14 in binary : 01110  

                                  -14 in binary  : 10010 

                                  5 in binary  : 00101 

                                 -5 in binary : 11011  

 Result  :  -70 in binary :  11101 11010 (10-bit result). 

 

2.RELATED WORK 
       In this paper, the author proposed a design of complex 

floating point multiplier technique. The FFT/IFFT results 

shown by using this technique consumes very less resources 

in terms of slices, flipflops and multipliers to provide a cost 

effective solution for DSP applications. The proposed 

design has a high efficiency and high accuracy [1]. 

       This paper presents the methods required to implement 

a high speed and high performance parallel complex number 

multiplier. The designs are structured using Radix-4 

Modified Booth Algorithm and Wallace tree. These two 

techniques are employed to speed up the multiplication 

process as their capability to reduce partial products 

generation to 11/2 and compress partial product term by a 
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ratio of 3:2. Carry save-adders (CSA) is used to enhance the 

speed of addition process for the system [2]. 

       In this paper, the author presented a high speed complex 

multiplier design (ASIC) using Vedic Mathematics. The 

idea for designing the multiplier and adder/ subtractor unit is 

adopted from ancient Indian mathematics"Vedas". The 

partial products and sums are generated in one step which 

reduces the carry propagation from LSB to MSB. The 

implementation of the Vedic mathematics and their 

application to the complex multiplier ensure substantial 

reduction of propagation delay in comparison with DA 

based architecture and parallel adder based implementation 

which are most commonly used architectures [3]. 

       This paper presented designing of complex number 

multiplier .An ancient Indian mathematics "Vedas" is used 

for designing the multiplier unit. The Urdhva Tiryakb-hyam 

sutra (method) was selected for implementation complex 

multiplication. Any multi-bit multiplication can be reduced 

down to single bit multiplication and addition by using 

Urdhva Tiryakbhyam sutra is performed by vertically and 

crosswise. The partial products and sums are generated in 

single step which reduces the carry propagation from LSB to 

MB by using these formulas [4]. 

       This paper presented a design of efficient complex 

number multiplier using the Veda Sutra “ 

UrdhvaTiryakbhyam”  from ancient Indian vedic 

mathematic .The fundamental and core of all digital signal 

processor DSP‟s are its multiplier and the speed of DSP‟s is 

determined by the speed of its multiplier, the 

“UrdhvaTiryakbhyam” method has been selected for 

implementation. Multiplication using this sutra is performed 

vertically or crosswise.The partial products and sums are 

generated in one step, which reduces the carry propagation 

from LSB to MSB [6]. 

      This paper proposed the work deals with the design and 

implementation of complex multiplier / mixers using Field 

Programmable Gate Array (FPGA) chip with low cost and 

high speed . Here two devices of FPGA are chosen  

to implement the design for achieving the task of mixer 

system implementation. To achieve high speed data, a 

parallel two multiplier is user with Wallace Tree method 

[10]. 

      This paper proposed the design of 8-bit vedic multiplier 

using the techniques of Ancient Indian Vedic mathematics 

that have been modified to improve the performance. The 

work in this paper has proved the efficiency of 

UrdhvaTiryakbhyam Vedic method for multiplication which 

strikes a difference in the actual process of multiplication 

itself [11]. 

 

 

3. PROPOSED WORK 
      The Proposed work is to design a high speed 32-bit 

IEEE 754 Floating Point Complex Multiplier using Booth 

algorithm. Complex multiplier can be composed with four 

real multipliers, one adder and one sub-tractor. The complex 

number always consists of two terms one is real and another 

is imaginary. For the complex multiplier these two terms are 

very necessary. This block diagram mainly consists of four 

floating point Booth algorithm. Following figures shows a 

proposed block diagram the implementation  of 32 bit 

floating point complex multiplier. 

 

 

 Fig 1.2 : Proposed Block Diagram of 32 Bit Floating Point 

Complex Multiplier. 

 

MODULE 1 : FLOATING POINT ADDER (FPA) 

The following flowchart shows the operation of FPA 

 

Fig 1.3 : Flowchart of floating point adder 

 

Performing Floating Point Addition Result = X + Y = (Xm * 

2^Xe) + (Ym * 2^Ye) involves the following steps : 

1) Align binary point : 

 Initial result exponent : the larger of Xe, 

Ye 

 Compute exponent difference : Ye – Xe 

 If Ye > Xe Right shift Xm that many 

positions to form Xm  2 ^Xe -Ye 
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 If Xe > Ye Right shift Ym that many 

positions to form Ym 2^Ye – Xe 

 

2) Compute sum of aligned mantissas : 

i.e    Xm*2^Xe-Ye + Ym   or   Xm+Xm*2^Ye-Xe 

 

3) If normalization of result is needed, then a 

normalization steps follows : 

 Left shift result, decrement result 

exponent (eg. if result is 0.001xx..)  or 

 Right shift result, increment result 

exponent (eg. if result is 10.1xx..) 

Continue until MSB of data is 1 

 

4) Check result exponent : 

 If larger than maximum exponent allowed 

return exponent overflow 

 If smaller than minimum exponent 

allowed return exponent underflow 

5) If result mantissa is 0, may need to set the exponent 

to zero by a special step to return a proper zero. 

 

        Example :                   

   X=2345.125  =100100101001.001 represented as: 

 

  Y=0.75 =0.11 represented as: 

 

Xe  > Ye  initial result exponent = Ye = 10001010 = 

138base10 

 

Xe - Ye = 10001010 - 01111110 = 00000110 = 12base 10 

 

Shift Ym 12base10 postions to the right to form   Ym = 
0.00000000000110000000000 

 

Xm + Ym  = 1.00100101001001000000000 + 

0.00000000000110000000000    

                  =1. 00100101001111000000000 

 

Result is 

 

 If the exponents differ by more than 24,the smaller 

number will be shifted right entirely out of the 

mantissa field,producing a zero mantissa. 

 

-The sum will then equal the larger number. 

 

-Such truncation errors occur when the numbers 

differ by a factor of more than  2^24,which is 

approximately    1.6*10^7. 

 

-Thus,the precision of IEEE single precision 

floating point arithmetic is approximately 7 

decimal digits. 

 

 Negative mantissa are handled by first converting 

to 2`s complement and then performing the 

addition. 

 

-After the addition is performed,the result is 

converted back to sign-magnitude form. 

 

 When adding numbers of opposite sign,cancelltion 

may occur,resulting in a sum which is arbitrarily 

small,or even zero if the numbers are equal in 

magnitude. 

 

-Normalization in this case may require shifting 

bye the total number of bits in the 

mantissa,resulting in a         large loss of accuracy. 

 

 
 

      Fig 1.4 : Simulation results of floating point adder 

 

4. CONCLUSION AND FUTURE SCOPE 

        The multiplier is designed for a less delay and less 

power consumption. Hence, a 32-bit IEEE 754 Complex 

Multiplier with high speed will be the probable outcome of 

this work.Also we can design and simulate this project in 

64-bit using double precision floating point complex 

multiplier. But it‟s complexity is more.This project can be 

implemented on FPGA / CPLD kit. 
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