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ABSTRACT 
The cryptography algorithms use of real security applications. These applications tend to be too complicated, exposing too much detail 

of the cryptographic process. Users need simple inherent security that doesn’t require more of them simply clicking the secure 

checkbox. Cryptography is a first abstraction to separate specific algorithms from generic cryptographic processes in order to eliminate 

compatibility and upgradeability problems. The core idea is enhance the security of RSA algorithm. In this dissertation public key 

algorithm RSA and enhanced RSA are compared analysis is made on time based on execution time. 

Index Terms -  Public Key ,Encryption, RSA, Security,OAEP 

I INTRODUCTION 

Data communication is an important aspect of our 

living. So, protection of data from misuse is essential.[1] A 

cryptosystem defines a pair of data transformations called 

encryption and decryption. Encryption is applied to the plain 

text i.e. the data to be communicated to produce cipher text i.e. 

encrypted data using encryption key. Decryption uses the 

decryption key to convert cipher text to plain text i.e. the 

original data. Now, if the encryption key and the decryption 

key is the same or one can be derived from the other then it is 

said to be symmetric cryptography. This type of cryptosystem 

can be easily broken if the key used to encrypt or decrypt can 

be found. To improve the protection mechanism Public Key 

Cryptosystem was introduced in 1976 by Whitfield Diffe and 

Martin Hellman of Stanford University. It uses a pair of related 

keys one for encryption and other for decryption. One key, 

which is called the private key, is kept secret and other one 

known as public key is disclosed.  The message is encrypted 

with public key and can only be decrypted by using the private 

key. So, the encrypted message cannot be decrypted by anyone 

who knows the public key and thus secure communication is 

possible[2][3] RSA (named after its authors – Rivest, Shamir 

and Adleman) is the most popular public key algorithm. In 

relies on the factorization problem of mathematics that 

indicates that given a very large number it is quite impossible 

in today’s aspect to find two prime numbers whose product is 

the given number. As we increase the number the possibility 

for factoring the number decreases. So, we need very large 

numbers for a good Public Key Cryptosystem.  

 

GNU has an excellent library called GMP that can handle 

numbers of arbitrary precision. We have used this library to 

implement RSA algorithm. As we have shown in this paper 

number of bits encrypted together using a public key has 

significant impact on the decryption time and the strength of 

the cryptosystem. Cryptographic algorithms are divided into 

two types viz., symmetric key and public key.  In symmetric 

key algorithm, only one key is used for both encryption and 

decryption. [4][5]The key must be known well in advance to 

both the parties before the messages being encrypted. However 

these algorithms suffer from disadvantages of the key 

distribution problem. Despite this drawback, the various 

symmetric key algorithms have been developed recently viz., 

DES, AES, BLOWFISH, CAST etc. In public key algorithms, 

every person has a pair of keys viz., private key and public key. 

Further one key is calculated from other key. To perform 

encryption using public key algorithm the sender uses the 

receiver’s public key, and at other end the receiver uses his/her 

private key to perform decryption. Numerous public key 

algorithms are available viz., RSA, Rabin, ELGamal, etc. 

 In recent times, the analysis of cryptographic 

algorithm gained attention from researcher. Enhancing security 

is a major challenging task in cryptography. [6]The security of 

the many cryptographic algorithms depends on the generation 

of and predictable quantities such as the key stream in 

vernam’s one-time pad, the primes p and q in RSA encryption, 

secret key in the DES algorithm. In all these cases the 

quantities must be generated sufficient in size and at random, in 

the sense that the probability of any particular value being 

selected must be sufficiently small. Even if the above said 

parameters are taken carefully none of the computational 

problem is fully secured enough. Moreover, to enhance the 

security in some symmetric key algorithms, normally the key is 

selected in such a way that the size of the key is equal to the 
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size of the plaintext. Similarly the number of bits in the key is 

chosen very large in public key algorithms and some problems 

occur in storing and distributing the key. To avoid them, 

instead of increasing the key size, the focus is given for 

plaintext.  

 

 The rest of the paper is structured as follows. Related 

work is described in Section 2. The proposed Algorithm is 

presented in section 3. Section 4 describes an illustration of the 

RSA and proposed methodology. Section 5 illustrates a brief 

implementation of  RSA algorithm based on our proposed 

methodology. Results and Discussion are presented in section 

6. Finally section 7 ends with conclusion. 

II. RELATED WORK 

According to ” Rajorshi Biswas, Shibdas Bandyopadhyay, 

Anirban Banerjee”, Fast implementation of rsa 

algorithm.Organizations in both public and private sectors 

have become increasingly dependent on electronic data 

processing. Protecting these important data is of utmost 

concern to the organizations and cryptography is one of the 

primary ways to do the job. Public Key Cryptography is used to 

protect digital data going through an insecure channel from one 

place to another. RSA algorithm is extensively used in the 

popular implementations of Public Key Infrastructures. In this 

paper, we have done an efficient implementation of RSA 

algorithm using gmp library from GNU. We have also analyzed 

the changes in the performance of the algorithm by changing 

the number of characters we are encoding together 

According to “Xin Zhou  “,Research and implementation of 

RSA algorithm for encryption and decryption Cryptographic 

technique is one of the principal means to protect information 

security. Not only has it to ensure the information confidential, 

but also provides digital signature, authentication, secret sub-

storage, system security and other functions. Therefore, the 

encryption and decryption solution can ensure the 

confidentiality of the information, as well as the integrity of 

information and certainty, to prevent information from 

tampering, forgery and counterfeiting. Encryption and 

decryption algorithm's security depends on the algorithm while 

the internal structure of the rigor of mathematics, it also 

depends on the key confidentiality. Key in the encryption 

algorithm has a pivotal position, once the key was leaked, it 

means that anyone can be in the encryption system to encrypt 

and decrypt information, it means the encryption algorithm is 

useless. Therefore, what kind of data you choose to be a key, 

how to distribute the private key, and how to save both data 

transmission keys are very important issues in the encryption 

and decryption algorithm. This paper proposed an 

implementation of a complete and practical RSA 

encrypt/decrypt solution based on the study of RSA public key 

algorithm 

III PROPOSED ALGORITHM 

3.1 OAEP 

Optimal Asymmetric Encryption Padding (OAEP) is a 

method for encoding messages developed by Mihir Bellare and 

Phil Rogaway . The technique of encoding a message with 

OAEP and then encrypting it with RSA is provably secure in 

the random oracle model. Informally, this means that if hash 

functions are truly random, then an adversary who can recover 

such a message must be able to break RSA.  

 

An OAEP encoded message consists of a ``masked data'' string 

concatenated with a ``masked random number''. In the simplest 

form of OAEP, the masked data is formed by taking the XOR 

of the plaintext message M and the hash G of a random string r. 

The masked random number is the XOR of r with the hash H 

of the masked data. The input to the RSA encryption function 

is then  

[M G(r)]   [r H(M G(r))]  

Often, OAEP is used to encode small items such as keys. There 

are other variations on OAEP (differing only slightly from the 

above) that include a feature called ``plaintext-awareness''. This 

means that to construct a valid OAEP encoded message, an 

adversary must know the original plaintext. To accomplish this, 

the plaintext message M is first padded (for example, with a 

string of zeroes) before the masked data is formed. OAEP is 

supported in the ANSI X9.44, IEEE P1363 and SET standards. 

3.2 Security properties 

The security of RSAES-OAEP depends on the 

security of the underlying RSA encryption and Decryption 

primitives, RSAEP and RSADP and the Security of the OAEP 

encoding method. The advantage of the technique that is 

generically known as OAEP (Optimal Asymmetric Encryption 

Padding ) is that under one model of analysis -- the so-called 

random oracle model -- the security of RSAES-OAEP can be 

tightly related to the security of RSAEP/RSADP. This allows 

us to consider the security of RSAES-OAEP   

RSA encryption and decryption primitive over the 

years many different researchers have considered the 

security of RSAEP/RSADP. Boneh  gives an excellent 

survey of the main attacks which we summarize here. In 

some cases, the discussion of the private exponent d refers 

to the inverse of e mod (p − 1)(q − 1) as opposed to the 

alternative definition given in this document; knowledge of 

either is of course sufficient to compromise security. 

 

1. Taking eth roots of c modulo n when the factorization of n is 

unknown. 

This is an open problem and there are currently no 

practical techniques for achieving this when typical parameter 

choices are made. Although the RSA problem of taking eth 

roots modulo n is not known to be equivalent to factoring the 

modulus, factorization is the only method known for solving 

the problem in the general case. Boneh and Venkatesan have 

shown that if there is an algebraic reduction from factoring to 

eth roots in time T, then it is possible to factor in (roughly) time 

2eT. This means that, for very small e (say, less than 64), if 

factoring is hard, then the problems are not equivalent (at least 

via algebraic reductions). For larger e (for instance, e = 216 + 

1), there still might be an efficient reduction. However, see 

further notes below for possible methods of determining the 
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private key d, and hence solving the problem as well as 

factoring the modulus, when sufficient information about the 

private key is leaked. 

2. Factoring n and then taking eth roots of c modulo n. 

Trends in the effectiveness of factoring integers are 

carefully collated and scrutinized by the cryptographic 

community. Progress over past years has been gradual but 

steady. Under a 

variety of models it is possible to provide a range of predictions 

for the continued resistance 

of an RSA modulus n to a factoring attack .The most recent 

factorization of an RSA modulus was RSA-512, a 512-bit RSA 

modulus .It is possible to use this empirical evidence as a base 

point from which to make estimates for- 19the likely security 

of RSA module of different sizes. While there are a variety of 

comparisons available  which sometimes offer divergent views, 

there seems to be a general consensus that the security offered 

by 1024-bit RSAEP/RSADP is roughly equivalent to that 

offered by 80-bit symmetric key cryptography in terms of 

computational effort1. Note that the user can freely choose 

appropriate parameter choices to give a level of protection 

appropriate to the user’s own risk assessment and key lengths 

of 2048-bit and higher offer an increasingly significant margin 

for security. Recent proposals to use an opto-electronic device 

TWINKLE to speed up part of the factoring process  are 

unlikely to have any significant impact at the recommended 

parameter choices today . 

3. Two users sharing a common modulus. 

Two users should never share the same modulus n, 

even if they use different encryption/ 

Decryption exponent pairs. Systems that allow users to share 

moduli are using RSAEP/RSADP inappropriately. 

4. Using a small private exponent d. 

It may be tempting to use a small private exponent d 

for reasons of efficiency. A basic implementation of 

RSAEP/RSADP can be susceptible to attack if d < n0.292. It is 

conjectured that this might continue to be the case if d < n0.5. 

A small private  exponent d should not be used. 

5. Using a low public exponent e. 

Some progress has been made [13] on exploiting the 

use of a low public exponent. While there is no particular 

attack within the context of RSAES-OAEP that compromises 

the security of the public exponent e = 3, more conservative 

users may prefer to use other public exponents 

such as e = 17 or e = 216 + 1 while still retaining a very 

competitive performance for encryption. Also, as noted further 

in Annex D.4.3.4 of IEEE Std 1363-2000 , a larger public 

exponent can provide an additional level of defense in the case 

that the underlying random number generation fails in an 

implementation of the OAEP method, undermining the security 

properties offered by that method. 

6. Broadcasting the same message to multiple users. 

It has been known for some time that it can be unsafe 

to broadcast the same message to 

different users if no padding, or a very simple padding scheme 

is used . Application of  

allows improvements to this original work  to be made. The 

application of EME-OAEP 

as the padding scheme prior to encryption is sufficient to resist 

these attacks. 

7. Sending related messages to the same user. 

For small e it can be possible to recover simply-

related messages that are encrypted under 

the same public-key . Extensions showed some practical 

applications of this work when small amounts of random 

padding are used prior to encrypting with RSAEP. In  an attack 

is described that applies to a case where the plaintext ends by 

sufficiently many zeroes, and two or more ciphertexts 

corresponding to the same plaintext are available. The 

application of EME-OAEP as the padding scheme prior to 

encryption is sufficient to resist these attacks. 1Under an 

equivalent-cost analysis 1024-bit RSAEP/RSADP is viewed as 

offering greater security than 80-bit 

symmetric key cryptography . 

8. Using partial information about the private key d. 

Given the dlog2 n/4e least significant bits of the 

private exponent d, it is possible to reconstruct all of d if e < p 

n . Furthermore, when a small exponent e is used, the most 

significant half of the bits of d can be leaked. Although 

determining the remaining bits is of course still difficult, if the 

private exponent is protected by symmetric encryption, 

knowledge of the most significant half of the bits of d may 

facilitate a known-plaintext attack on the symmetric 

encryption method. Accordingly, it is essential that the 

remaining bits of the private key d 

Should be well protected. 

9. Using partial information about the factors p, q. 

Given the dlog2n/4e least significant bits of p (resp. q) 

or the dlog2n/4e most significant bits of p (resp. q), one can 

efficiently factor n . The entirety of the secret primes p and q 

should be protected.It is generally accepted that when RSAEP 

is used with appropriate parameter choices and coupled with a 

secure padding scheme like OAEP, then the most effective 

attack is to factor the modulus n. 

Under this assumption we can relate the security of RSAES-

OAEP to the effort required to factor 

the underlying modulus of different sizes.A crude estimate for 

the increased computing resources required beyond that for 

factoring RSA-512can be derived  for different sizes of RSA 

moduli. For 1024-bit RSA moduli, the factor increasein 

computational power is estimated as 7 × 106 while for 2048-bit 

RSA the estimate is 9 × 1015.Increases in computing power 

might be accounted for by some combination of the use of 

moremachines, increasingly powerful machines, or more 

calendar time. The calendar time required for thefactorization 

of RSA-512 was 3.7 months . Other issues like the cost and 

availability of memorymay also figure in deriving predictions 

for the future security of RSAEP/RSADP . 
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reasons to call the security of RSAES-OAEP in question. 

Luckily, this is not the case; RSAES-OAEP 

 Basic techniques to avoid implementation weaknesses 

The analytical securities of RSAEP/RSADP along 

with RSAES-OAEP have been considered in previous section. 

However we still need to implement RSAES-OAEP securely. 

It is possible that weaknesses could be introduced when writing 

RSAES-OAEP as a component of an application, or when 

running an application from which so-called side-channel 

information can be deduced. Within an engineering 

environment, implementation errors can be virtually eliminated 

by adopting good product design and engineering practices. 

Adequate testing and product management throughout the 

development cycle are essential. With regards to running an 

application using RSAES-OAEP, protection of all private key 

information, secure memory management, and secure error 

handling are all needed. Issues like the source of random 

numbers are, of course, fundamental to the security of the 

implementation. Over recent years there have been several 

proposals to break cryptosystems by utilizing so-called side-

channel information. Examples include timing attacks , power 

analysis , and fault analysis .Implementations of RSAES-

OAEP can be made resistant to timing attacks and power 

analysis by ensuring that all the steps in the computation of a 

private key operation take the same amount of time or consume 

the same amount of power .A more elegant approach to 

providing resistance to timing attacks is to use blinding as 

suggested by Ronald L. Rivest.  

3.3 Optimal asymmetric encryption padding 

In cryptography, Optimal Asymmetric Encryption 

Padding (OAEP) is a padding scheme often used together with 

RSA encryption. OAEP was introduced by Bellare and 

Rogaway.
[1]

 

The OAEP algorithm is a form of  Feistel network 

which uses a pair of random oracles G and H to process the 

plaintext prior to asymmetric encryption. When combined with 

any secure trapdoor one-way permutation , this processing is 

proved in the random oracle model to result in a combined 

scheme which is semantically secure under chosen plaintext 

attack. When implemented with certain trapdoor  permutations, 

OAEP is also proved secure against chosen cipher text attack. 

OAEP can be used to build an all-or-nothing transform. 

OAEP satisfies the following two goals: 

1. Add an element of randomness which can be used to 

convert a deterministic encryption scheme into a 

probabilistic scheme. 

2. Prevent partial decryption of cipher texts (or other 

information leakage) by ensuring that an adversary 

cannot recover any portion of the plaintext without 

being able to invert the trapdoor one-way permutation 

. 

The original version of OAEP (Bellare/Rogaway, 1994) 

showed a form of "plaintext awareness" in the random oracle 

model when OAEP is used with any trapdoor permutation. 

Subsequent results contradicted this claim, showing that OAEP 

was only IND-CCA1 secure. However, the original scheme 

was proved in the random oracle model to be IND-CCA2 

secure when OAEP is used with the RSA permutation using 

standard encryption exponents, as in the case of RSA-OAEP. 

An improved scheme that works with any trapdoor one-way 

permutation was offered by Victor Shoup to solve this problem. 

More recent work has shown that in the standard model, that it 

is impossible to prove the IND-CCA2 security of RSA-OAEP 

under the assumed hardness of the RSA problem. 

To encode, 

1. messages are padded with k1 zeros to be n − k0 bits in 

length. 

2. r is a random k0-bit string 

3. G expands the k0 bits of r to n − k0 bits. 

4. X = m00..0 ⊕ G(r) 

5. H reduces the n − k0 bits of X to k0 bits. 

6. Y = r ⊕ H(X) 

7. The output is X || Y where X is shown in the diagram 

as the leftmost block and Y as the rightmost block. 

To decode, 

1. recover the random string as r = Y ⊕ H(X) 

2. recover the message as m00..0 = X ⊕ G(r) 

The "all-or-nothing" security is from the fact that to recover m, 

you must recover the entire X and the entire Y; X is required to 

recover r from Y, and r is required to recover m from X. Since 

any changed bit of a cryptographic hash completely changes 

the result, the entire X, and the entire Y must both be 

completely recovered. 

1. To generate the primes p and q, generate a random 

number of bit length b/2 where b is the required bit 

length of n; set the low bit (this ensures the number is 

odd) and set the two highest bits (this ensures that the 

high bit of n is also set); check if prime (use the 

Rabin-Miller test); if not, increment the number by 

two and check again until you find a prime. This is p. 

Repeat for q starting with a random integer of length 

b-b/2. If p<q, swop p and q (this only matters if you 

intend using the CRT form of the private key). In the 

extremely unlikely event that p = q, check your 

random number generator. Alternatively, instead of 

incrementing by 2, just generate another random 

number each time.  
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There are stricter rules in ANSI X9.31 to produce 

strong primes and other restrictions on p and q to 

minimize the possibility of known techniques being 

used against the algorithm. There is much argument 

about this topic. It is probably better just to use a 

longer key length.  

2. In practice, common choices for e are 3, 17 and 65537 

(2
16

+1). These are Fermat primes, sometimes referred 

to as F0, F2 and F4 respectively (Fx=2^(2^x)+1). 

They are chosen because they make the modular 

exponentiation operation faster. Also, having chosen 

e, it is simpler to test whether gcd(e, p-1)=1 and gcd(e, 

q-1)=1 while generating and testing the primes in step 

1. Values of p or q that fail this test can be rejected 

there and then. (Even better: if e is prime and greater 

than 2 then you can do the less-expensive test (p mod 

e)!=1 instead of gcd(p-1,e)==1.)  

3. To compute the value for d, use the Extended 

Euclidean Algorithm to calculate d = e
-1

 mod phi, also 

written d = (1/e) mod phi. This is known as modular 

inversion. Note that this is not integer division. The 

modular inverse d is defined as the integer value such 

that ed = 1 mod phi. It only exists if e and phi have no 

common factors.  

4. When representing the plaintext octets as the 

representative integer m, it is usual to add random 

padding characters to make the size of the integer m 

large and less susceptible to certain types of attack. If 

m = 0 or 1 or n-1 there is no security as the ciphertext 

has the same value. For more details on how to 

represent the plaintext octets as a suitable 

representative integer m, see PKCS#1 Scheme below 

or the reference itself [PKCS1]. It is important to 

make sure that m < n otherwise the algorithm will fail. 

This is usually done by making sure the first octet of 

m is equal to 0x00.  

5. Decryption and signing are identical as far as the 

mathematics is concerned as both use the private key. 

Similarly, encryption and verification both use the 

same mathematical operation with the public key. 

That is, mathematically, for m < n,  

m = (m
e
 mod n)

d
 mod n = (m

d
 mod n)

e
 mod n 

However, note these important differences in 

implementation:- 

o The signature is derived from a message 

digest of the original information. The 

recipient will need to follow exactly the same 

process to derive the message digest, using 

an identical set of data.  

o The recommended methods for deriving the 

representative integers are different for 

encryption and signing (encryption involves 

random padding, but signing uses the same 

padding each time).  

6. The original definition of RSA uses the Euler totient 

function φ(n) = (p-1)(q-1). More recent standards use 

the Charmichael function λ(n) = lcm(p-1, q-1) instead. 

λ(n) is smaller than φ(n) and divides it. The value of d' 

computed by d' = e
-1

 mod λ(n) is usually different 

from that derived by d = e
-1

 mod φ(n), but the end 

result is the same. Both d and d' will decrypt a 

message m
e
 mod n and both will give the same 

signature value s = m
d
 mod n = m

d'
 mod n. To 

compute λ(n), use the relation  

7.     λ(n) = (p-1)(q-1) / gcd(p-1, q-1). 

 

IV RSA ENCRYPTION WITH PROPOSED METHODOLOGY 

Step 1:  Select primes p=11, q=3. 

Step 2:  n = pq = 11.3 = 33 

  phi = (p-1)(q-1) = 10.2 = 20 

Step 3:  Choose e=3 Check gcd(e, p-1) = gcd(3, 10) = 1 (i.e. 3 

and 10 have no common factors except 1), 

and check gcd(e, q-1) = gcd(3, 2) = 1therefore gcd(e, 

phi) = gcd(e, (p-1)(q-1)) = gcd(3, 20) = 1 

Step 4:  Compute d such that ed ≡ 1 (mod phi) 

  i.e. compute d = e-1 mod phi = 3-1 mod 20 

  i.e. find a value for d such that phi divides (ed-1) 

  i.e. find d such that 20 divides 3d-1. 

  Simple testing (d = 1, 2, ...) gives d = 7 

 Check: ed-1 = 3.7 - 1 = 20, which is divisible by phi. 

Step 5:  Public key = (n, e) = (33, 3) 

Private key = (n, d) = (33, 7). 

This is actually the smallest possible value for the modulus n 

for which the RSA 

algorithm works.Now say we want to encrypt the message m = 

7, 

c = m
e 
mod n = 7

3
 mod 33 = 343 mod 33 = 13. 

Hence the ciphertext c = 13. 

Step 6: To check decryption we compute 

m' = c
d 

mod n = 13
7
 mod 33 = 7. 

Note that we don't have to calculate the full value of 13 to the 

power 7 here. We can 

make use of the fact that 

a = bc mod n = (b mod n).(c mod n) mod n 

so we can break down a potentially large number into its 

components and combine the 

results of easier, smaller calculations to calculate the final 

value. 

One way of calculating m' is as follows:- 

m' = 13
7
 mod 33 = 13(3+3+1) mod 33 = 133.133 .13 mod 33 

=(133 mod 33).(133 mod 33).(13 mod 33) mod 33 

=(2197 mod 33).(2197 mod 33).(13 mod 33) mod 33 

http://www.di-mgt.com.au/rsa_alg.html#x931
http://www.di-mgt.com.au/rsa_alg.html#pkcs1schemes
http://www.di-mgt.com.au/rsa_alg.html#PKCS1
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=19.19.13 mod 33 = 4693 mod 33 

=7. 

Now if we calculate the ciphertext c for all the possible values 

of m (0 to 32), we get 

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

c  0 1 8 27 31 26 18 13 17 3 10 11 12 19 5 9 4 

m 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

c 29 24 28 14 21 22 23 30 16 20 15 7 2 6 25 32 

 

Note that all 33 values of m (0 to 32) map to a unique 

code c in the same range in a 

sort of random manner. In this case we have nine values of m 

that map to the same value of c - these are known as 

unconcealed messages. m = 0, 1 and n-1 will always do this for 

any n, no matter how large. But in practice, higher values 

shouldn't be a problem when we use large values for n in the 

order of several hundred bits.If we wanted to use this system to 

keep secrets, we could let A=2, B=3, ..., Z=27. (We 

specifically avoid 0 and 1 here for the reason given above). 

Thus the plaintext message "HELLOWORLD" would be 

represented by the set of integers m1, m2, ...  

(9,6,13,13,16,24,16,19,13,5) 

Using our table above, we obtain ciphertext integers c1, c2, ... 

(3,18,19,19,4,30,4,28,19,26) 

Remember that calculating me mod n is easy, but 

calculating the inverse c-e mod n is very difficult, well, for 

large n's anyway. However, if we can factor n into its prime 

factors p and q, the solution becomes easy again, even for large 

n's. Obviously, if we can get hold of the secret exponent d, the 

solution is easy, too. 

V IMPLEMENTATION OF  RSA  ALGORITHM 

Step 1: Create p & q 

Step 2: Calculate N=p*q 

Step 3: Calculate N1=(p-1)(q-1) 

Step 4: Select Encryption 

E=D.ModInverese(N1) 

Step 5: Select Decryption 

D=Choose 256 bits of random number 

Step 6: Calculate OAEP 

Padding  

  m=Give any value(random number) 

Step 7:padding=m-plaintext length 

Padded message M bit length of m 

 k=give a value(random  number) 

Create new random  variable r of k bits 

Step 8: Create G(r) which m bit integer from r bit integer 

 Gofr=r.shiftleft(m-k) 

Step 9: Create p1 & p2 

 p1=M.xor(gofr) 

 Hofp1=p1.shiftright(k-m) 

 P2=Hofp1.xor(r) 

Step 10: plain=Concatenate p1 and  p2  

Step 11: Decryption(OAEP) 

r=(p1.shiftright(k-m)).xor(p2) 

M=(r.shiftleft(m-k)).xor(p1) 

Plaintext=M.shiftright(padding) 

Step 12: Encryption 

Cipher=plain.modpow(E,N) 

Step 13: Decryption 

plaintext = Cipher.modpow(D,N) 

OAEP Decryption(p1,p2) 

Step 14: PlainText=Plain 

 

VI. RESULT AND DISCUSSION 

 RSA and RSA-OAEP are implemented in java. This 

algorithm are tested by different file size and calculate the 

encryption and decryption times. The results are tabulated as 

follows 

 6.1 RSA ENCRYPTION DECRYPTION 

 

6.2 RSA-OAEP ENCRYPTION DECRYPTION 

 

6.3 RSA AND RSA – OAEP ENCRYPTION DECRYPTION 

 

When comparing  with RSA , RSA – OAEP 

algorithm requires more time for encryption decryption. 

Where as RSA-OAEP is more secured cryptography algorithm  

than RSA, because RSA –OEAP includes OAEP concept, 

which is more difficulty for the intruder to find the plain text 

from  the  encrypted message. So it is finalized that RSA –

OAEP is secured encrption and decryption algorithm. 

Input Size Encryption Time Decryption Time Total Time 

14kb 10 52 62 

24kb 13 61 74 

30kb 16 66 82 

39kb 17 101 118 

62kb 17 142 159 

Input 

Size(kb) 

Encryption 

Time 

Decryption 

Time 

Total 

Time 

14kb 15 63 78 

24kb 16 76 92 

30kb 15 78 93 

39kb 15 170 185 

62kb 16 190 206 
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VII CONCLUSION 

A slight modification of the well-known and practical 

RSA-OAEP has been included encryption. According to this 

scheme it has extra advantages, namely its IND-CCA, security 

remains highly related to hardness of the RSA problem, even in 

the multi-query setting.The RSA provides highest security to 

the business application.More over , this scheme can be used 

for encryption of long  messages woithout employing the 

hybrid and symmetric encryption. 
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