
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 5 Issue 09 September 2016 Page No.18074-18080

E.Vinithra, IJECS Volume 5 Issue 09 September, 2016 Page No.18074-18080 Page 18074

The Comparative Study on Public Key Algorithm using RSA AND OAEP
 E.Vinithra

#1
, N.Hyrunnisha

 #2

Department of Computer Science

Muthayammal College of Arts and Science

Namakkali District, Tamilnadu, India
1
vinithra18@gmail.com

Department of Computer Science

Muthayammal College of Arts and Science

Namakkali District, Tamilnadu, India
2
canha@muthayammal.com

ABSTRACT
The cryptography algorithms use of real security applications. These applications tend to be too complicated, exposing too much detail

of the cryptographic process. Users need simple inherent security that doesn’t require more of them simply clicking the secure

checkbox. Cryptography is a first abstraction to separate specific algorithms from generic cryptographic processes in order to eliminate

compatibility and upgradeability problems. The core idea is enhance the security of RSA algorithm. In this dissertation public key

algorithm RSA and enhanced RSA are compared analysis is made on time based on execution time.

Index Terms - Public Key ,Encryption, RSA, Security,OAEP

I INTRODUCTION

Data communication is an important aspect of our

living. So, protection of data from misuse is essential.[1] A

cryptosystem defines a pair of data transformations called

encryption and decryption. Encryption is applied to the plain

text i.e. the data to be communicated to produce cipher text i.e.

encrypted data using encryption key. Decryption uses the

decryption key to convert cipher text to plain text i.e. the

original data. Now, if the encryption key and the decryption

key is the same or one can be derived from the other then it is

said to be symmetric cryptography. This type of cryptosystem

can be easily broken if the key used to encrypt or decrypt can

be found. To improve the protection mechanism Public Key

Cryptosystem was introduced in 1976 by Whitfield Diffe and

Martin Hellman of Stanford University. It uses a pair of related

keys one for encryption and other for decryption. One key,

which is called the private key, is kept secret and other one

known as public key is disclosed. The message is encrypted

with public key and can only be decrypted by using the private

key. So, the encrypted message cannot be decrypted by anyone

who knows the public key and thus secure communication is

possible[2][3] RSA (named after its authors – Rivest, Shamir

and Adleman) is the most popular public key algorithm. In

relies on the factorization problem of mathematics that

indicates that given a very large number it is quite impossible

in today’s aspect to find two prime numbers whose product is

the given number. As we increase the number the possibility

for factoring the number decreases. So, we need very large

numbers for a good Public Key Cryptosystem.

GNU has an excellent library called GMP that can handle

numbers of arbitrary precision. We have used this library to

implement RSA algorithm. As we have shown in this paper

number of bits encrypted together using a public key has

significant impact on the decryption time and the strength of

the cryptosystem. Cryptographic algorithms are divided into

two types viz., symmetric key and public key. In symmetric

key algorithm, only one key is used for both encryption and

decryption. [4][5]The key must be known well in advance to

both the parties before the messages being encrypted. However

these algorithms suffer from disadvantages of the key

distribution problem. Despite this drawback, the various

symmetric key algorithms have been developed recently viz.,

DES, AES, BLOWFISH, CAST etc. In public key algorithms,

every person has a pair of keys viz., private key and public key.

Further one key is calculated from other key. To perform

encryption using public key algorithm the sender uses the

receiver’s public key, and at other end the receiver uses his/her

private key to perform decryption. Numerous public key

algorithms are available viz., RSA, Rabin, ELGamal, etc.

 In recent times, the analysis of cryptographic

algorithm gained attention from researcher. Enhancing security

is a major challenging task in cryptography. [6]The security of

the many cryptographic algorithms depends on the generation

of and predictable quantities such as the key stream in

vernam’s one-time pad, the primes p and q in RSA encryption,

secret key in the DES algorithm. In all these cases the

quantities must be generated sufficient in size and at random, in

the sense that the probability of any particular value being

selected must be sufficiently small. Even if the above said

parameters are taken carefully none of the computational

problem is fully secured enough. Moreover, to enhance the

security in some symmetric key algorithms, normally the key is

selected in such a way that the size of the key is equal to the

mailto:1nitishmanik@gmail.com
mailto:2mahemtechbdu@gmail.com

DOI: 10.18535/ijecs/v5i9.48

E.Vinithra, IJECS Volume 5 Issue 09 September, 2016 Page No.18074-18080 Page 18075

size of the plaintext. Similarly the number of bits in the key is

chosen very large in public key algorithms and some problems

occur in storing and distributing the key. To avoid them,

instead of increasing the key size, the focus is given for

plaintext.

 The rest of the paper is structured as follows. Related

work is described in Section 2. The proposed Algorithm is

presented in section 3. Section 4 describes an illustration of the

RSA and proposed methodology. Section 5 illustrates a brief

implementation of RSA algorithm based on our proposed

methodology. Results and Discussion are presented in section

6. Finally section 7 ends with conclusion.

II. RELATED WORK

According to ” Rajorshi Biswas, Shibdas Bandyopadhyay,

Anirban Banerjee”, Fast implementation of rsa

algorithm.Organizations in both public and private sectors

have become increasingly dependent on electronic data

processing. Protecting these important data is of utmost

concern to the organizations and cryptography is one of the

primary ways to do the job. Public Key Cryptography is used to

protect digital data going through an insecure channel from one

place to another. RSA algorithm is extensively used in the

popular implementations of Public Key Infrastructures. In this

paper, we have done an efficient implementation of RSA

algorithm using gmp library from GNU. We have also analyzed

the changes in the performance of the algorithm by changing

the number of characters we are encoding together

According to “Xin Zhou “,Research and implementation of

RSA algorithm for encryption and decryption Cryptographic

technique is one of the principal means to protect information

security. Not only has it to ensure the information confidential,

but also provides digital signature, authentication, secret sub-

storage, system security and other functions. Therefore, the

encryption and decryption solution can ensure the

confidentiality of the information, as well as the integrity of

information and certainty, to prevent information from

tampering, forgery and counterfeiting. Encryption and

decryption algorithm's security depends on the algorithm while

the internal structure of the rigor of mathematics, it also

depends on the key confidentiality. Key in the encryption

algorithm has a pivotal position, once the key was leaked, it

means that anyone can be in the encryption system to encrypt

and decrypt information, it means the encryption algorithm is

useless. Therefore, what kind of data you choose to be a key,

how to distribute the private key, and how to save both data

transmission keys are very important issues in the encryption

and decryption algorithm. This paper proposed an

implementation of a complete and practical RSA

encrypt/decrypt solution based on the study of RSA public key

algorithm

III PROPOSED ALGORITHM

3.1 OAEP

Optimal Asymmetric Encryption Padding (OAEP) is a

method for encoding messages developed by Mihir Bellare and

Phil Rogaway . The technique of encoding a message with

OAEP and then encrypting it with RSA is provably secure in

the random oracle model. Informally, this means that if hash

functions are truly random, then an adversary who can recover

such a message must be able to break RSA.

An OAEP encoded message consists of a ``masked data'' string

concatenated with a ``masked random number''. In the simplest

form of OAEP, the masked data is formed by taking the XOR

of the plaintext message M and the hash G of a random string r.

The masked random number is the XOR of r with the hash H

of the masked data. The input to the RSA encryption function

is then

[M G(r)] [r H(M G(r))]

Often, OAEP is used to encode small items such as keys. There

are other variations on OAEP (differing only slightly from the

above) that include a feature called ``plaintext-awareness''. This

means that to construct a valid OAEP encoded message, an

adversary must know the original plaintext. To accomplish this,

the plaintext message M is first padded (for example, with a

string of zeroes) before the masked data is formed. OAEP is

supported in the ANSI X9.44, IEEE P1363 and SET standards.

3.2 Security properties

The security of RSAES-OAEP depends on the

security of the underlying RSA encryption and Decryption

primitives, RSAEP and RSADP and the Security of the OAEP

encoding method. The advantage of the technique that is

generically known as OAEP (Optimal Asymmetric Encryption

Padding) is that under one model of analysis -- the so-called

random oracle model -- the security of RSAES-OAEP can be

tightly related to the security of RSAEP/RSADP. This allows

us to consider the security of RSAES-OAEP

RSA encryption and decryption primitive over the

years many different researchers have considered the

security of RSAEP/RSADP. Boneh gives an excellent

survey of the main attacks which we summarize here. In

some cases, the discussion of the private exponent d refers

to the inverse of e mod (p − 1)(q − 1) as opposed to the

alternative definition given in this document; knowledge of

either is of course sufficient to compromise security.

1. Taking eth roots of c modulo n when the factorization of n is

unknown.

This is an open problem and there are currently no

practical techniques for achieving this when typical parameter

choices are made. Although the RSA problem of taking eth

roots modulo n is not known to be equivalent to factoring the

modulus, factorization is the only method known for solving

the problem in the general case. Boneh and Venkatesan have

shown that if there is an algebraic reduction from factoring to

eth roots in time T, then it is possible to factor in (roughly) time

2eT. This means that, for very small e (say, less than 64), if

factoring is hard, then the problems are not equivalent (at least

via algebraic reductions). For larger e (for instance, e = 216 +

1), there still might be an efficient reduction. However, see

further notes below for possible methods of determining the

mailto:rajorshi.biswas@gmail.com
mailto:shibdas@gmail.com
mailto:anir_iiit@yahoo.co.uk
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xin%20Zhou.QT.&newsearch=partialPref

DOI: 10.18535/ijecs/v5i9.48

E.Vinithra, IJECS Volume 5 Issue 09 September, 2016 Page No.18074-18080 Page 18076

private key d, and hence solving the problem as well as

factoring the modulus, when sufficient information about the

private key is leaked.

2. Factoring n and then taking eth roots of c modulo n.

Trends in the effectiveness of factoring integers are

carefully collated and scrutinized by the cryptographic

community. Progress over past years has been gradual but

steady. Under a

variety of models it is possible to provide a range of predictions

for the continued resistance

of an RSA modulus n to a factoring attack .The most recent

factorization of an RSA modulus was RSA-512, a 512-bit RSA

modulus .It is possible to use this empirical evidence as a base

point from which to make estimates for- 19the likely security

of RSA module of different sizes. While there are a variety of

comparisons available which sometimes offer divergent views,

there seems to be a general consensus that the security offered

by 1024-bit RSAEP/RSADP is roughly equivalent to that

offered by 80-bit symmetric key cryptography in terms of

computational effort1. Note that the user can freely choose

appropriate parameter choices to give a level of protection

appropriate to the user’s own risk assessment and key lengths

of 2048-bit and higher offer an increasingly significant margin

for security. Recent proposals to use an opto-electronic device

TWINKLE to speed up part of the factoring process are

unlikely to have any significant impact at the recommended

parameter choices today .

3. Two users sharing a common modulus.

Two users should never share the same modulus n,

even if they use different encryption/

Decryption exponent pairs. Systems that allow users to share

moduli are using RSAEP/RSADP inappropriately.

4. Using a small private exponent d.

It may be tempting to use a small private exponent d

for reasons of efficiency. A basic implementation of

RSAEP/RSADP can be susceptible to attack if d < n0.292. It is

conjectured that this might continue to be the case if d < n0.5.

A small private exponent d should not be used.

5. Using a low public exponent e.

Some progress has been made [13] on exploiting the

use of a low public exponent. While there is no particular

attack within the context of RSAES-OAEP that compromises

the security of the public exponent e = 3, more conservative

users may prefer to use other public exponents

such as e = 17 or e = 216 + 1 while still retaining a very

competitive performance for encryption. Also, as noted further

in Annex D.4.3.4 of IEEE Std 1363-2000 , a larger public

exponent can provide an additional level of defense in the case

that the underlying random number generation fails in an

implementation of the OAEP method, undermining the security

properties offered by that method.

6. Broadcasting the same message to multiple users.

It has been known for some time that it can be unsafe

to broadcast the same message to

different users if no padding, or a very simple padding scheme

is used . Application of

allows improvements to this original work to be made. The

application of EME-OAEP

as the padding scheme prior to encryption is sufficient to resist

these attacks.

7. Sending related messages to the same user.

For small e it can be possible to recover simply-

related messages that are encrypted under

the same public-key . Extensions showed some practical

applications of this work when small amounts of random

padding are used prior to encrypting with RSAEP. In an attack

is described that applies to a case where the plaintext ends by

sufficiently many zeroes, and two or more ciphertexts

corresponding to the same plaintext are available. The

application of EME-OAEP as the padding scheme prior to

encryption is sufficient to resist these attacks. 1Under an

equivalent-cost analysis 1024-bit RSAEP/RSADP is viewed as

offering greater security than 80-bit

symmetric key cryptography .

8. Using partial information about the private key d.

Given the dlog2 n/4e least significant bits of the

private exponent d, it is possible to reconstruct all of d if e < p

n . Furthermore, when a small exponent e is used, the most

significant half of the bits of d can be leaked. Although

determining the remaining bits is of course still difficult, if the

private exponent is protected by symmetric encryption,

knowledge of the most significant half of the bits of d may

facilitate a known-plaintext attack on the symmetric

encryption method. Accordingly, it is essential that the

remaining bits of the private key d

Should be well protected.

9. Using partial information about the factors p, q.

Given the dlog2n/4e least significant bits of p (resp. q)

or the dlog2n/4e most significant bits of p (resp. q), one can

efficiently factor n . The entirety of the secret primes p and q

should be protected.It is generally accepted that when RSAEP

is used with appropriate parameter choices and coupled with a

secure padding scheme like OAEP, then the most effective

attack is to factor the modulus n.

Under this assumption we can relate the security of RSAES-

OAEP to the effort required to factor

the underlying modulus of different sizes.A crude estimate for

the increased computing resources required beyond that for

factoring RSA-512can be derived for different sizes of RSA

moduli. For 1024-bit RSA moduli, the factor increasein

computational power is estimated as 7 × 106 while for 2048-bit

RSA the estimate is 9 × 1015.Increases in computing power

might be accounted for by some combination of the use of

moremachines, increasingly powerful machines, or more

calendar time. The calendar time required for thefactorization

of RSA-512 was 3.7 months . Other issues like the cost and

availability of memorymay also figure in deriving predictions

for the future security of RSAEP/RSADP .

DOI: 10.18535/ijecs/v5i9.48

E.Vinithra, IJECS Volume 5 Issue 09 September, 2016 Page No.18074-18080 Page 18077

reasons to call the security of RSAES-OAEP in question.

Luckily, this is not the case; RSAES-OAEP

 Basic techniques to avoid implementation weaknesses

The analytical securities of RSAEP/RSADP along

with RSAES-OAEP have been considered in previous section.

However we still need to implement RSAES-OAEP securely.

It is possible that weaknesses could be introduced when writing

RSAES-OAEP as a component of an application, or when

running an application from which so-called side-channel

information can be deduced. Within an engineering

environment, implementation errors can be virtually eliminated

by adopting good product design and engineering practices.

Adequate testing and product management throughout the

development cycle are essential. With regards to running an

application using RSAES-OAEP, protection of all private key

information, secure memory management, and secure error

handling are all needed. Issues like the source of random

numbers are, of course, fundamental to the security of the

implementation. Over recent years there have been several

proposals to break cryptosystems by utilizing so-called side-

channel information. Examples include timing attacks , power

analysis , and fault analysis .Implementations of RSAES-

OAEP can be made resistant to timing attacks and power

analysis by ensuring that all the steps in the computation of a

private key operation take the same amount of time or consume

the same amount of power .A more elegant approach to

providing resistance to timing attacks is to use blinding as

suggested by Ronald L. Rivest.

3.3 Optimal asymmetric encryption padding

In cryptography, Optimal Asymmetric Encryption

Padding (OAEP) is a padding scheme often used together with

RSA encryption. OAEP was introduced by Bellare and

Rogaway.
[1]

The OAEP algorithm is a form of Feistel network

which uses a pair of random oracles G and H to process the

plaintext prior to asymmetric encryption. When combined with

any secure trapdoor one-way permutation , this processing is

proved in the random oracle model to result in a combined

scheme which is semantically secure under chosen plaintext

attack. When implemented with certain trapdoor permutations,

OAEP is also proved secure against chosen cipher text attack.

OAEP can be used to build an all-or-nothing transform.

OAEP satisfies the following two goals:

1. Add an element of randomness which can be used to

convert a deterministic encryption scheme into a

probabilistic scheme.

2. Prevent partial decryption of cipher texts (or other

information leakage) by ensuring that an adversary

cannot recover any portion of the plaintext without

being able to invert the trapdoor one-way permutation

.

The original version of OAEP (Bellare/Rogaway, 1994)

showed a form of "plaintext awareness" in the random oracle

model when OAEP is used with any trapdoor permutation.

Subsequent results contradicted this claim, showing that OAEP

was only IND-CCA1 secure. However, the original scheme

was proved in the random oracle model to be IND-CCA2

secure when OAEP is used with the RSA permutation using

standard encryption exponents, as in the case of RSA-OAEP.

An improved scheme that works with any trapdoor one-way

permutation was offered by Victor Shoup to solve this problem.

More recent work has shown that in the standard model, that it

is impossible to prove the IND-CCA2 security of RSA-OAEP

under the assumed hardness of the RSA problem.

To encode,

1. messages are padded with k1 zeros to be n − k0 bits in

length.

2. r is a random k0-bit string

3. G expands the k0 bits of r to n − k0 bits.

4. X = m00..0 ⊕ G(r)

5. H reduces the n − k0 bits of X to k0 bits.

6. Y = r ⊕ H(X)

7. The output is X || Y where X is shown in the diagram

as the leftmost block and Y as the rightmost block.

To decode,

1. recover the random string as r = Y ⊕ H(X)

2. recover the message as m00..0 = X ⊕ G(r)

The "all-or-nothing" security is from the fact that to recover m,

you must recover the entire X and the entire Y; X is required to

recover r from Y, and r is required to recover m from X. Since

any changed bit of a cryptographic hash completely changes

the result, the entire X, and the entire Y must both be

completely recovered.

1. To generate the primes p and q, generate a random

number of bit length b/2 where b is the required bit

length of n; set the low bit (this ensures the number is

odd) and set the two highest bits (this ensures that the

high bit of n is also set); check if prime (use the

Rabin-Miller test); if not, increment the number by

two and check again until you find a prime. This is p.

Repeat for q starting with a random integer of length

b-b/2. If p<q, swop p and q (this only matters if you

intend using the CRT form of the private key). In the

extremely unlikely event that p = q, check your

random number generator. Alternatively, instead of

incrementing by 2, just generate another random

number each time.

http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Padding_%28cryptography%29
http://en.wikipedia.org/wiki/RSA_%28algorithm%29
http://en.wikipedia.org/wiki/Mihir_Bellare
http://en.wikipedia.org/wiki/Phillip_Rogaway
http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding#cite_note-0
http://en.wikipedia.org/wiki/Feistel_network
http://en.wikipedia.org/wiki/Random_oracle
http://en.wikipedia.org/wiki/Asymmetric_encryption
http://en.wikipedia.org/wiki/Trapdoor_one-way_function
http://en.wikipedia.org/wiki/Random_oracle_model
http://en.wikipedia.org/wiki/Semantic_security
http://en.wikipedia.org/wiki/Chosen_plaintext_attack
http://en.wikipedia.org/wiki/Chosen_plaintext_attack
http://en.wikipedia.org/wiki/Chosen_ciphertext_attack
http://en.wikipedia.org/wiki/All_or_nothing_transform
http://en.wikipedia.org/wiki/Deterministic_encryption
http://en.wikipedia.org/wiki/Probabilistic_encryption
http://en.wikipedia.org/wiki/Trapdoor_one-way_function
http://en.wikipedia.org/wiki/Plaintext-aware_encryption
http://en.wikipedia.org/wiki/Ciphertext_indistinguishability
http://en.wikipedia.org/wiki/Random_oracle_model
http://en.wikipedia.org/wiki/Ciphertext_indistinguishability
http://en.wikipedia.org/wiki/Victor_Shoup
http://en.wikipedia.org/wiki/Standard_Model_%28cryptography%29
http://en.wikipedia.org/wiki/RSA_problem
http://en.wikipedia.org/wiki/All-or-nothing_transform

DOI: 10.18535/ijecs/v5i9.48

E.Vinithra, IJECS Volume 5 Issue 09 September, 2016 Page No.18074-18080 Page 18078

There are stricter rules in ANSI X9.31 to produce

strong primes and other restrictions on p and q to

minimize the possibility of known techniques being

used against the algorithm. There is much argument

about this topic. It is probably better just to use a

longer key length.

2. In practice, common choices for e are 3, 17 and 65537

(2
16

+1). These are Fermat primes, sometimes referred

to as F0, F2 and F4 respectively (Fx=2^(2^x)+1).

They are chosen because they make the modular

exponentiation operation faster. Also, having chosen

e, it is simpler to test whether gcd(e, p-1)=1 and gcd(e,

q-1)=1 while generating and testing the primes in step

1. Values of p or q that fail this test can be rejected

there and then. (Even better: if e is prime and greater

than 2 then you can do the less-expensive test (p mod

e)!=1 instead of gcd(p-1,e)==1.)

3. To compute the value for d, use the Extended

Euclidean Algorithm to calculate d = e
-1

 mod phi, also

written d = (1/e) mod phi. This is known as modular

inversion. Note that this is not integer division. The

modular inverse d is defined as the integer value such

that ed = 1 mod phi. It only exists if e and phi have no

common factors.

4. When representing the plaintext octets as the

representative integer m, it is usual to add random

padding characters to make the size of the integer m

large and less susceptible to certain types of attack. If

m = 0 or 1 or n-1 there is no security as the ciphertext

has the same value. For more details on how to

represent the plaintext octets as a suitable

representative integer m, see PKCS#1 Scheme below

or the reference itself [PKCS1]. It is important to

make sure that m < n otherwise the algorithm will fail.

This is usually done by making sure the first octet of

m is equal to 0x00.

5. Decryption and signing are identical as far as the

mathematics is concerned as both use the private key.

Similarly, encryption and verification both use the

same mathematical operation with the public key.

That is, mathematically, for m < n,

m = (m
e
 mod n)

d
 mod n = (m

d
 mod n)

e
 mod n

However, note these important differences in

implementation:-

o The signature is derived from a message

digest of the original information. The

recipient will need to follow exactly the same

process to derive the message digest, using

an identical set of data.

o The recommended methods for deriving the

representative integers are different for

encryption and signing (encryption involves

random padding, but signing uses the same

padding each time).

6. The original definition of RSA uses the Euler totient

function φ(n) = (p-1)(q-1). More recent standards use

the Charmichael function λ(n) = lcm(p-1, q-1) instead.

λ(n) is smaller than φ(n) and divides it. The value of d'

computed by d' = e
-1

 mod λ(n) is usually different

from that derived by d = e
-1

 mod φ(n), but the end

result is the same. Both d and d' will decrypt a

message m
e
 mod n and both will give the same

signature value s = m
d
 mod n = m

d'
 mod n. To

compute λ(n), use the relation

7. λ(n) = (p-1)(q-1) / gcd(p-1, q-1).

IV RSA ENCRYPTION WITH PROPOSED METHODOLOGY

Step 1: Select primes p=11, q=3.

Step 2: n = pq = 11.3 = 33

 phi = (p-1)(q-1) = 10.2 = 20

Step 3: Choose e=3 Check gcd(e, p-1) = gcd(3, 10) = 1 (i.e. 3

and 10 have no common factors except 1),

and check gcd(e, q-1) = gcd(3, 2) = 1therefore gcd(e,

phi) = gcd(e, (p-1)(q-1)) = gcd(3, 20) = 1

Step 4: Compute d such that ed ≡ 1 (mod phi)

 i.e. compute d = e-1 mod phi = 3-1 mod 20

 i.e. find a value for d such that phi divides (ed-1)

 i.e. find d such that 20 divides 3d-1.

 Simple testing (d = 1, 2, ...) gives d = 7

 Check: ed-1 = 3.7 - 1 = 20, which is divisible by phi.

Step 5: Public key = (n, e) = (33, 3)

Private key = (n, d) = (33, 7).

This is actually the smallest possible value for the modulus n

for which the RSA

algorithm works.Now say we want to encrypt the message m =

7,

c = m
e
mod n = 7

3
 mod 33 = 343 mod 33 = 13.

Hence the ciphertext c = 13.

Step 6: To check decryption we compute

m' = c
d

mod n = 13
7
 mod 33 = 7.

Note that we don't have to calculate the full value of 13 to the

power 7 here. We can

make use of the fact that

a = bc mod n = (b mod n).(c mod n) mod n

so we can break down a potentially large number into its

components and combine the

results of easier, smaller calculations to calculate the final

value.

One way of calculating m' is as follows:-

m' = 13
7
 mod 33 = 13(3+3+1) mod 33 = 133.133 .13 mod 33

=(133 mod 33).(133 mod 33).(13 mod 33) mod 33

=(2197 mod 33).(2197 mod 33).(13 mod 33) mod 33

http://www.di-mgt.com.au/rsa_alg.html#x931
http://www.di-mgt.com.au/rsa_alg.html#pkcs1schemes
http://www.di-mgt.com.au/rsa_alg.html#PKCS1

DOI: 10.18535/ijecs/v5i9.48

E.Vinithra, IJECS Volume 5 Issue 09 September, 2016 Page No.18074-18080 Page 18079

=19.19.13 mod 33 = 4693 mod 33

=7.

Now if we calculate the ciphertext c for all the possible values

of m (0 to 32), we get

m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

c 0 1 8 27 31 26 18 13 17 3 10 11 12 19 5 9 4

m 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

c 29 24 28 14 21 22 23 30 16 20 15 7 2 6 25 32

Note that all 33 values of m (0 to 32) map to a unique

code c in the same range in a

sort of random manner. In this case we have nine values of m

that map to the same value of c - these are known as

unconcealed messages. m = 0, 1 and n-1 will always do this for

any n, no matter how large. But in practice, higher values

shouldn't be a problem when we use large values for n in the

order of several hundred bits.If we wanted to use this system to

keep secrets, we could let A=2, B=3, ..., Z=27. (We

specifically avoid 0 and 1 here for the reason given above).

Thus the plaintext message "HELLOWORLD" would be

represented by the set of integers m1, m2, ...

(9,6,13,13,16,24,16,19,13,5)

Using our table above, we obtain ciphertext integers c1, c2, ...

(3,18,19,19,4,30,4,28,19,26)

Remember that calculating me mod n is easy, but

calculating the inverse c-e mod n is very difficult, well, for

large n's anyway. However, if we can factor n into its prime

factors p and q, the solution becomes easy again, even for large

n's. Obviously, if we can get hold of the secret exponent d, the

solution is easy, too.

V IMPLEMENTATION OF RSA ALGORITHM

Step 1: Create p & q

Step 2: Calculate N=p*q

Step 3: Calculate N1=(p-1)(q-1)

Step 4: Select Encryption

E=D.ModInverese(N1)

Step 5: Select Decryption

D=Choose 256 bits of random number

Step 6: Calculate OAEP

Padding

 m=Give any value(random number)

Step 7:padding=m-plaintext length

Padded message M bit length of m

 k=give a value(random number)

Create new random variable r of k bits

Step 8: Create G(r) which m bit integer from r bit integer

 Gofr=r.shiftleft(m-k)

Step 9: Create p1 & p2

 p1=M.xor(gofr)

 Hofp1=p1.shiftright(k-m)

 P2=Hofp1.xor(r)

Step 10: plain=Concatenate p1 and p2

Step 11: Decryption(OAEP)

r=(p1.shiftright(k-m)).xor(p2)

M=(r.shiftleft(m-k)).xor(p1)

Plaintext=M.shiftright(padding)

Step 12: Encryption

Cipher=plain.modpow(E,N)

Step 13: Decryption

plaintext = Cipher.modpow(D,N)

OAEP Decryption(p1,p2)

Step 14: PlainText=Plain

VI. RESULT AND DISCUSSION

 RSA and RSA-OAEP are implemented in java. This

algorithm are tested by different file size and calculate the

encryption and decryption times. The results are tabulated as

follows

 6.1 RSA ENCRYPTION DECRYPTION

6.2 RSA-OAEP ENCRYPTION DECRYPTION

6.3 RSA AND RSA – OAEP ENCRYPTION DECRYPTION

When comparing with RSA , RSA – OAEP

algorithm requires more time for encryption decryption.

Where as RSA-OAEP is more secured cryptography algorithm

than RSA, because RSA –OEAP includes OAEP concept,

which is more difficulty for the intruder to find the plain text

from the encrypted message. So it is finalized that RSA –

OAEP is secured encrption and decryption algorithm.

Input Size Encryption Time Decryption Time Total Time

14kb 10 52 62

24kb 13 61 74

30kb 16 66 82

39kb 17 101 118

62kb 17 142 159

Input

Size(kb)

Encryption

Time

Decryption

Time

Total

Time

14kb 15 63 78

24kb 16 76 92

30kb 15 78 93

39kb 15 170 185

62kb 16 190 206

DOI: 10.18535/ijecs/v5i9.48

E.Vinithra, IJECS Volume 5 Issue 09 September, 2016 Page No.18074-18080 Page 18080

0

100

200

300

400

14 24 30 39 62

Rsa -
oaep

encrypti
on

Rsa
encrypti

on

VII CONCLUSION

A slight modification of the well-known and practical

RSA-OAEP has been included encryption. According to this

scheme it has extra advantages, namely its IND-CCA, security

remains highly related to hardness of the RSA problem, even in

the multi-query setting.The RSA provides highest security to

the business application.More over , this scheme can be used

for encryption of long messages woithout employing the

hybrid and symmetric encryption.

REFERENCES

[1] R.L.Rivest,A.Sharmir,L.Adleman : A method for

obtaining digital signatures and public key

Cryptosystems”, Tata McGraw-Hill

[2] Cormen , Thomas H, Charles E.Leiserson, aronald

L.Rivest Clifford Stein “Introduction to algorithms”. MIT

Press and McGraw-Hill

[3] A. J. Menezes, P. C. Van Oorschot and S.

Vanstone,“Handbook of Applied Cryptography”, CRC

Press, Boca Ration, Florida, USA, 1997.

[4] B.Schneier,”Applied Cryptography”, 2nd ed, John Wiley

& Sons Inc., New York, 1996.

[5] William Stallings, ”Cryptography and Network

Security”, 2nd ed, Prentice Hall,Upper saddle River,new

Jersey, USA, 1997.

[6] William Stallings “Cryptography and Network

Security Principles and Practice”, 4
th

 ed, Prentice Hall,

2006

E.Vinithra, received her B.Sc(Computer Science)degree in

Nehru Memorial college form Bharathidhasan

university,Trichy [Tamilnadu(India)](2007-2010).She

received her MCA degree in Kongunadu Arts and Science

from Bharathiyar university,

Coimbatore[Tamilnadu(India)](2010-2013).She is the
M.phil Research scholar of Muthayammal college of Arts

and science form Periyar university, Salem [Tamilnadu(India)].Her area of
interest is Networking.

 N.Hyrunnisha, received her B.sc degree in Nehru Memorial

college Form Bharathidhasan university, Trichy

[Tamilnadu(India)].She received her MCA degree in
university of Madras, chennai [Tamilnadu(India)].She is the

M.phil Research scholar of periyar university, salem

[Tamilnadu(India)].she is assiant Professor of Computer Application in

Muthayammal college of Arts and science Form periyar university, salem
[Tamilnadu (India)].she is 8 year work of experience in Muthayammal College

of Arts and science .

