

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 4 April, 2014 Page No. 5338-5345

V.Senthilvel, IJECS Volume 3 Issue 4 April, 2014 Page No.5338-5345 Page 5338

DEFENDING FLOOD ATTACKS BY LIMITING PACKET REPLICATION ON

TIME INTERVAL
V.Senthilvel¹, A.Arjun²

¹ v.senthil100@gmail.com, ² arjuncse02@gmail.com
1
Research Scholar & Asst. Professor, Department of CSE, Arulmigu Meenakshi Amman College of Engg, Tamil Nadu, India.

2
M.E-Student, Department of CSE, Arulmigu Meenakshi Amman College of Engg , Tamil Nadu, India.

Abstract: Disruption Tolerant Networks (DTNs) consist of node which has high mobility and lack of consistent in connectivity between the

nodes. To adopt such a situation two nodes can only exchange data when they move into the transmission range of each other. DTNs employ

such contact opportunity for data forwarding. Due to the limitation in bandwidth and buffer space, DTNs are vulnerable to flood attacks. In

flood attacks, attackers inject as many packets as possible into the network, or instead of injecting different packets the attacker’s forward

replicas of the same packet to as many nodes as possible. To defend against flood attacks in DTNs A system is proposed in which each node

has a limit over the number of packets that it, as a source node, can send to the network in each time interval. Each node also has a limit

over the number of replicas that it can generate for each packet. The two limits are used to mitigate packet flood and replica flood attacks

IndexTerms—DTN, security, flood attack, detection

I INTRODUCTION

DISRUPTION Tolerant Networks (DTNs) [1] consist of mobile

nodes carried by human beings [2], [3],vehicles[4], [5], etc.

DTNs enable data transfer when mobile nodes are only

intermittently connected, making them appropriate for

applications where no communication infrastructure is

available such as military scenarios and rural areas. Due to lack

of consistent connectivity, two nodes can only exchange data

when they move into the transmission range of each other

(which is called a contact between them). DTNs employ such

contact opportunity for data forwarding with “store carry- and-

forward”; i.e., when a node receives some packets, it stores

these packets in its buffer, carries them around until it contacts

another node, and then forwards them. Since the contacts

between nodes are opportunistic and the duration of a contact

may be short because of mobility, the usable bandwidth which

is only available during the opportunistic contacts is a limited

resource. Also, mobile nodes may have limited buffer face.

 Due to the limitation in bandwidth and buffer space , DTNs

are vulnerable to flood attacks. In flood attacks, maliciously or

selfishly motivated attackers inject as many packets as possible

into the network, or instead of injecting different packets the

attacker’s forward replicas of the same packet to as many nodes

as possible. For convenience, we call the two types of attack

packet flood attack and replica flood attack ,respectively.

Flooded packets and replicas can waste the precious bandwidth

and buffer resources, prevent benign packets from being

forwarded and thus degrade the network service provided to

good nodes .Moreover, mobile nodes spend much energy on

transmitting/receiving flooded packets and replicas which ma y

shorten their battery life. Therefore, it is urgent to secure DTNs

against flood attacks. Although many schemes have been

proposed to defend against flood attacks on the Internet [6] and

in wireless sensor networks [7], they assume persistent

connectivity and cannot be directly applied to DTNs that have

intermittent connectivity. In DTNs, little work has been done

on flood attacks, despite the many works on routing [8], [4],

data dissemination [9], black hole attack [10], wormhole attack

[11], and selfish dropping behaviour [12], [13]. We noted that

the packets flooded by outsider attackers (i.e.,the attackers

without valid cryptographic with valid signatures. Thus, it is

still an open problem is to against flood attacks in DTNs.

 Our main contribution is a technique to detect if a node has

violated its rate limits. Although it is easy to detect the

violation of rate limit on the Internet and in telecommunication

networks where the egress router and base station can account

each user’s traffic, it is challenging in DTNs due to lack of

communication infrastructure and consistent connectivity.

Since a node moves around and may send data to any contacted

node, it is very difficult to count the number of packets or

replicas sent out by this node. Our basic idea of detection is

claim-carry-and-check. Each node itself counts the number of

packets or replicas that it has sent out, and claims the count to

other nodes; the receiving nodes carry the claims around when

they move, exchange some claims when they contact, and

cross-check if the claims are inconsistent. If an attacker floods

more packets or replicas than its limit, it has to use the same

count in more than one claim according to the pigeonhole

principle,1 and this inconsistency may lead to detection. Based

on this idea, we use different cryptographic constructions to

detect packet flood and replica flood attacks

 Because the contacts in DTNs are opportunistic in nature,

our approach provides probabilistic detection. The more traffic

an attacker floods, the more likely it will be detected. The

detection probability can be flexibly adjusted by system

parameters that control the amount of claims exchanged in a

contact. We provide a lower and upper bound of detection

probability and investigate the problem of parameter selection

to maximize detection probability under a certain amount of

exchanged claims. The effectiveness and efficiency of our

scheme are evaluated with extensive trace-driven simulations.

 This paper is structured as follows. Section 2 motivates our

work. Section 3 presents our models and basic ideas. Sections 4

and 5 present our scheme. Section 6 presents security and cost

analysis. Section 7 presents simulation results. The last two

sections present related work and conclusions, respectively.

II RELATED WORK

V.Senthilvel, IJECS Volume 3 Issue 4 April, 2014 Page No.5338-5345 Page 5339

Our scheme bears some similarity with previous approaches

(e.g., [10]) that detect node clone attacks in sensor networks.

Both rely on the identification of some kind of inconsistency to

detect the attacker. However, their approaches assumes

consistent connectivity between nodes which is unavailable in

DTNs. Also, they do not handle the long delays of detection.

A few recent works [10], [21], [12], [11], [13] also address

Security issues in DTNs. Li et al. [10] studied the black hole

attack in which malicious nodes forge routing metrics to attract

packets and drop all received packets. Their approach uses a

primitive called encounter ticket to prove the existence of

contacts and prevent the forgery of routing metrics, but

encounter ticket cannot be used to address flood attacks. Li and

Cao [13] also proposed a distributed scheme to mitigate packet

drop attacks, which works no matter if the attackers forge

routing metrics or not Renet al. [11] studied wormhole attacks

in DTNs. Chen and Choon [21] proposed a credit-based

approach and Shevade etal. proposed a gaming-based approach

[12] to provide in- centives for packet forwarding. Privacy

issues have also be addressed[11] . However, these works do

not address flood attacks. Other works (e.g., Sprite [13]) deter

abuse by correlating the amount of network

 Resources that a node can use with the node’s contributions

to the network in terms of forwarding. This approach has been

proposed for mobile ad hoc networks, but it is still not clear

how the approach can be applied to DTNs, where nodes are

disconnected most of the time. Another recent work [14]

proposed a batch authentication protocol for DTNs, which ver

ifies multiple packet signatures in an aggregated way to save

the computation cost. This work is complmentary to ours, and

their protocol can also be used in our scheme to further reduce

the computation cost of authentication.

 Parallel to our work, Natarajan et al. [13] also proposed a

scheme to detect resource misuse in DTNs. In their scheme, the

gateway of a DTN monitors the activities of nodes and detects

an attack if there is deviation from expected behavior.

Different from their work that requires a special gateway for

counting, our scheme works in a totally distributed manner and

requires no special nodes.

III MOTIVATION

A .The Potential Prevalence of Flood Attacks

Many nodes may launch flood attacks for malicious or selfish

purposes. Malicious nodes, which can be the nodes deliberately

deployed by the adversary or subverted by the adversary via

mobile phone worms [16], launch attacks to congest the

network and waste the resources of other nodes. Selfish nodes

may also exploit flood attacks to increase their communication

throughput. In DTNs, a single packet usually can only be

delivered to the destination with a probability smaller than 1

due to the opportunistic connectivity. If a selfish node floods

many replicas of its own packet, it can increase the likelihood

of its packet being delivered, since the delivery of any replica

means successful delivery of the packet. With packet flood

attacks, selfish nodes can also increase their throughput, albeit

in a subtler manner. For example, suppose Alice wants to send

a packet to Bob. Alice can construct 100 variants of the original

packet which only differ in one unimportant padding byte, and

send the 100 variants to Bob independently. When Bob

receives any one of the 100 variants, he throws away the

padding byte and gets the original packet.

B. The Effect of Flood Attacks

To study the effect of flood attacks on DTN routing and

motivate our work, we run simulations on the MIT Reality trace

[17]
 We consider three general routing strategies in DTNs.1)

Single-copy routing (e.g., [18], [8]): after forwarding a packet

out, a node deletes its own copy of the packet. Thus, each

packet only has one copy in the network. 2) Multicopy routing

(e.g., [19]): the source node of a packet sprays a certain number

of copies of the packet to other nodes and each copy is

individually routed using the single-copy strategy. The

maximum number of copies that each packet can have is fixed.

3) Propagation routing (e.g., [17], [20], [21]): when a node

finds it appropriate (according to the routing algorithm) to

forward a packet to another encountered node, it replicates that

packet to the encountered node and keeps its own copy. There

is no preset limit over the number of copies a packet can have.

In our simulations, Sim Bet [8], Spray-and-Focus [19] (three

copies allowed for each packet) and Propagation are used as

representatives of the three routing strategies, respectively. In

Propagation, a node replicates a packet to another encountered

node if the latter has more frequent contacts with the

destination of the packet.

 Two metrics are used, The first metric is packet delivery

ratio, which is defined as the fraction of packets delivered to

their destinations out of all the unique packets generated. The

second metric is the fraction of wasted transmissions (i.e., the

transmissions made by good nodes for flooded packets). The

higher fraction of wasted transmissions, the more network

resources are wasted. We noticed that the effect of packet flood

attacks on packet delivery ratio has been studied by Burgess et

al. [22] using a different trace [4]. Their simulations show that

packet flood attacks significantly reduce the packet delivery

ratio of single-copy routing but do not affect propagation

routing much. However, they do not study replica flood attacks

and the effect of packet flood attacks on wasted transmissions.

 In our simulations, a packet flood attacker floods packets

destined to random good nodes in each contact until the contact

ends or the contacted node’s buffer is full. A replica flood

attacker replicates the packets it has generated to every

encountered node that does not have a copy. Each good node

generates thirty packets on the 121st day of the Reality trace,

and each attacker does the same in replica flood attacks. Each

packet expires in 60 days. The buffer size of each node is 5

MB, bandwidth is 2 Mbps and packet size is 10 KB.

Fig. 1 shows the effect of flood attacks on wasted transmission.

Packet flood attack can waste more than 80 percent of the

transmissions made by good nodes in all routing strategies

when the fraction of attackers is higher than 5 percent. When

20 percent of nodes are attackers, replica flood attack can waste

68 and 44 percent of transmissions in single-copy and multi

copy routing, respectively. However, replica flood attack only

wastes 17 percent of transmissions in propagation routing. This

is because each good packet is also replicated many times.

IV OVERVIEW

V.Senthilvel, IJECS Volume 3 Issue 4 April, 2014 Page No.5338-5345 Page 5340

A. Problem Definition

1. Defense against Packet Flood Attacks
We consider a scenario where each node has a rate limit L on

the number of unique packets that it as a source can generate

and send into the network within each time interval T.The time

intervals start from time 0, T , 2T , etc. The packets generated

within the rate limit are deemed legitimate, but the packets

generated beyond the limit are deemed flooded by this node. To

defend against packet flood attacks, our goal is to detect if a

node as a source has generated and sent more unique packets

into the network than its rate limit L per time interval.

A node’s rate limit L does not depend on any specific routing

protocol, but it can be determined by a service contract between

the node and the network operator as discussed in Section 3.1.3.

Different nodes can have different rate limits and their rate

limits can be dynamically adjusted.

 The length of time interval should be set appropriately. If

the interval is too long, rate limiting may not be very effective

against packet flood attacks. If the interval is too short, the

number of contacts that each node has during one interval may

be too nondeterministic and thus it is difficult to set an

appropriate rate limit. Generally speaking, the interval should

be short under the condition that most nodes can have a

significant number of contacts with other nodes within one

interval, but the appropriate length depends on the contact

patterns between nodes in the specific deployment scenario.

2. Defense against Replica Flood Attacks

As motivated in Section 2, the defense against replica flood

considers single-copy and multi copy routing protocols. These

protocols require that, for each packet that a node buffers no

matter if this packet has been generated by the node or

forwarded to it, there is a limit l on the number of times that the

node can forward this packet to other nodes. The values of l

may be different for different buffered packets. Our goal is to

detect if a node has violated the routing protocol and forwarded

a packet more times than its limit l for the packet.

3. Setting the Rate Limit L

One possible method is to set L in a request-approve style.

When a user joins the network, she requests for a rate limit

from a trusted authority which acts as the network operator. In

the request, this user specifies an appropriate value of L based

on prediction of her traffic demand. If the trusted authority

approves this request, it issues a rate limit certificate to this

user, which can be used by the user to prove to other nodes the

legitimacy of her rate limit. To prevent users from requesting

unreasonably large rate virtual currency (e.g., the credits that

she earns by forwarding data for other users [25]) for her rate

limit. When a user predicts an increase (decrease) of her

demand, she can request for a higher (lower) rate limit. The

request and approval of rate limit may be done offline. The

flexibility of rate limit leaves legitimate users’ usage of the

network unhindered. This process can be similar to signing a

contract between a smart phone user and a 3G service

provider: the user selects a data plan (e.g., 200 MB/month) and

pays for it; she can upgrade or downgrade the plan when

needed.

B. Models and Assumptions

In DTNs, since contact durations may be short, a large data

item is usually split into smaller packets (or fragments) to

facilitate data transfer. For simplicity, we assume that all

packets have the same predefined size. Although in DTNs the

allowed delay of packet delivery is usually long, it is still

impractical to allow unlimited delays. Thus, we assume that

each packet has a lifetime. The packet becomes meaningless

after its lifetime ends and will be discarded. We assume that

every packet generated by nodes is unique. This can be

implemented by including the source node ID and a locally

unique sequence number, which is assigned by the source for

this packet, in the packet header. We also assume that time is

loosely synchronized, such that any two nodes are in the same

time slot at any time. Since the inter contact time in DTNs is

usually at the scale of minutes or hours, the time slot can be at

the scale of one minute. Such loose time synchronization is not

hard to achieve.

C. Basic Idea: Claim-Carry-and-Check

1. Packet Flood Detection

To detect the attackers that violate their rate limit L, we must

count the number of unique packets that each node as a source

has generated and sent to the network in the current interval.

However, since the node may send its packets to any node it

contacts at any time and place, no other node can monitor all of

its sending activities. To address this challenge, our idea is to

let the node itself count the number of unique packets that it, as

a source, has sent out, and claim the up-to-date packet count

(together with a little auxiliary information such as its ID and a

timestamp) in each packet sent out. The node’s rate limit

certificate is also attached to the packet, such that other nodes

receiving the packet can learn its authorized rate limit L. If an

attacker is flooding more packets than its rate limit, it has to

dishonestly claim a count smaller than the real value in the

flooded packet, since the real value is larger than its rate limit

and thus a clear indicator of attack. The claimed count must

have been used before by the attacker in another claim, which

is guaranteed by the pigeonhole principle, and these two claims

are inconsistent. The nodes which have received packets from

the attacker carry the claims included in those packets when

they move around. When two of them contact, they check if

there is any inconsistency between their collected claims. The

attacker is detected when an inconsistency is found.

2. Replica Flood Detection

Claim-carry-and-check can also be used to detect the attacker

that forwards a buffered packet more times than its limit l.

Specifically, when the source node of a packet or an

intermediate hop transmits the packet to its next hop, it claims a

transmission count which means the number of times it has

transmitted this packet (including the current transmission).

Based on if the node is the source or an intermediate node and

which routing protocol is used, the next hop can know the

node’s limit l for the packet, and ensure that the claimed count

is within the correct range ½1; l . Thus, if an attacker wants to

transmit the packet more than l times, it must claim a false

V.Senthilvel, IJECS Volume 3 Issue 4 April, 2014 Page No.5338-5345 Page 5341

count which has been used before. Similarly as in packet flood

attacks, the attacker can be detected.

V OUR SCHEME

Our scheme uses two different cryptographic constructions to

detect packet flood and replica flood attacks independently.

When our scheme is deployed to propagation routing protocols,

the detection of replica flood attacks is deactivated. The

detection of packet flood attacks works independently for each

time interval. Without loss of generality, we only consider one

time interval when describing our scheme. For convenience, we

first describe our scheme assuming that all nodes have the same

rate limit L

A. Claim Construction

Two pieces of metadata are added to each packet (see Fig. 4),

Packet Count Claim (P-claim) and Transmission Count Claim

(T-claim). P-claim and T-claim are used to detect packet flood

and replica flood attacks, respectively.

Each hop keeps the P-claim of the source and the T-claim of

its previous hop to detect attacks. P-claim is added by the

source and transmitted to later hops along with the packet.

T-claim is generated and processed hop-by-hop. The source

generates a T-claim and appends it to the packet. When an

intermediate forwards the packet out, it appends a new T-

claim to the packet.

1. P-Claim

When a source node S sends a new packet m (which has

been generated by S and not sent out before) to a contacted

node, it generates a P-claim as follows:

P-claim: S,CP,T,H(m),SIGS(H(H(m)|S|CP|T)

Here, t is the current time. cp (cp€[1, L]) is the packet count

of S, which means that this is the cp
th

 new packet S has

created and sent to the network in the current time interval.

S increases cp by one after sending m out. The P-claim is

attached to packet m as a header field, and will always be

forwarded along with the packet to later hops. When the

contacted node receives this packet, it verifies the signature

in the P-claim, and checks the value of cp. If cp is larger than

L, it discards this packet, otherwise, it stores this packet and

the P-claim.

2. T-Claim

When node A transmits a packet m to node B, it appends a

T-claim to m. The T-claim includes A’s current transmission

count ct for m (i.e., the number of times it has transmitted m

out) and the current time t. The T-claim is

 T-claim: A,B,H(m),CT,T,SIGA,(H(A|B|H(m)|CT|T))

B checks if ct is in the correct range based on if A is the

source of m. If ct has a valid value, B stores this T-claim. In

single-copy and multi copy routing, after forwarding m for

enough times, A deletes its own copy of m and will not

forward m again.

B. Inconsistency Caused by Attack

In a dishonest P-claim, an attacker uses a smaller packet count

than the real value. (We do not consider the case where the

attacker uses a larger packet count than the real value, since it

makes no sense for the attacker.) However, this packet count

must have been used in another P-claim generated earlier. This

causes an inconsistency called count reuse, which means the

use of the same count in two different P-claims generated by

the same node. For example in Fig. 3a the count value 3 is

reused in the P-claims of packet m3 and m4. Similarly, count

reuse is also caused by dishonest T-claims.

C. Protocol

Suppose two nodes contact and they have a number of packets

to forward to each other. Then our protocol is sketched in

Algorithm 1.

Algorithm 1. The protocol run by each node in a contact

1: Metadata (P-claim and T-claim) exchange and attack

detection

2: if Have packets to send then

3: For each new packet, generate a P-claim;

4: For all packets, generate their T-claims and sign them

with a hash tree;

5: Send every packet with the P-claim and T-claim attached;

6: end if

7: if Receive a packet then

8: if Signature verification fails or the count value in its P-

claim or T-claim is invalid then

9: Discard this packet;

10: end if

11: Check the P-claim against those locally collected and

generated in the same time interval to detect inconsistency;

12: Check the T-claim against those locally collected for

inconsistency;

13: if Inconsistency is detected then

14: Tag the signer of the P-claim (T-claim, respectively) as

an attacker and add it into a blacklist;

15: Disseminate an alarm against the attacker to the

network;

16: else

17: Store the new P-claim (T-claim, respectively);

18: end if

19: end if

When a node forwards a packet, it attaches a T-claim to

the packet. Since many packets may be forwarded in a

contact and it is expensive to sign each T-claim separately.

The node also attaches a P-claim to the packets that are

generated by itself and have not been sent to other nodes

before(called new packet in line 3, Algorithm) When a node

receives a packet, it gets the P-claim and T-claim included

in the packet. It checks them against the claims that it has

already collected to detect if there is any inconsistency.

Only the P-claims generated in the same time interval

(which can be determined by the time tag) are cross-

checked. If no inconsistency is detected, this node stores the

P-claim and T-claim locally .To better detect flood attacks,

the two nodes also exchange a small number of the recently

V.Senthilvel, IJECS Volume 3 Issue 4 April, 2014 Page No.5338-5345 Page 5342

collected P-claims and T-claims and check them for

inconsistency.

 This meta data exchange process is when a node detects

an attacker, it adds the attacker into a blacklist and will not

accept packets originated from or forwarded by the attacker.

The node also disseminates an alarm against the attacker to

other nodes.

D. Inconsistency Check

Suppose node W wants to check a pair of P-claim and T-claim

against its local collections to detect if there is any

inconsistency. The inconsistency check against full claims is

trivial: W simply compares the pair of claims with those

collected. In the following, we describe the inconsistency check

against compactly stored claims.

1. Inconsistency Check with P-Claim

The inconsistency check based on compact P-claims does not

cause false positive, since a good node never reuses any count

value in different packets generated in the same interval. The

inconsistency check may cause false negative if the two

inconsistent P-claims have the same hash remainder. However,

since the attacker does not know which bits constitute the hash

remainder, the probability of false negative is only 2 8 . Thus, it

has minimal effect on the overall detection probability.

2. Inconsistency Check with T-Claim

The inconsistency check based on compact T-claims does not

cause extra false negative. False positive is possible but it can

be kept low as follows: node W may falsely detect a good node

R as an attacker if it has received two T-claims generated by R

that satisfy two conditions: 1) they are generated for two

different packets, and 2) they have the same hash remainder.

For 32-bit hash remainder, the probability that each pair of T-

claims lead to false detection is 2. In most cases, we expect that

the number of T-claims generated by R and received by W is

not large due to the opportunistic contacts of DTNs, and thus

the probability of false detection is low. As W receives more

T-claims generated by R, it can use a longer (e.g., 64-bit) hash

remainder for R to keep the probability of false detection low.

Moreover, such false detection is limited to W only, since W

cannot convince other nodes to accept the detection with

compact T-claim.

VI. SYSTEM ARCHITECTURE

Two pieces of metadata are added to each packet, Packet

Count Claim (P-claim) and Transmission Count Claim (T-

claim).P-claim and T-claim are used to detect packet flood

and replica flood attacks, respectively. Each hop keeps the

P-claim of the source and the T-claim of its previous hop to

detect attacks. P-claim is added by the source and

transmitted to later hops along with the packet. T-claim is

generated and processed hop-by-hop. The source generates a

T-claim and appends it to the packet. When an intermediate

forwards the packet out, it appends a new T-claim to the

packet. A node simply compares the pair of claims with

those collected. We have inconsistency check for both the P

claim and T Claim. To check inconsistency, node first uses

node id , packet hash and timestamp to map the P-claim to

the structure and reconstructs the hash remainder. The

inconsistency check may cause false negative if two

inconsistent P-claims have the same hash remainder. In T

Claim If receiver id is the node itself then node take no

action. They show inconsistency when they are generated

for two different packets, and they have the same hash

remainder.

VII METADATA EXCHANGE

When two nodes contact they exchange their collected P-

claims and T-claims to detect flood attacks. If all claims are

exchanged, the communication cost will be too high. Thus,

our scheme uses sampling techniques to keep the

communication cost low. To increase the probability of

attack detection, one node also stores a small portion of

claims exchanged from its contacted node. A node

exchanges this small portion of claim to its own future

contacts. This is called redirection.

A. Sampling

P-claims and T-claims are sampled together (i.e., when a P-

claim is sampled the T-claim of the same packet is also

sampled), in the following we only consider P-claims. A

node may receive a number of packets (each with a P-claim)

in a contact. It randomly samples Z (a system parameter) of

the received P-claims, and exchanges the sampled P-claims

to the next K (a system parameter) different nodes it will

contact, excluding the sources of the P-claims and the

previous hop from which these P-claims are received.

However, a vulnerability to tailgating attack should be

addressed. In tailgating attack, one or more attackers tailgate

a good node to create a large number) of frequent contacts

with this node, and send Z packets (not necessarily

generated by the attackers) to this node in each created

contact. If this good node sends the Z and P-claims of these

contacts to the next K good nodes it contacts, much effective

bandwidth between these good nodes will be wasted,

especially in a large network where K is not small. To

address this attack, the node uses an inter-contact sampling

technique to determine which P-claims sampled in historical

contacts should be exchanged in the current contact. Let SK

denote a set of contacts. This set includes the minimum

number of most recent contacts between this node and at

least K other different nodes. Within this set, all the contacts

with the same node are taken as one single contact and a

total of Z P-claims are sampled out of these contacts. This

technique is not vulnerable to the tailgating attack since the

V.Senthilvel, IJECS Volume 3 Issue 4 April, 2014 Page No.5338-5345 Page 5343

number of claims exchanged in each contact is bounded by a

constant.

B. Redirection

There is a stealthy attack to flood attack detection. For

replica flood attacks, the condition of detection is that at

least two nodes carrying inconsistent T-claims can contact.

However, suppose the attacker knows that two nodes A and

B never contact. Then, it can send some packets to A, and

invalidly replicate these packets to B. In this scenario, this

attacker cannot be detected since A and B never contact.

Similarly, the stealthy attack is also harmful for some

routing protocols like Spray-and-Wait [19] in which each

packet is forwarded from the source to a relay and then

directly delivered from the relay to the destination. To

address the stealthy attack, our idea is to add one level of

indirection.

 A node redirects the Z P-claims and T-claims sampled in

the current contact to one of the next K nodes it will contact,

and this contacted node will exchange (but not redirect

again) these redirected claims in its own subsequent

contacts. Suppose attacker S sends mutually inconsistent

packets to two nodes A and B which will never contact.

Suppose A and B redirect their sampled P-claims to node C

and D, respectively. Then so long as C and B or D and A or

C and D can contact, the attack has a chance to be detected.

Thus, the successful chance of stealthy attack is significantly

reduced.

C. The Exchange Process

Each node maintains two separate sets of P-claims (T-

claims, respectively in the following) for metadata

exchange, a sampled set which includes the P-claims

sampled from the most recent contacts with K different

nodes , and a redirected set which includes the P-claims

redirected from those contacts. Both sets include Z P-claims

obtained in each of those contacts. when two nodes A and B

contact, they first select KZ P-claims from each set with the

inter-contact sampling technique , and then send these P-

claims to each other.

Fig C The idea of redirection which is used to mitigate the

stealthy attack

 When A receives a P-claim, it checks if this P-claim is

inconsistent with any of its collected P-claims using the

method If the received P-claim is inconsistent with a locally

collected one and the signature of the received P-claim is

valid, A detects that the issuer of the received P-claim is an

attacker. Out of all the P-claims received from B, A

randomly selects Z of the P-claims from the sampled set of

B, and stores them to A’s redirected set.

D. Metadata Deletion

A node stores the P-claims and T-claims collected from

received data packets for a certain time denoted by ℓ and

deletes them afterward. It deletes the claims redirected from

other nodes immediately after it has exchanged them to K

different nodes.

E. Alarm

Suppose in a contact a node receives a claim Cr from a

forwarded data packet or from the metadata exchange process

and it detects inconsistency between Cr and a local claim Cl that

the node has collected. Cr is a full claim as shown in Formula 1

(or 2), but Cl may be stored as a full claim or just a compact

structure shown in Formula 3 (or 5). If C l is a full claim, the

node can broadcast (via Epidemic routing [19]) a global alarm

to all the other nodes to speed up the attacker detection process.

The alarm includes the two full claims Cl and Cr . When a node

receives an alarm, it verifies the inconsistency between the two

included claims and their signatures. If the verification

succeeds, it adds the attacker into its blacklist and broadcasts

the alarm further; otherwise, it discards the alarm. The node

also discards the alarm if it has broadcast another alarm against

the same attacker.

 If the detecting node stores Cl as a compact structure, it

cannot convince other nodes to trust the detection since the

compact structure does not have the attacker’s signature. Thus

it cannot broadcast a global alarm. However, since the attacker

may have reused the count value of Cr to other claims besides Cl

, the detecting node can disseminate a local alarm that only

contains Cr to its contacted nodes who have received those

claims. These contacted nodes can verify the inconsistency

between Cr and their collected claims, and also detect the

attacker. If any of these nodes still stores a full claim

inconsistent with Cr , it can broadcast a global alarm as done in

the previous case; otherwise, it disseminates anode’s local

alarm. As this iterative process proceeds, the attacker can be

quickly detected by many nodes. Each node only disseminates

one local alarm for each detected attacker.

 A local alarm and a global alarm against the same attacker

may be disseminated in parallel. If a node receives the global

alarm first and then receives the local alarm, it discards the

local alarm. If it receives the local alarm first, when it receives

the global alarm later, it discards the local alarm and keeps the

global alarm.

 An attacker may falsify an alarm against a good node.

However, since it does not have the node’s private key (as our

assumption), it cannot forge the node’s signatures for the

claims included in the alarm. Thus, the alarm will be discarded

by other nodes and this attack fails.

VIII ANALYSIS

This section presents rigorous analysis over the security and

cost of our scheme, and discusses the optimal parameter to

maximize the effectiveness of flood attack detection under a

certain amount of exchanged metadata per contact.

A. Detection Probability

The following analysis assumes uniform and independent

contacts between nodes, i.e., at any time each node’s next

contacted node can be any other node with the same

probability. This assumption holds for mobility models such as

Random Waypoint (RWP) where the contacts between all node

pairs can be modeled as i.i.d. Poisson processes [21]. When

V.Senthilvel, IJECS Volume 3 Issue 4 April, 2014 Page No.5338-5345 Page 5344

analyzing the detection probability, we assume that each

attacker acts alone

B. The Basic Attack

First we consider a basic attack in which an attacker S floods

two sets of mutually inconsistent packets to two good nodes A

and B, respectively. Each flooded packet received by A is

inconsistent with one of the flooded packets received by B. In

the contacts with A and B, S also forwards some normal, not

flooded, packets to A and B to make the attack harder to detect.

Let y denote the proportion of flooded packets among those

sent by S. For simplicity, we assume y is the same in both

contacts. Suppose A and B redirect the claims sampled in the

contact with S to C and D, respectively.

To consider the worst case performance, suppose the flooded

packets are not forwarded from A and B to other nodes (which

is the case in Spray-and-Wait [19]), i.e., only A and B have the

inconsistent claims. Note that the analysis also applies to the

detection of replica flood attacks.

IX PERFORMANCE EVALUATIONS

A. Experiment Setup

To evaluate the performance and cost of our scheme, we run

simulations on a synthetic trace generated by the Random

Waypoint mobility model and on the MIT Reality trace [17]

collected from the real world. In the simulations, 20 percent of

nodes are deployed as attackers. They are randomly deployed

or selectively deployed to high-connectivity nodes. The buffer

size of each node is 5 MB, the Drop Tail policy is used when

buffer overflows. The bandwidth is 2 Mbps. Each node

generates packets of 10 KB with random destinations at a

uniform rete.

B. Routing Algorithms

SimBet [4]: a forwarding-based routing algorithm. It calculates

a metric using two social measures (similarity and

betweenness), and a packet is forwarded to a node if that node

has higher metric than the current one.

Delegation [5]: a replication-based routing algorithm, where

the receiving node replicates the packet to a neighbor if the

neighbor has the highest utility it has seen. We use the contact

frequency with the destination as the utility metric.

C. Metrics

• Packet delivery ratio: The percentage of packets delivered to

their destinations out of all generated packets.

• Number of wasted transmissions: In forwarding-based

routing, a transmission is wasted if the transmitted packet is

dropped by misbehaving nodes before reaching the destination;

in replication-based routing, a transmission is wasted if it

directly transmits a packet to a misbehaving node that drops the

packet. Here, we only count the wasted packets dropped by

routing misbehavior.

• Detection rate: The percentage of misreporting nodes

detected by normal nodes.

• Detection delay: The time needed for misreporting to be

deleted

• Bytes transmitted per contact: The number of bytes

transmitted in a contact for control

• Bytes stored per node: The number of bytes stored at a node

for control.

D. Analysis Verification

We use the synthetic trace to verify our analysis results given in

Section 6, since in this trace the contacts between node pairs

are send to the buffer. [30] which conforms to our assumption

for the analysis. We divide the trace into 10 segments, each

with 5 104
 time units, and run simulations on each of the third-

seventh segments three times with different random seeds. Each

data point is averaged over the individual runs.

X CONCLUSIONS

In this paper, we employed rate limiting to mitigate flood

attacks in DTNs, and proposed a scheme which exploits claim-

carry-and-check to probabilistically detect the violation of rate

limit in DTN environments. Our scheme uses efficient

constructions to keep the computation, communication and

storage cost low. Also, we analyzed the lower bound and upper

bound of detection probability. Extensive trace-driven

simulations showed that our scheme is effective to detect flood

attacks and it achieves such effectiveness in an efficient way.

Our scheme works in a distributed manner, not relying on any

online central authority or infrastructure, which well fits the

environment of DTNs. Besides, it can tolerate a small number

of attackers to collude.

A large part of this paper I have been dedicated to

explaining the working procedure, algorithm and proving its

efficiency theoretically compare with the existing system

models. At the same time, despite the relatively complex

proof, the actual algorithm is quite short and easy to

implement, as shown in this paper.

REFERENCES

[1] K. Fall, “A Delay-Tolerant Network Architecture for

Challenged Internets,” Proc. ACM SIGCOMM, pp.

27-34, 2003.

[2] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft,

and C. Diot,“Pocket Switched Networks and Human

Mobility in Conference Environments,” Proc. ACM

SIGCOMM, 2005.

[3] Motani, V. Srinivasan, and P. Nuggehalli, “PeopleNet:

Engineering a Wireless Virtual Social Network,”

Proc. MobiCom,pp. 243-257, 2005.

[4] J. Burgess, B. Gallagher, D. Jensen, and B. Levine,

“Maxprop:Routing for Vehicle-Based Disruption-

Tolerant Networks,” Proc.IEEE INFOCOM, 2006.

[5] S.J.T.U.Grid Computing Center, “Shanghai Taxi Trace

Data,”http://wirelesslab.sjtu.edu.cn/, 2012.

[6] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher,

Internet Denial of Service: Attack and Defense

Mechanisms. Prentice Hall, 2005.

[7] C. Karlof and D. Wagner, “Secure Routing in Wireless

Sensor Networks: Attacks and Countermeasures,”

Proc. IEEE First Int’l Workshop Sensor Network

Protocols and Applications, 2003.

[8] E. Daly and M. Haahr, “Social Network Analysis for

Routing in Disconnected Delay-Tolerant MANETs,”

Proc. MobiHoc, pp. 32-40,2007.

[9] W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in

Delay Tolerant Networks: A Social Network

Perspective,” Proc. ACM MobiHoc, 2009.

[10] F. Li, A. Srinivasan, and J. Wu, “Thwarting

Blackhole Attacks in Distruption-Tolerant Networks

V.Senthilvel, IJECS Volume 3 Issue 4 April, 2014 Page No.5338-5345 Page 5345

Using Encounter Tickets,” Proc. IEEE INFOCOM,

2009.

[11] Y.Ren,M.C.Chuah,J.Yang, and Y. Chen, “Detecting

Wormhole Attacks in Delay Tolerant Networks,”

IEEE Wireless Comm .Magazine, vol. 17, no. 5, pp.

36-42, Oct. 2010.

[12] U.Shevade,H.Song, L. Qiu, and Y. Zhang,“Incentive-

Aware Routing in DTNS,” Proc. IEEE Int’l Conf.

Network Protocols (ICNP ’08), 2008.

[13] Q. Li and G. Cao, “Mitigating Routing Misbehavior

in Disruption Tolerant Networks,” IEEE Trans.

Information Forensics and Security, vol. 7, no. 2, pp.

664-675, Apr. 2012.

[14] H. Zhu, X. Lin, R. Lu, X.S. Shen, D. Xing, and Z.

Cao, “An Opportunistic Batch Bundle Authentication

Scheme for Energy Constrained DTNS,” Proc. IEEE

INFOCOM, 2010.

[15] B. Raghavan, K. Vishwanath, S. Ramabhadran,

K.Yocum, and A. Snoeren, “Cloud Control with

Distributed Rate Limiting,” Proc. ACM SIGCOMM,

2007.

[16] F-SECURE,“F-Secure Malware Information Pages:

Smsworm:- Symbos/Feak,” http://www.fsecure.

com/v-descs/smsworm symbos feak.shtml,2012.

[17] N. Eagle and A. Pentland, “Reality Mining:Sensing

Complex Social Systems,” Personal and Ubiquitous

Computing, vol. 10, no. 4, pp. 255-268, 2006.

[18] Q. Li, S. Zhu, and G. Cao, “Routing in Socially

Selfish Delay Tolerant Networks,” Proc. IEEE

INFOCOM, 2010.

[19] T. Spyropoulos, K. Psounis, and C.S. Raghavendra,

“EfficientRouting in Intermittently ConnectedMobile

Networks: The Multiple-Copy Case,”IEEE/ACM

Trans. Networking, vol. 16, no. 1, pp.77-90, Feb.

2008.

[20] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic

Routing in Intermittently Connected Networks,”

ACM SIGMOBILE Mobile Computing and Comm.

Rev., vol. 7, no. 3, pp. 19-20, 2003.

[21] W. Gao and G. Cao, “On Exploiting Transientcontact

Patterns for Data Forwarding in Delay Tolerant

Networks,” Proc. IEEE 18th Int’l Conf. Networks

Protocols (ICNP), 2010.

