
 

www.ijecs.in 

International Journal Of Engineering And Computer Science ISSN:2319-7242 

Volume 3 Issue 4 April, 2014 Page No. 5338-5345 

 

 

V.Senthilvel, IJECS Volume 3 Issue 4 April, 2014 Page No.5338-5345 Page 5338 
 

DEFENDING FLOOD ATTACKS BY LIMITING PACKET REPLICATION ON 

TIME INTERVAL 
V.Senthilvel¹, A.Arjun² 

¹ v.senthil100@gmail.com, ² arjuncse02@gmail.com 
1
Research Scholar & Asst. Professor, Department of CSE, Arulmigu Meenakshi Amman College of Engg, Tamil Nadu, India. 

2
M.E-Student, Department of CSE, Arulmigu Meenakshi Amman College of Engg , Tamil Nadu, India. 

 
Abstract: Disruption Tolerant Networks (DTNs) consist of node which has high mobility and lack of consistent in connectivity between the 

nodes. To adopt such a situation two nodes can only exchange data when they move into the transmission range of each other. DTNs employ 

such contact opportunity for data forwarding. Due to the limitation in bandwidth and buffer space, DTNs are vulnerable to flood attacks. In 

flood attacks, attackers inject as many packets as possible into the network, or instead of injecting different packets the attacker’s forward 

replicas of the same packet to as many nodes as possible. To defend against flood attacks in DTNs A system is proposed in which each node 

has a limit over the number of packets that it, as a source node, can send to the network in each time interval. Each node also has a limit 

over the number of replicas that it can generate for each packet. The two limits are used to mitigate packet flood and replica flood attacks 

 
IndexTerms—DTN, security, flood attack, detection 

 

I     INTRODUCTION 

 
DISRUPTION Tolerant Networks ( DTNs) [1] consist of mobile 

nodes carried by human beings [2], [3],vehicles[4], [5], etc. 

DTNs enable data transfer when mobile nodes are only 

intermittently connected, making them appropriate for 

applications where no communication infrastructure is 

available such as military scenarios and rural areas. Due to lack 

of consistent connectivity, two nodes can only exchange data 

when they move into the transmission range of each other 

(which is called a contact between them). DTNs employ such 

contact opportunity for data forwarding with “store carry- and-

forward”; i.e., when a node receives some packets, it stores 

these packets in its buffer, carries them around until it contacts 

another node, and then forwards them. Since the contacts 

between nodes are opportunistic and the duration of a contact 

may be short because of mobility, the usable bandwidth which 

is only available during the opportunistic contacts is a limited 

resource. Also, mobile nodes may have limited buffer face. 

     Due to the limitation in bandwidth and buffer space , DTNs 

are vulnerable to flood attacks. In flood attacks, maliciously or 

selfishly motivated attackers inject as many packets as possible 

into the network, or instead of injecting different packets the 

attacker’s forward replicas of the same packet to as many nodes 

as possible. For convenience, we call the two types of attack 

packet flood attack and replica flood attack ,respectively. 

Flooded packets and replicas can waste the precious bandwidth 

and buffer resources, prevent benign packets from being 

forwarded and thus degrade the network service provided to 

good nodes .Moreover, mobile nodes spend much energy on 

transmitting/receiving flooded packets and replicas which ma y 

shorten their battery life. Therefore, it is urgent to secure DTNs 

against flood attacks. Although many schemes have been 

proposed to defend against flood attacks on the Internet [6] and 

in wireless sensor networks [7], they assume persistent 

connectivity and cannot be directly applied to DTNs that have 

intermittent connectivity. In DTNs, little work has been done 

on flood attacks, despite the many works on routing [8], [4],  

data dissemination [9],  black hole attack [10], wormhole attack 

[11], and selfish dropping behaviour [12], [13]. We noted that 

the packets flooded by outsider attackers (i.e.,the attackers 

without valid cryptographic with valid signatures. Thus, it is 

still an open problem is to against flood attacks in DTNs. 

    Our main contribution is a technique to detect if a node has 

violated its rate limits. Although it is easy to detect the 

violation of rate limit on the Internet and in telecommunication 

networks where the egress router and base station can account 

each user’s traffic, it is challenging in DTNs due to lack of 

communication infrastructure and consistent connectivity. 

Since a node moves around and may send data to any contacted 

node, it is very difficult to count the number of packets or 

replicas sent out by this node. Our basic idea of detection is 

claim-carry-and-check. Each node itself counts the number of 

packets or replicas that it has sent out, and claims the count to 

other nodes; the receiving nodes carry the claims around when 

they move, exchange some claims when they contact, and 

cross-check if the claims are inconsistent. If an attacker floods 

more packets or replicas than its limit, it has to use the same 

count in more than one claim according to the pigeonhole 

principle,1 and this inconsistency may lead to detection. Based 

on this idea, we use different cryptographic constructions to 

detect packet flood and replica flood attacks 

     Because the contacts in DTNs are opportunistic in nature, 

our approach provides probabilistic detection. The more traffic 

an attacker floods, the more likely it will be detected. The 

detection probability can be flexibly adjusted by system 

parameters that control the amount of claims exchanged in a 

contact. We provide a lower and upper bound of detection 

probability and investigate the problem of parameter selection 

to maximize detection probability under a certain amount of 

exchanged claims. The effectiveness and efficiency of our 

scheme are evaluated with extensive trace-driven simulations. 

     This paper is structured as follows. Section 2 motivates our 

work. Section 3 presents our models and basic ideas. Sections 4 

and 5 present our scheme. Section 6 presents security and cost 

analysis. Section 7 presents simulation results. The last two 

sections present related work and conclusions, respectively. 

 

II      RELATED WORK 
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Our scheme bears some similarity with previous approaches 

(e.g., [10]) that detect node clone attacks in sensor networks. 

Both rely on the identification of some kind of inconsistency to 

detect the attacker. However, their approaches assumes 

consistent connectivity between nodes which is unavailable in 

DTNs. Also, they do not handle the long delays of detection. 

A few recent works [10], [21], [12], [11], [13] also address 

Security issues in DTNs. Li et al. [10] studied the black hole 

attack in which malicious nodes forge routing metrics to attract 

packets and drop all received packets. Their approach uses a 

primitive called encounter ticket to prove the existence of 

contacts and prevent the forgery of routing metrics, but 

encounter ticket cannot be used to address flood attacks. Li and 

Cao [13] also proposed a distributed scheme to mitigate packet 

drop attacks, which works no matter if the attackers forge 

routing metrics or not  Renet al. [11] studied wormhole attacks 

in DTNs. Chen and Choon [21] proposed a credit-based 

approach and Shevade etal. proposed a gaming-based approach 

[12] to provide in- centives for packet forwarding. Privacy  

issues have also be addressed[11] . However, these works do 

not address flood attacks. Other works (e.g., Sprite  [13]) deter 

abuse by correlating the amount of network 

     Resources that a node can use with the node’s contributions 

to the network in terms of forwarding. This approach has been 

proposed for mobile ad hoc networks, but it is still not clear 

how the approach can be applied to DTNs, where nodes are 

disconnected most of the time. Another recent work [14] 

proposed a batch authentication protocol for DTNs, which ver 

ifies multiple packet signatures in an aggregated way to save 

the computation cost. This work is complmentary to ours, and 

their protocol can also be used in our scheme to further reduce 

the computation cost of authentication. 

     Parallel to our work, Natarajan et al. [13] also proposed a 

scheme to detect resource misuse in DTNs. In their scheme, the 

gateway of a DTN monitors the activities of nodes and detects 

an attack if there is deviation from expected behavior.  

Different from their work that requires a special gateway for 

counting, our scheme works in a totally distributed manner and 

requires no special nodes. 

 

III     MOTIVATION 

 

A .The Potential Prevalence of Flood Attacks  
 

Many nodes may launch flood attacks for malicious or selfish 

purposes. Malicious nodes, which can be the nodes deliberately 

deployed by the adversary or subverted by the adversary via 

mobile phone worms [16], launch attacks to congest the 

network and waste the resources of other nodes. Selfish nodes 

may also exploit flood attacks to increase their communication 

throughput. In DTNs, a single packet usually can only be 

delivered to the destination with a probability smaller than 1 

due to the opportunistic connectivity. If a selfish node floods 

many replicas of its own packet, it can increase the likelihood 

of its packet being delivered, since the delivery of any replica 

means successful delivery of the packet. With packet flood 

attacks, selfish nodes can also increase their throughput, albeit 

in a subtler manner. For example, suppose Alice wants to send 

a packet to Bob. Alice can construct 100 variants of the original 

packet which only differ in one unimportant padding byte, and 

send the 100 variants to Bob independently. When Bob 

receives any one of the 100 variants, he throws away the 

padding byte and gets the original packet. 

B. The Effect of Flood Attacks 

 

To study the effect of flood attacks on DTN routing and 

motivate our work, we run simulations on the MIT Reality trace 

[17]  
     We consider three general routing strategies in DTNs.1) 

Single-copy routing (e.g., [18], [8]): after forwarding a packet 

out, a node deletes its own copy of the packet. Thus, each 

packet only has one copy in the network. 2) Multicopy routing 

(e.g., [19]): the source node of a packet sprays a certain number 

of copies of the packet to other nodes and each copy is 

individually routed using the single-copy strategy. The 

maximum number of copies that each packet can have is fixed. 

3) Propagation routing (e.g., [17], [20], [21]): when a node 

finds it appropriate (according to the routing algorithm) to 

forward a packet to another encountered node, it replicates that 

packet to the encountered node and keeps its own copy. There 

is no preset limit over the number of copies a packet can have. 

In our simulations, Sim Bet [8], Spray-and-Focus [19] (three 

copies allowed for each packet) and Propagation are used as 

representatives of the three routing strategies, respectively. In 

Propagation, a node replicates a packet to another encountered 

node if the latter has more frequent contacts with the 

destination of the packet. 

     Two metrics are used, The first metric is packet delivery 

ratio, which is defined as the fraction of packets delivered to 

their destinations out of all the unique packets generated. The 

second metric is the fraction of wasted transmissions (i.e., the 

transmissions made by good nodes for flooded packets). The 

higher fraction of wasted transmissions, the more network 

resources are wasted. We noticed that the effect of packet flood 

attacks on packet delivery ratio has been studied by Burgess et 

al. [22] using a different trace [4]. Their simulations show that 

packet flood attacks significantly reduce the packet delivery 

ratio of single-copy routing but do not affect propagation 

routing much. However, they do not study replica flood attacks 

and the effect of packet flood attacks on wasted transmissions. 

     In our simulations, a packet flood attacker floods packets 

destined to random good nodes in each contact until the contact 

ends or the contacted node’s buffer is full. A replica flood 

attacker replicates the packets it has generated to every 

encountered node that does not have a copy. Each good node 

generates thirty packets on the 121st day of the Reality trace, 

and each attacker does the same in replica flood attacks. Each 

packet expires in 60 days. The buffer size of each node is 5 

MB, bandwidth is 2 Mbps and packet size is 10 KB. 

 
Fig. 1 shows the effect of flood attacks on wasted transmission. 

Packet flood attack can waste more than 80 percent of the 

transmissions made by good nodes in all routing strategies 

when the fraction of attackers is higher than 5 percent. When 

20 percent of nodes are attackers, replica flood attack can waste 

68 and 44 percent of transmissions in single-copy and multi 

copy routing, respectively. However, replica flood attack only 

wastes 17 percent of transmissions in propagation routing. This 

is because each good packet is also replicated many times. 

 

IV     OVERVIEW 
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A. Problem Definition 

1. Defense against Packet Flood Attacks 
We consider a scenario where each node has a rate limit L on 

the number of unique packets that it as a source can generate 

and send into the network within each time interval T.The  time 

intervals start from time 0, T , 2T , etc. The packets generated 

within the rate limit are deemed legitimate, but the packets 

generated beyond the limit are deemed flooded by this node. To 

defend against packet flood attacks, our goal is to detect if a 

node as a source has generated and sent more unique packets 

into the network than its rate limit L per time interval. 

A node’s rate limit L does not depend on any specific routing 

protocol, but it can be determined by a service contract between 

the node and the network operator as discussed in Section 3.1.3. 

Different nodes can have different rate limits and their rate 

limits can be dynamically adjusted. 

     The length of time interval should be set appropriately. If 

the interval is too long, rate limiting may not be very effective 

against packet flood attacks. If the interval is too short, the 

number of contacts that each node has during one interval may 

be too nondeterministic and thus it is difficult to set an 

appropriate rate limit. Generally speaking, the interval should 

be short under the condition that most nodes can have a 

significant number of contacts with other nodes within one 

interval, but the appropriate length depends on the contact 

patterns between nodes in the specific deployment scenario. 

 

2. Defense against Replica Flood Attacks 

 
As motivated in Section 2, the defense against replica flood 

considers single-copy and multi copy routing protocols. These 

protocols require that, for each packet that a node buffers no 

matter if this packet has been generated by the node or 

forwarded to it, there is a limit l on the number of times that the 

node can forward this packet to other nodes. The values of l 

may be different for different buffered packets. Our goal is to 

detect if a node has violated the routing protocol and forwarded 

a packet more times than its limit l for the packet. 

3. Setting the Rate Limit L 

 
One possible method is to set L in a request-approve style. 

When a user joins the network, she requests for a rate limit 

from a trusted authority which acts as the network operator. In 

the request, this user specifies an appropriate value of  L based 

on prediction of her traffic demand. If the trusted authority 

approves this request, it issues a rate limit certificate to this 

user, which can be used by the user to prove to other nodes the 

legitimacy of her rate limit. To prevent users from requesting 

unreasonably large rate virtual currency (e.g., the credits that 

she earns by forwarding data for other users [25]) for her rate 

limit. When a user predicts an increase (decrease) of her 

demand, she can request for a higher (lower) rate limit. The 

request and approval of rate limit may be done offline. The 

flexibility of rate limit leaves legitimate users’ usage of the 

network unhindered. This process can be similar to signing a 

contract between a smart phone user and a 3G service  

provider: the user selects a data plan (e.g., 200 MB/month) and 

pays for it; she can upgrade or downgrade the plan when 

needed. 

 

B. Models and Assumptions 

 
In DTNs, since contact durations may be short, a large data 

item is usually split into smaller packets (or fragments) to 

facilitate data transfer. For simplicity, we assume that all 

packets have the same predefined size. Although in DTNs the 

allowed delay of packet delivery is usually long, it is still 

impractical to allow unlimited delays. Thus, we assume that 

each packet has a lifetime. The packet becomes meaningless 

after its lifetime ends and will be discarded. We assume that 

every packet generated by nodes is unique. This can be 

implemented by including the source node ID and a locally 

unique sequence number, which is assigned by the source for 

this packet, in the packet header. We also assume that time is 

loosely synchronized, such that any two nodes are in the same 

time slot at any time. Since the inter contact time in DTNs is 

usually at the scale of minutes or hours, the time slot can be at 

the scale of one minute. Such loose time synchronization is not 

hard to achieve. 

 

C. Basic Idea: Claim-Carry-and-Check 

1.  Packet Flood Detection 

 
To detect the attackers that violate their rate limit L, we must 

count the number of unique packets that each node as a source 

has generated and sent to the network in the current interval. 

However, since the node may send its packets to any node it 

contacts at any time and place, no other node can monitor all of 

its sending activities. To address this challenge, our idea is to 

let the node itself count the number of unique packets that it, as 

a source, has sent out, and claim the up-to-date packet count 

(together with a little auxiliary information such as its ID and a 

timestamp) in each packet sent out. The node’s rate limit 

certificate is also attached to the packet, such that other nodes 

receiving the packet can learn its authorized rate limit L. If an 

attacker is flooding more packets than its rate limit, it has to 

dishonestly claim a count smaller than the real value in the 

flooded packet, since the real value is larger than its rate limit 

and thus a clear indicator of attack. The claimed count must 

have been used before by the attacker in another claim, which 

is guaranteed by the pigeonhole principle, and these two claims 

are inconsistent. The nodes which have received packets from 

the attacker carry the claims included in those packets when 

they move around. When two of them contact, they check if 

there is any inconsistency between their collected claims. The 

attacker is detected when an inconsistency is found. 

 

2. Replica Flood Detection 
 

Claim-carry-and-check can also be used to detect the attacker 

that forwards a buffered packet more times than its limit l. 

Specifically, when the source node of a packet or an 

intermediate hop transmits the packet to its next hop, it claims a 

transmission count which means the number of times it has 

transmitted this packet (including the current transmission). 

Based on if the node is the source or an intermediate node and 

which routing protocol is used, the next hop can know the 

node’s limit l for the packet, and ensure that the claimed count 

is within the correct range ½1; l . Thus, if an attacker wants to 

transmit the packet more than l times, it must claim a false 
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count which has been used before. Similarly as in packet flood 

attacks, the attacker can be detected. 

 

V     OUR SCHEME 

 

Our scheme uses two different cryptographic constructions to 

detect packet flood and replica flood attacks independently. 

When our scheme is deployed to propagation routing protocols, 

the detection of replica flood attacks is deactivated. The 

detection of packet flood attacks works independently for each 

time interval. Without loss of generality, we only consider one 

time interval when describing our scheme. For convenience, we 

first describe our scheme assuming that all nodes have the same 

rate limit L 

 

A. Claim Construction 

 

Two pieces of metadata are added to each packet (see Fig. 4), 

Packet Count Claim (P-claim) and Transmission Count Claim 

(T-claim). P-claim and T-claim are used to detect packet flood 

and replica flood attacks, respectively. 

 
Each hop keeps the P-claim of the source and the T-claim of 

its previous hop to detect attacks. P-claim is added by the 

source and transmitted to later hops along with the packet. 

T-claim is generated and processed hop-by-hop. The source 

generates a T-claim and appends it to the packet. When an 

intermediate forwards the packet out, it appends a new T-

claim to the packet.  

 

1. P-Claim 

 

When a source node S sends a new packet m (which has 

been generated by S and not sent out before) to a contacted 

node, it generates a P-claim as follows: 

P-claim: S,CP,T,H(m),SIGS(H(H(m)|S|CP|T) 

Here, t is the current time. cp (cp€[1, L]) is the packet count 

of S, which means that this is the cp
th

 new packet S has 

created and sent to the network in the current time interval. 

S increases cp by one after sending m out. The P-claim is 

attached to packet m as a header field, and will always be 

forwarded along with the packet to later hops. When the 

contacted node receives this packet, it verifies the signature 

in the P-claim, and checks the value of cp. If cp is larger than 

L, it discards this packet, otherwise, it stores this packet and 

the P-claim. 

 

2. T-Claim 

 

When node A transmits a packet m to node B, it appends a 

T-claim to m. The T-claim includes A’s current transmission 

count ct for m (i.e., the number of times it has transmitted m 

out) and the current time t. The T-claim is  

         T-claim: A,B,H(m),CT,T,SIGA,(H(A|B|H(m)|CT|T)) 

B checks if ct is in the correct range based on if A is the 

source of m. If ct has a valid value, B stores this T-claim. In 

single-copy and multi copy routing, after forwarding m for 

enough times, A deletes its own copy of m and will not 

forward m again. 

 

B. Inconsistency Caused by Attack 
 

In a dishonest P-claim, an attacker uses a smaller packet count 

than the real value. (We do not consider the case where the 

attacker uses a larger packet count than the real value, since it 

makes no sense for the attacker.) However, this packet count 

must have been used in another P-claim generated earlier. This 

causes an inconsistency called count reuse, which means the 

use of the same count in two different P-claims generated by 

the same node. For example in Fig. 3a the count value 3 is 

reused in the P-claims of packet m3 and m4. Similarly, count 

reuse is also caused by dishonest T-claims. 

 

C. Protocol 
 

Suppose two nodes contact and they have a number of packets 

to forward to each other. Then our protocol is sketched in 

Algorithm 1. 

Algorithm 1. The protocol run by each node in a contact  

1: Metadata (P-claim and T-claim) exchange and attack 

detection 

2: if Have packets to send then 

3: For each new packet, generate a P-claim; 

4: For all packets, generate their T-claims and sign them 

with a hash tree; 

5: Send every packet with the P-claim and T-claim attached; 

6: end if 

7: if Receive a packet then 

8: if Signature verification fails or the count value in its P-

claim or T-claim is invalid then 

9: Discard this packet; 

10: end if 

11: Check the P-claim against those locally collected and 

generated in the same time interval to detect inconsistency; 

12: Check the T-claim against those locally collected for 

inconsistency; 

13: if Inconsistency is detected then 

14: Tag the signer of the P-claim (T-claim, respectively) as 

an attacker and add it into a blacklist; 

15: Disseminate an alarm against the attacker to the 

network; 

16: else 

17: Store the new P-claim (T-claim, respectively); 

18: end if 

19: end if 

When a node forwards a packet, it attaches a T-claim to 

the packet. Since many packets may be forwarded in a 

contact and it is expensive to sign each T-claim separately. 

The node also attaches a P-claim to the packets that are 

generated by itself and have not been sent to other nodes 

before(called new packet in line 3, Algorithm) When a node 

receives a packet, it gets the P-claim and T-claim included 

in the packet. It checks them against the claims that it has 

already collected to detect if there is any inconsistency. 

Only the P-claims generated in the same time interval 

(which can be determined by the time tag) are cross-

checked. If no inconsistency is detected, this node stores the 

P-claim and T-claim locally .To better detect flood attacks, 

the two nodes also exchange a small number of the recently 
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collected P-claims and T-claims and check them for 

inconsistency.  

     This meta data exchange process is when a node detects 

an attacker, it adds the attacker into a blacklist and will not 

accept packets originated from or forwarded by the attacker. 

The node also disseminates an alarm against the attacker to 

other nodes. 

 

D. Inconsistency Check 
 

Suppose node W wants to check a pair of P-claim and T-claim 

against its local collections to detect if there is any 

inconsistency. The inconsistency check against full claims is 

trivial: W simply compares the pair of claims with those 

collected. In the following, we describe the inconsistency check 

against compactly stored claims. 

 

1. Inconsistency Check with P-Claim 
 

The inconsistency check based on compact P-claims does not 

cause false positive, since a good node never reuses any count 

value in different packets generated in the same interval. The 

inconsistency check may cause false negative if the two 

inconsistent P-claims have the same hash remainder. However, 

since the attacker does not know which bits constitute the hash 

remainder, the probability of false negative is only 2 8 . Thus, it 

has minimal effect on the overall detection probability. 

 

2. Inconsistency Check with T-Claim 

 

The inconsistency check based on compact T-claims does not 

cause extra false negative. False positive is possible but it can 

be kept low as follows: node W may falsely detect a good node 

R as an attacker if it has received two T-claims generated by R 

that satisfy two conditions: 1) they are generated for two 

different packets, and 2) they have the same hash remainder. 

For 32-bit hash remainder, the probability that each pair of T-

claims lead to false detection is 2. In most cases, we expect that 

the number of T-claims generated by R and received by W is 

not large due to the opportunistic contacts of DTNs, and thus 

the probability of false detection is low. As W receives more 

T-claims generated by R, it can use a longer (e.g., 64-bit) hash 

remainder for R to keep the probability of false detection low. 

Moreover, such false detection is limited to W only, since W 

cannot convince other nodes to accept the detection with 

compact T-claim.  

 

VI. SYSTEM ARCHITECTURE 
 

 
 

Two pieces of metadata are added to each packet, Packet 

Count Claim (P-claim) and Transmission Count Claim (T-

claim).P-claim and T-claim are used to detect packet flood 

and replica flood attacks, respectively.  Each hop keeps the 

P-claim of the source and the T-claim of its previous hop to 

detect attacks. P-claim is added by the source and 

transmitted to later hops along with the packet. T-claim is 

generated and processed hop-by-hop. The source generates a 

T-claim and appends it to the packet. When an intermediate 

forwards the packet out, it appends a new T-claim to the 

packet. A node simply compares the pair of claims with 

those collected. We have inconsistency check for both the P 

claim and T Claim. To check inconsistency, node first uses 

node id , packet hash and timestamp to map the P-claim to 

the structure and reconstructs the hash remainder. The 

inconsistency check may cause false negative if two 

inconsistent P-claims have the same hash remainder. In T 

Claim If receiver id is the node itself then node take no 

action. They show inconsistency when they are generated 

for two different packets, and they have the same hash 

remainder. 

 

VII     METADATA EXCHANGE 

 

When two nodes contact they exchange their collected P-

claims and T-claims to detect flood attacks. If all claims are 

exchanged, the communication cost will be too high. Thus, 

our scheme uses sampling techniques to keep the 

communication cost low. To increase the probability of 

attack detection, one node also stores a small portion of 

claims exchanged from its contacted node. A node 

exchanges this small portion of claim to its own future 

contacts. This is called redirection. 

 

A. Sampling 

 

P-claims and T-claims are sampled together (i.e., when a P-

claim is sampled the T-claim of the same packet is also 

sampled), in the following we only consider P-claims. A 

node may receive a number of packets (each with a P-claim) 

in a contact. It randomly samples Z (a system parameter) of 

the received P-claims, and exchanges the sampled P-claims 

to the next K (a system parameter) different nodes it will 

contact, excluding the sources of the P-claims and the 

previous hop from which these P-claims are received. 

However, a vulnerability to tailgating attack should be 

addressed. In tailgating attack, one or more attackers tailgate 

a good node to create a large number ) of frequent contacts 

with this node, and send Z packets (not necessarily 

generated by the attackers) to this node in each created 

contact. If this good node sends the Z and P-claims of these 

contacts to the next K good nodes it contacts, much effective 

bandwidth between these good nodes will be wasted, 

especially in a large network where K is not small. To 

address this attack, the node uses an inter-contact sampling 

technique to determine which P-claims sampled in historical 

contacts should be exchanged in the current contact. Let SK 

denote a set of contacts. This set includes the minimum 

number of most recent contacts between this node and at 

least K other different nodes. Within this set, all the contacts 

with the same node are taken as one single contact and a 

total of Z P-claims are sampled out of these contacts. This 

technique is not vulnerable to the tailgating attack since the 
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number of claims exchanged in each contact is bounded by a 

constant. 

 

B. Redirection 

 

There is a stealthy attack to flood attack detection. For 

replica flood attacks, the condition of detection is that at 

least two nodes carrying inconsistent T-claims can contact. 

However, suppose the attacker knows that two nodes A and 

B never contact. Then, it can send some packets to A, and 

invalidly replicate these packets to B. In this scenario, this 

attacker cannot be detected since A and B never contact. 

Similarly, the stealthy attack is also harmful for some 

routing protocols like Spray-and-Wait [19] in which each 

packet is forwarded from the source to a relay and then 

directly delivered from the relay to the destination. To 

address the stealthy attack, our idea is to add one level of 

indirection.  

     A node redirects the Z P-claims and T-claims sampled in 

the current contact to one of the next K nodes it will contact, 

and this contacted node will exchange (but not redirect 

again) these redirected claims in its own subsequent 

contacts. Suppose attacker S sends mutually inconsistent 

packets to two nodes A and B which will never contact. 

Suppose A and B redirect their sampled P-claims to node C 

and D, respectively. Then so long as C and B or D and A or 

C and D can contact, the attack has a chance to be detected. 

Thus, the successful chance of stealthy attack is significantly 

reduced. 

 

C. The Exchange Process 

 

Each node maintains two separate sets of P-claims (T-

claims, respectively in the following) for metadata 

exchange, a sampled set which includes the P-claims 

sampled from the most recent contacts with K different 

nodes , and a redirected set which includes the P-claims 

redirected from those contacts. Both sets include Z P-claims 

obtained in each of those contacts. when two nodes A and B 

contact, they first select KZ P-claims from each set with the 

inter-contact sampling technique , and then send these P-

claims to each other. 

 

 
 

Fig  C The idea of redirection which is used to mitigate the 

stealthy attack 

     When A receives a P-claim, it checks if this P-claim is 

inconsistent with any of its collected P-claims using the 

method  If the received P-claim is inconsistent with a locally 

collected one and the signature of the received P-claim is 

valid, A detects that the issuer  of the received P-claim is an 

attacker. Out of all the P-claims received from B, A 

randomly selects Z of the P-claims from the sampled set of 

B, and stores them to A’s redirected set.  

 

D. Metadata Deletion 

 

A node stores the P-claims and T-claims collected from 

received data packets for a certain time denoted by ℓ and 

deletes  them afterward. It deletes the claims redirected from 

other nodes immediately after it has exchanged them to K 

different nodes. 

 

E. Alarm 
 

Suppose in a contact a node receives a claim Cr from a 

forwarded data packet or from the metadata exchange process  

and it detects inconsistency between Cr and a local claim Cl that 

the node has collected. Cr  is a full claim as shown in Formula 1 

(or 2), but Cl may be stored as a full claim or just a compact 

structure shown in Formula 3 (or 5). If C l is a full claim, the 

node can broadcast (via Epidemic routing [19]) a global alarm 

to all the other nodes to speed up the attacker detection process. 

The alarm includes the two full claims Cl and Cr . When a node 

receives an alarm, it verifies the inconsistency between the two 

included claims and their signatures. If the verification 

succeeds, it adds the attacker into its blacklist and broadcasts 

the alarm further; otherwise, it discards the alarm.  The node 

also discards the alarm if it has broadcast another alarm against 

the same attacker. 

     If the detecting node stores Cl as a compact structure, it 

cannot convince other nodes to trust the detection since the 

compact structure does not have the attacker’s signature. Thus 

it cannot broadcast a global alarm. However, since the attacker 

may have reused the count value of Cr to other claims besides Cl 

, the detecting node can disseminate a local alarm that only 

contains Cr to its contacted nodes who have received those 

claims. These contacted nodes can verify the inconsistency 

between Cr and their collected claims, and also detect the 

attacker. If any of these nodes still stores a full claim 

inconsistent with Cr , it can broadcast a global alarm as done in 

the previous case; otherwise, it disseminates anode’s local 

alarm. As this iterative process proceeds, the attacker can be 

quickly detected by many nodes. Each node only disseminates 

one local alarm for each detected attacker. 

     A local alarm and a global alarm against the same attacker 

may be disseminated in parallel. If a node receives the global 

alarm first and then receives the local alarm, it discards the 

local alarm. If it receives the local alarm first, when it receives 

the global alarm later, it discards the local alarm and keeps the 

global alarm.  

     An attacker may falsify an alarm against a good node. 

However, since it does not have the node’s private key (as our 

assumption), it cannot forge the node’s signatures for the 

claims included in the alarm. Thus, the alarm will be discarded 

by other nodes and this attack fails. 

 

VIII      ANALYSIS 
 

This section presents rigorous analysis over the security and 

cost of our scheme, and discusses the optimal parameter to 

maximize the effectiveness of flood attack detection under a 

certain amount of exchanged metadata per contact. 

 

A. Detection Probability 
 

The following analysis assumes uniform and independent 

contacts between nodes, i.e., at any time each node’s next 

contacted node can be any other node with the same 

probability. This assumption holds for mobility models such as 

Random Waypoint (RWP) where the contacts between all node 

pairs can be modeled as i.i.d. Poisson processes [21]. When 
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analyzing the detection probability, we assume that each 

attacker acts alone 

 

B. The Basic Attack 
 

First we consider a basic attack  in which an attacker S floods 

two sets of mutually inconsistent packets to two good nodes A 

and B, respectively. Each flooded packet received by A is 

inconsistent with one of the flooded packets received by B. In 

the contacts with A and B, S also forwards some normal, not 

flooded, packets to A and B to make the attack harder to detect. 

Let y denote the proportion of flooded packets among those 

sent by S. For simplicity, we assume y is the same in both 

contacts. Suppose A and B redirect the claims sampled in the 

contact with S to C and D, respectively. 

To consider the worst case performance, suppose the flooded 

packets are not forwarded from A and B to other nodes (which 

is the case in Spray-and-Wait [19]), i.e., only A and B have the 

inconsistent claims. Note that the analysis also applies to the 

detection of replica flood attacks. 

 
IX     PERFORMANCE EVALUATIONS 

 

A. Experiment Setup 
 

To evaluate the performance and cost of our scheme, we run 

simulations on a synthetic trace generated by the Random 

Waypoint  mobility model and on the MIT Reality trace [17] 

collected from the real world. In the simulations, 20 percent of 

nodes are deployed as attackers. They are randomly deployed 

or selectively deployed to high-connectivity nodes. The buffer 

size of each node is 5 MB, the Drop Tail policy is used when 

buffer overflows. The bandwidth is 2 Mbps. Each node 

generates packets of 10 KB with random destinations at a 

uniform rete. 

 

B. Routing Algorithms 

 

SimBet [4]: a forwarding-based routing algorithm. It calculates 

a metric using two social measures (similarity and 

betweenness), and a packet is forwarded to a node if that node 

has higher metric than the current one. 

Delegation [5]: a replication-based routing algorithm, where  

the receiving node replicates the packet to a neighbor if the 

neighbor has the highest utility it has seen. We use the contact 

frequency with the destination as the utility metric. 

 

C. Metrics 

 

• Packet delivery ratio: The percentage of packets delivered to 

their destinations out of all generated packets. 

• Number of wasted transmissions: In forwarding-based 

routing, a transmission is wasted if the transmitted packet is 

dropped by misbehaving nodes before reaching the destination; 

in replication-based routing, a transmission is wasted if it 

directly transmits a packet to a misbehaving node that drops the 

packet. Here, we only count the wasted packets dropped by 

routing misbehavior. 

• Detection rate: The percentage of misreporting nodes 

detected by normal nodes. 

• Detection delay: The time needed for misreporting to be 

deleted 

• Bytes transmitted per contact: The number of bytes 

transmitted in a contact for control 

• Bytes stored per node: The number of bytes stored at a node 

for control. 
 

D. Analysis Verification 
 

We use the synthetic trace to verify our analysis results given in 

Section 6, since in this trace the contacts between node pairs 

are send to the buffer. [30] which conforms to our assumption 

for the analysis. We divide the trace into 10 segments, each 

with 5 104
 time units, and run simulations on each of the third-

seventh segments three times with different random seeds. Each 

data point is averaged over the individual runs. 

 

X     CONCLUSIONS 

 
In this paper, we employed rate limiting to mitigate flood 

attacks in DTNs, and proposed a scheme which exploits claim-

carry-and-check to probabilistically detect the violation of rate 

limit in DTN environments. Our scheme uses efficient 

constructions to keep the computation, communication and 

storage cost low. Also, we analyzed the lower bound and upper 

bound of detection probability. Extensive trace-driven 

simulations showed that our scheme is effective to detect flood 

attacks and it achieves such effectiveness in an efficient way. 

Our scheme works in a distributed manner, not relying on any 

online central authority or infrastructure, which well fits the 

environment of DTNs. Besides, it can tolerate a small number 

of attackers to collude. 

A large part of this paper I have been dedicated to 

explaining the working procedure, algorithm and proving its 

efficiency theoretically compare with the existing system 

models. At the same time, despite the relatively complex 

proof, the actual algorithm is quite short and easy to 

implement, as shown in this paper.  
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