
 

www.ijecs.in 

International Journal Of Engineering And Computer Science ISSN:2319-7242 

Volume 05 Issue 9 Sep., 2016 Page No. 18221-18224 

 

 

Susma
1
, IJECS Volume 05 Issue 9 Sep., 2016 Page No. 18221-18224 Page 18221 

 

A Novel Metrics Based Technique for Code Clone 

Detection 
Sushma

1
, Jai Bhagwan

2
 

 
1Scholar, Computer Science and Engineering Department, 
Guru Jambheshwar University of Science & Technology 

Hisar, Haryana, India 

sushma.jangra0015@gmail.com 

 
2Asstt. Professor, Computer Science and Engineering Department, 

Guru Jambheshwar University of Science & Technology 

Hisar, Haryana, India 

jaitweet@gmail.com 
 

Abstract: Nowadays, software development is a tricky and time-consuming task. In order to make the development easy, one uses the 

existing modules with or without a bit change. Modules which are used with or without changes are called as code clones. In several places 

in case of same or different software, a clone can be used for development purpose. Without having care, copy and paste code can lead to 

inefficiency smell. This bad smell can be detected by finding and refactoring code clones. A clone can be detected by several existing 

techniques. In this paper, we present a metric based technique for code clone detection. The existing technique is able to detect method level 

clones only. We proposed the technique to detect module level clones using several metrics. Our technique is useful to find out type1 and 

type2 clones at modules level in software systems. For implementation purpose, we have developed a tool in Java named as JSCCD (JS Code 

Clone Detector) which can detect clones between Java files. 

Keywords: Code Clones, Metrics, Clone Detection, JSCCD.

1. Introduction 

In Software Engineering, reuse of code is very common thing 

as it is difficult to develop the software from scratch. So one 

has to do copy and paste of existing code while developing a 

new software. A clone is a code segment which is similar to 

another and copied from a specific location in a software 

module. Sometimes, a clone can disturb the program efficiency 

and make a system more complex. In software development, 

cloning is a usual practice and detection can be useful for 

maintenance and evolution. So, clones need to be detected in a 

software system written code [4][7]. In this paper, we first, 

describe clones type and their detection methods. In the 

coming sections, implementation and results are discussed. A 

clone can be of following types [10][11]: 

 

a) Type 1: These are the exact copy of a programming segment 

(without whitespaces and comments). Let us consider the 

following code fragment: 

 

int a=0, i; 

for (i=0; i<10; i++) 

{ 

 a=a+1;  //addition 

}  

 

An exact clone of the above code could be as given below: 

 

int a=0, i; // variable declaration 

for (i=0; i<10; i++) 

{ 

 a=a+1;  

} 

 

(b) Type 2: Type 2 clones are having similar syntax but 

different identifier (variables, functions, class etc.) names may 

be different. Let us consider the following code fragment 

again: 

 

int a=0, i; 

for (i=0; i<10; i++) 

{ 

 a=a+1;  

}  

 

A Type II clone for this fragment could be as shown below: 

 

int x=0, j;  

for(j=0; j<10; j++) 

{ 

 x=x-1;  

}  

 

(c) Type 3: These are copied fragments and a statement can be 

added or deleted here. Consider the following code segment: 

 

int a, b, c, n=13; 

if (n>10) 

{ 

 c=a*b; 

} 



DOI: 10.18535/ijecs/v5i9.72 

Susma
1
, IJECS Volume 05 Issue 9 Sep., 2016 Page No. 18221-18224 Page 18222 

 

else 

{ 

 c=a+b; 

} 

 

We delete else part of the code shown above and then get the 

following: 

 

int a, b, c, n; 

if (n>10) 

{ 

 c=a*b; 

} 
 

Now this code is considered in the category of Type 3 clones. 

 

Type 4: The code fragments having similar functionality are 

called as type 4 clones. Consider the original code segment: 

 

int factorial (int a) 

{ 

 int j, f=1; 

 for(j=1; j<=a; j++) 

 { 

  f=f*j; 

 } 

 return (f); 

} 

 

Type 4 clone for this fragment can be as follows: 

 

int factorial (int a) 

{  

 if (a<=1) 

  return 1; 

 else 

 return (a *factorial (a-1)); 

} 

 

1.1 Clone Detection Methods 

i) Text Based Method: In text-based method each line of 

source code is compared to another and if the line is 

matched then it is considered as clone [12]. 

ii) Token Based Method: In this case, the source code is 

converted into tokens and after token comparison; the 

clone is decided [12]. 

iii)  AST Based Method: In this case, an Abstract Syntax 

Tree is generated from source code and sub-trees having 

similar structure are considered as clones [12]. 

iv) PGD Based Method: Here, a Program Dependency 

Graph is generated and after semantic analysis of source 

code, isomorphic sub graphs are considered as clones 

[12]. 

v) Metric Based Method: From a certain unit of source 

code, several metrics are calculated e.g. methods, class, 

package etc. of a software system; segments having 

similar metric values are calculated as code clones [12]. 

In the coming section, we describe the review of 

literature. 

2. Literature Review 

E Kodhai et al. [1] proposed a Light Weight Hybrid approach 

which is a combination of textual and metrics based 

techniques. This technique was designed to detect method level 

syntactic and semantic clones. A tool CloneManager was 

developed by authors for implementation of proposed 

approach. Using proposed technique all four types of clones 

were detected with improvement in Precision and Recall 

values. 

 

G. R. Goda et al. [2] designed a novel clone detection 

technique which used metrics and template conversion to 

achieve the target. An analysis was done based on accuracy, 

precision, and recall and found that improved results came as 

compared to previous methods. 

 

Y. Yuan et al. [3] proposed an approach named Boreas for 

code clone clusters detection. This approach is based on token 

based technique. Authors conducted experiments on JDK 7 and 

Linux kernel 2.6.38.6 and results were found efficient as 

compared to Deckard tool which was based on syntactic 

technique. 

 

T. Kamiya et al. [4] proposed an approach based on the 

transformation of input source text and token by token 

comparison. For implementation purpose authors developed a 

tool called CCFinder which can detect clones in C, C++, 

COBOL, Java and other source files. Authors also proposed 

metrics to find out desired clones. After experiments it was 

found that the proposed tool worked fine as compared to many 

others which developed earlier. 

 

F. Deissenboeck et al. [5] proposed an algorithm which is 

based on graph theory, so it can be applied to graphical data-

flow languages and could detect clones on models based graph 

structures. This algorithm was applied in an industrial case 

study with MAN Nutzfahrzeuge using Matlab/ Simulink/ 

TargetLink models. This approach could work on large scale 

project (20,000 elements) and fond clones easily. 

 

T. Ying et al. [6] developed a function clone generator 

extractor named cGen which can detect clones across multiple 

versions. The proposed technique can detect type-1 and type-2 

function clone genealogies. Using this tool authors analyzed 

nine open source C projects and found that cGen worked 

efficiently across multiple versions. 

 

E. Kodhai et al. [7] proposed a light weight technique which 

was a combination of metrics and simple textual analysis. The 

proposed method can detect clones at functions level. This 

technique performed better in term of higher amount of recall 

and found functional clones in C language. 

 

W. Li et al. [8] proposed a metric vector-based code clone 

detection method using the function-calling tree. The method 

was tested in C language. Scientists performed the experiment 

with two programs and proposed approach was found more 

reliable as compared to traditional methods. 

3. Proposed Method 

We have studied various clone detection techniques. The 

existing method [7] can detect only function level clones. In 

order to detect module or file level clones, we have proposed a 

method by adding a few metrics. The pseudo code of this 



DOI: 10.18535/ijecs/v5i9.72 

Susma
1
, IJECS Volume 05 Issue 9 Sep., 2016 Page No. 18221-18224 Page 18223 

 

Method is given in figure 1. The proposed method is based on 

software metrics which are following: 

 

1) Effective Lines of Code 

2) No. of Classes 

3) No. of Methods 

4) No. of return Statements 

5) No. of if Blocks 

6) No. of else Blocks 

7) No. of while Loops 

8) No. of for Loops 

9) No. of File/ Module Level Variables 

 

 Whereas the existing technique uses seven metrics which are 

given below: 

 

1) Effective Lines of Code 

2) No. of Methods 

3) No. of return Statement 

4) No. of if Blocks 

5) No. of for Loops 

6) No. of while Loops 

7) No. of Variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Proposed Algorithm 

 

4. Implementation 

For implementation purpose, we have developed a tool named 

JSCCD (JS Code Clone Detector) which is based on the 

algorithm shown in figure 1. The tool is developed in Java 

language and snapshot of the tool is shown in figure 2. Using 

this tool we performed experiments with existing [7] and 

proposed technique and found the clones which are shown in 

table 1. These experiments clearly show that our results are 

better than existing technique in terms of precision and recall 

values which are obtained by using the equations (1) and (2) 

described in section 4.1. The results comparison in the account 

of precision and recall are shown in figure 3 and 4 in section 

4.1. 

 

 

 

Table 1. Comparison of Clones Found 

 

Clones Found Using Existing 

Technique 

Using Proposed 

Technique 

Effected Lines 74 83 

Classes 0 5 

Methods 4 1 

Loops Block 7 7 

Condition Block 3 5 

Variables 16 16 

 

 

 
 

Figure 2. Clones and Metrics Detected by JSCCD Tool 

 

4. 1 Performance Measure 
 

For code clone detection, the accuracy of results can be 

considered by the combination of two parameters precision and 

recall. We can obtain the precision and recall by the equations 

given below [9]: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
Number  of  Clones  Correctly  Found

𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝐶𝑙𝑜𝑛𝑒𝑠  𝐹𝑜𝑢𝑛𝑑
          (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
Number  of  Clones  Found  Correct

𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝐶𝑙𝑜𝑛𝑒𝑠  𝑖𝑛  𝑡ℎ𝑒 𝑆𝑜𝑢𝑟𝑐𝑒  𝐶𝑜𝑑𝑒
     (2) 

 

 
Figure 3. Comparison of Precision 

Proposed Algorithm: 

 

Input (Source, Destination) 

BEGIN 

 Clones=null, metricsSrc=null, metricsDst=null;  

1. Calculation of metrics 

 For i=0 to Source.EOF-1 

  metricsSrc.add() 

 For j=0 to Destination.EOF-1 

  metricsDst.add() 

 length=Max(metricsSrc, metricsDst) 

2. Detection of Clones 

For k=1 to length 

  if(metricsSrc==metricsDst) 

  Clones.add() 

 return Clones 

END 

 



DOI: 10.18535/ijecs/v5i9.72 

Susma
1
, IJECS Volume 05 Issue 9 Sep., 2016 Page No. 18221-18224 Page 18224 

 

 

 

Figure 4. Comparison of Recall 

 

5. Conclusion 

Our paper proposes an enhanced metric based technique which 

is used to detect clones between Java files. The existing 

technique is able to detect method level clones only and the 

proposed technique detects module level clones using several 

metrics. Our technique is useful to find out type1 and type2 

clones in Java based software systems. For implementation 

purpose, we have developed a tool in Java named as JSCCD 

(JS Code Clone Detector) which can detect clones with more 

accuracy in terms of Precision and Recall. After experiments, 

we found that using existing technique the precision value is 

found 88.2% and recall value 0.88 while the proposed method 

gives the precision 100% and recall 1. 

For future work, the experiments can be performed at large 

scale. Our technique can be enhanced using soft computing 

methods for optimization purpose. The proposed technique can 

also be enhanced using a hybrid approach of two or more 

techniques for improvement of the results. 

References 

[1] E. Kodhai and S. Kanmani, “Method-level code clone 

detection through LWH(Light Weight Hybrid) 

approach,” Journal of Software Engineering Research 

and Development, pp. 1-29, 2014. 

[2] G. R. Goda and A.Damodaram, “An Efficient Software 

Clone Detection System based on the Textual 

Comparison of Dynamic Methods and Metrics 

Computation,” International Journal of Computer 

Applications, Vol. 86,  No 6, pp. 41-45, 2014. 

[3] Y. Yuan and Y. Guo, “Boreas: An Accurate and 

Scalable Token-based Approach to Code Clone 

Detection,” Proceedings of the 27th IEEE/ACM 

International Conference on Automated Software 

Engineering, New York, pp. 286–289, 2012. 

[4] T. Kamiya, S. Kusumoto and K. Inoue, “CCFinder: A 

multi-linguistic token based code clone detection 

system for large scale source code,” IEEE Transactions 

on Software Engineering, pp. 654-670, 2002. 

[5] F. Deissenboeck and J. Girard, “Clone Detection in 

Automotive Model-Based Development,” ACM, pp. 

10-18, 2008. 

[6] T. Ying, Z.  Li-ping, W. Chun-Hui and L. Dong-sheng, 

“Extract Function Clone Genealogies across Multiple 

Versions,” International Journal of Security and Its 

Applications, Vol. 9,  No. 6, pp. 167-182, 2015. 

[7] Kodhai. E, Kanmani. S, Kamatchi. A and Radhika. R, 

“Detection of Type-1 and Type-2 Clones Using 

Textual Analysis and Metrics,” ITC, IEEE, 2010. 

[8] W. Li, D. Li, C. Qiu and J..Hou, “Efficient Metric 

Vector-Based Code Clone Detection Using Function-

calling Tree,” International Journal of Hybrid 

Information Technology, Vol. 8, No.11, pp.139-150, 

2015. 

[9] A. kumar, C. R. K. Reddy and A. Govardhan, “An 

Efficient Method-Level Code Clone Detection Scheme 

Through Textual Analysis Using Metrics,” 

International Journal of Computer Engineering and 

Technology, Vol. 3, No. 1, pp. 273–288, 2012. 

[10] D. M. Shawky and A. F. Ali, “An approach for 

assessing similarity metrics used in metric-based 

clone detection techniques,” 3rd IEEE International 

Conference on Computer Science and Information 

Technology (ICCSIT), Vol. 1, pp. 580–584, 2010. 

[11] Kodhai.E, Perumal.A, and Kanmani.S, “Clone 

Detection using Textual and Metric Analysis to figure 

out all Types of Clones,” International Journal of 

Computer Communication and Information 

System,Vol 2, No1, pp. 99-103, 2010.  

[12] Y. Higo, S. Kusumoto and K. Inoue, “A Metric-based 

Approach to Identifying Refactoring Opportunities for 

Merging Code Clones in a Java software system,” 

Journal of Software Maintenance And Evolution: 

Research And Practice, pp. 435-461, 2008. 

 

Authors Profile 

Sushma graduated with B.Tech and presently she is 

pursuing M.TECH (CSE) in Guru Jambheshwar 

University of Science & Technology, Hisar, India. 

Her area of interests includes Software Engineering. 

 

 

 

Jai Bhagwan received the M.TECH degrees in 

Computer Science and Engineering from Maharishi 

Markandeshwar University, Mullana in 2011. After 

this, he stayed in Maharishi Markandeshwar 

University, Mullana on the post of Lecturer in 

Information Technology department for a period of 

one year. 

Currently, he is working as Assistant Professor in the Computer 

Science & Engineering Department in Guru Jambheshwar University 

of Science & Technology, Hisar, India. He has more than 5 years of 

teaching experience. His areas of research are Cloud Computing and 

Software Engineering.

 


