
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 5 Issue 09 September 2016 Page No.17996-18000

Heet Palod , IJECS Volume 5 Issue 09 September 2016 Page No.17996-18000 Page 17996

Agile Testing Automation Framework

Heet Palod
1
, Danish Chaus

2

1Department of Computer Engineering, Fr. Conceicao Rodrigues Institute of Technology,

Sector 9A, Vashi, Navi Mumbai, India

heetpalod13@gmail.com

2Department of Computer Engineering, Fr. Conceicao Rodrigues Institute of Technology,

Sector 9A, Vashi, Navi Mumbai, India

danishkchaus@gmail.com

Abstract: Software testing is one of the most important phases of Software Development Life Cycle and main technique to

find bugs and ensure the quality of the software. Software Testing can be conducted manually as well as automated. In

manual testing, testing is done without any tool. In automation testing, testing is done with the help of automated testing

tools. In recent times, agile development and testing are growing in popularity. Agile testing tools vary from project

management tools to automated testing tools. In this paper, we have explained the detailed working of Agile Testing

Framework (ATF). The ATF is about implementing the ideal automated testing environment in an agile organization, to

deliver quality software, fast. The ATF Architecture can be used to easily integrate with continuous integration tools and

best in class third-party testing tools to allow for accessibility, security, web consistency and full performance (front-end,

middleware and load) testing.

Keywords: Agile, Test-Driven Development (TDD), Acceptance Test-Driven Development (ATDD), Behavior-Driven Development (BDD),

Technical Debt, Regression, Refactor, and Continuous Integration.

1. Introduction

Agile testing differs from the big bang, test-at-the-end approach

used in traditional development. Instead, a code is developed

and tested in small increments, often with the development of

the test itself preceding the development of the code. In this

way, tests serve to elaborate and better define the intended

system behavior before the system is coded. Quality is built in

from the beginning. This just-in-time approach to the

elaboration of the intended system behavior also mitigates the

need for lengthy, detailed requirements and specifications, and

sign-offs, as are often used in traditional software development

to control quality. Also these tests, unlike traditional

requirements, are automated wherever possible. Even when

they’re not, they provide a definitive statement of what the

system actually does, rather than a statement of early thoughts

about what it was supposed to do.

Agile testing is a continuous process, not a one-time or end

game event. It is integral to lean and built-in quality. Simply,

Agile teams can’t go fast without endemic quality, and they

can’t achieve endemic quality without continuous testing and,

wherever possible, testing should be practiced first. [7]

2. Traditional Testing Automation V/S Agile

Testing Automation Framework

Traditional, Record-and-Playback, Heavyweight, Commercial

test automation solutions are not agile as the test-last workflow

encouraged by such tools is inappropriate for agile teams and

also unmaintainable scripts are created with such tools which

are an impediment to change. The practice of these tools forces

teams to wait until after the software is done or at least the

interface is done before automation can begin. After all, it’s

hard to record scripts against an interface that doesn’t exist yet.

So the usual workflow for automating tests with a traditional

test automation tool follows these phases:

 Test analysts design and document the tests

 Test executors execute the tests and report the bugs

 Developers fix the bugs

 Test executors re-execute the tests and verify the fixes

(repeating as needed)

• Test automation specialists automate the regression tests

using the test documents as specifications.

By the time it gets around to automating the tests, the software

is ready so tests are not going to uncover much information that

we don’t already know. Automated regression tests are

theoretically handy for the next release but usually, the changes

made for the next release breaks the automation. The result for

most contexts is high cost and limited benefit. However, this

workflow is particularly bad in an agile context where it results

in an intolerably high level of waste and too much feedback

latency.

• Waste: The same information is duplicated in both the

manual and automated regression tests

• Feedback Latency: The bulk of the testing in this workflow

is manual and it takes days or weeks to discover the effect of

a given change.

Traditional test automation tools don’t work for an Agile

context because they solve traditional problems, and those are

different from the challenges faced by Agile teams. Agile teams

need fast feedback that automated system/acceptance tests

provide. Further, test-last tools cannot support Acceptance Test

DOI: 10.18535/ijecs/v5i9.35

Heet Palod , IJECS Volume 5 Issue 09 September 2016 Page No.17996-18000 Page 17997

Driven Development (ATDD). Agile teams need tools that

support starting the test automation effort immediately, using a

test-first approach. [8]

Fig. 1: Traditional V/s Agile Testing Automation

3. Characteristics of Agile Testing Automation

Tools

To tackle the problems faced in traditional test automation

tools, Agile teams need test automation tools/frameworks that:

 Support starting the test automation effort immediately,

using a test-first approach.

 Separate the essence of the test from the implementation

details.

 Support and encourage good programming practices for

the code portion of the test automation.

 Support writing test automation code using real

languages, with real IDEs.

 Foster collaboration.

Agile teams don’t need tools optimized for non-programmers.

Agile teams need tools to solve an entirely different set of

challenges related to collaborating, communicating, reducing

waste, and increasing the speed of feedback. There must be a

balance in the quality goals of the team with the requirements

and risk of individual user stories. [8]

4. Deciding, Maintaining & Reviewing

Automated Tests in Agile Environment

Developers and testers working on the story make detailed

decisions about where automation can be used to trigger

acceptance/signal completion of the story. During testing,

testers may see opportunities for ad-hoc, on the fly automation

to increase test coverage.

Since in Agile testing, tester-developer and/or tester-product

owner pairs often create tests, there’s a built-in review process

of the test scope and validation level as part of story

acceptance. Otherwise, the collaborative planning to define the

tests, then the collaborative acceptance with the product owner

provides ample shared knowledge and review. The end result is

robust, resilient automated tests, which provide the backbone

of regression testing, and any test failures from regression

testing may also trigger a test review. Ideally, the entire team

maintains all tests, whether unit, functional, or any other.

However, testers may use specialized tools for GUI-level tests

that require their involvement to maintain tests over time. To

reduce the possible soloing of this information, the tools should

be carefully chosen to be accessible to all team members,

information should be readily available, and the test inventory

should be continuously culled to prevent test bloat.

For functional/acceptance tests, it’s most common for there to

be a combination of white-box (under-the-covers) and UI

automation (black-box) tests. The white-box tests tend to be

less fragile, so are less costly to maintain, whereas the black-

box UI-driven tests need to be leveraged judiciously due to the

cost to develop and maintain the tests over time. Ideally, testers

are involved in both, so that the black-box tests can supplement

instead of duplicating white-box tests. [7]

5. Feature of Agile Testing Automation

Framework

Most agile teams, regardless of any specific methodology, are

looking for fast, reliable feedback from their automated tests.

Fast, reliable feedback means timely results with minimal false

failures, ideally incorporated as part of the continuous

integration (build) pipeline. This makes Agile Testing

framework more suitable for customer relationship

development-oriented.

6. Working of Agile Testing Automation

Framework

Agile Testing Framework consists of the following:

6.1 Agile Development Process:

Fig. 2: Agile Development Process Framework

6.1.1 Stories:

DOI: 10.18535/ijecs/v5i9.35

Heet Palod , IJECS Volume 5 Issue 09 September 2016 Page No.17996-18000 Page 17998

Stories provide the features/capabilities required by the user.

This phase describes what is needed to test so that the user will

be able to complete the action.

6.1.2 Acceptance Criteria:

These cover the boundaries of the story and will serve as

scenarios for writing the test cases. Once the story is written or

during story writing, it’s important to capture acceptance

criterion and make sure that an acceptance criteria is not

actually a story or vice versa. The acceptance criteria do not

expand the story, it strictly provides the scenario behind a

story, in order to write good test cases.

6.1.3 Test Scenarios:

Scenario testing is a software testing activity that uses

scenarios: hypothetical stories to help the tester work through a

complex problem or test system. The ideal scenario test is a

credible, complex, compelling or motivating story the outcome

of which is easy to evaluate.

6.1.4 BDD – Behavior Driven Development:

The test suite acts as a regression safety net on bugs: if a bug is

found, the developer should create a test to reveal the bug and

then modify the production code so that the bug goes away and

all other tests still pass. On each successive test run, all

previous bug fixes are verified. It also reduces debugging time.

BDD/ATDD provide a way to help build confidence in the

automated tests, first by expressing all requirements in high-

level business terms and then by automating these requirements

in a way that provides a set of living/executable documentation

detailing both which requirements were requested and how they

have been implemented. BDD provides both a single source of

truth about the application’s behavior and also a set of

regression tests protecting it against unwanted change.

6.1.5 TDD - Test Driven Development:

Test-driven development (TDD) is a software development

process that relies on the repetition of a very short development

cycle: first the developer writes an (initially failing) automated

test case that defines a desired improvement or new function,

then produces the minimum amount of code to pass that test,

and finally refactors the new code to acceptable standards.

Some of the major advantages of TDD are code coverage;

regression testing, simplified debugging and the test cases can

be used for system documentation. [3]

6.1.5.1 Phases of TDD:

 Unit Test:

A unit test verifies that a function or set of functions

“meets the acceptance criteria” – in other words, that the

function(s) under test meet the requirements. Unit Tests

can be written using TestNG or jUnit for java applications

and using MSTest or nUnit for applications developed

using .NET programming language.

 Code:

In TDD, test cases are written before the implementation of

the code. The developer develops the code based on the test

cases.

 Refactor:

Now the code should be cleaned up as necessary. Move

code from where it was convenient for passing the test to

where it logically belongs. Remove any duplication can

find. Make sure that variable and method names represent

their current use. Clarify any constructs that might be

misinterpreted. [3]

Fig. 3: Behavioral-Driven Development (BDD) & Test-Driven

Development (TDD)

6.1.6 ATDD - Acceptance Test-Driven Development:

Acceptance tests are from the user’s point of view – the

external view of the system. They examine externally visible

effects, such as specifying the correct output of a system given

a particular input. In general, they are implementation

independent, although automation of them may not be.

Acceptance tests are a part of an overall testing strategy.

Acceptance tests are created when the requirements are

analysed and prior to coding. Failing tests provide quick

feedback that the requirements are not being met. The tests are

specified in business domain terms. The terms then form a

ubiquitous language that is shared between the customers,

developers, and testers. Tests and requirements are interrelated.

A requirement that lacks a test may not be implemented

properly and a test that does not refer to a requirement is an

unneeded test. An acceptance test developed after

implementation begins represents a new requirement.

Acceptance criteria is a description of what would be checked

by a test. [1]

6.1.7 Automated Build:

Many organizations make the mistake of testing their code

possibly on a daily but more likely on a weekly basis, this

leaves too much room for defects to creep in while we’re not

looking. By the time a bug is discovered, more code has been

layered on top of it – making it harder and more expensive to

fix. Testing changes right away dramatically reduces the cost of

addressing defects, so testers should kick off a build with each

commit, or at the very least on scheduled intervals throughout

the day.

6.1.8 Working Software:

Mentioned as one of the four values from the Agile Manifesto,

“Working software over Comprehensive documentation” and

also in several of the principles, we must recognize the

importance of producing working software, within an iteration.

This means that not only the software respects agreed upon

testing standards, but also has passed all the tests included in

the Definition of Done for the organization. In Scrum, it’s

referred to as “potentially shippable product increment“, which

means that if the work as been accepted then it could ship

immediately, and therefore must have been thoroughly tested.

6.1.9 Integration Testing:

Integration testing is usually the earliest actual testing that can

find integration bugs (although review processes can find some

bugs before the software is written, or before the code goes to

test). One would find these bugs before showing the software to

the product owner or releasing it since fixing bugs at the last

moment is very expensive. One would find these bugs earlier in

DOI: 10.18535/ijecs/v5i9.35

Heet Palod , IJECS Volume 5 Issue 09 September 2016 Page No.17996-18000 Page 17999

the process when they would be cheaper to fix because one

might need multiple working components to integrate.

Integration testing ensures that the units are working together in

concert. This is mainly to test our design. If something breaks

here, we have to adjust our unit tests to make sure it doesn’t

happen again.

6.1.10 Releasable Software:

Once a feature is complete and all the testing has been passed

for that feature, then it is deemed Releasable Software.

6.2 Continuous Delivery:

Fig. 4: Continuous Delivery Process in Agile Testing

Automation Framework

6.2.1 Version Control:

Source control is a must for modern collaborative software

development. There are many different source control tools and

solutions available, they range from commercially licensed

(such as Team Foundation Server (TFS) or ClearCase) to open

source ones (such as GIT, SVN, or Mercurial). If a code is in

source control, it is versioned, it is available to anyone who has

access, and it is secure.

6.2.2 Continuous Integration:

Continuous Integration (CI) is a development practice that

requires developers to integrate code into a shared repository

several times a day. An automated build, allowing teams to

detect problems early, then verifies each check-in. [5]

6.2.3 Software Project Management:

Software project management tools such as Maven are

primarily used for building Java projects. Software project

management tools addresses two aspects of building software:

First, it describes how software is built, and second, it describes

its dependencies.

6.2.4 Artifact Repository:

A key part of DevOps is building a delivery pipeline, which is

capable of deploying development versions of our binary

artifacts to a component repository and to a target environment

(e.g., deploying a web application to a web container).

6.3 Reporting:

With the industry-wide movement towards DevOps, the need

for organizations to be able to rapidly adjust, make strategic

decisions or change the direction of their software development

based on rapid feedback (Feedback Loops) and

metrics/measurement. The problems many organizations run

into are that they have no feedback loop or

metrics/measurement in place.

DevOps brings the level of metrics and measurement to a

completely different level through its extensive use of

monitoring tooling. [6]

Some of the DevOps Monitoring Tools are:

 Graphite

 Tasseo

 SonarQube

 Ganglia

 Nagios

 Collectd

 Munin

 Pingdom

 New Relic

 DATADOG

6.3.1 Technical Debt:

Technical debt is a concept in programming that reflects the

extra development work that arises when code that is easy to

implement in the short run is used instead of applying the best

overall solution. [4]

Symptoms of Technical Debt:

 Loss of Productivity

 Increase in Testing

 Postponed Releases

 Code Duplication

 Low Code Coverage

 Increase in Bugs

 Unreadable Code

 Decreased Velocity

 Using Old Libraries

 Heavy Stress on Approaching Deadlines

 Being scared of Changing Anything

 Wrong Design or choice of technology

How Technical debts can be prevented in Agile Engineering

Practices:

 Pair Programming, TDD

 Continuous Integration

 Automated Unit Tests

 Automated Functional Tests

 Automated Other Tests (Regression)

 Refactoring

6.4 Testable Components:

Testable components include:

 Web apps

 Mobile apps

 Databases

 Services

 Reports and Forms

All these components are tested during each iteration

cycle.

6.5 Testing Tools:

The different types of testing carried out are:

 Performance Testing:

Performance Testing consists of two parts: Front-end

Performance and Middleware performance testing. Front-

end performance testing deals with how fast the page

loads while Middleware performance testing provides

information about the resource consumption of the

application using Selenium.

 Accessibility:

Web accessibility solution involves capturing the HTML

of each unique page in application visited via WebDriver,

then firing the Wave accessibility tool. The DOM is then

checked to ensure there are no WAVE errors and

DOI: 10.18535/ijecs/v5i9.35

Heet Palod , IJECS Volume 5 Issue 09 September 2016 Page No.17996-18000 Page 18000

screenshot it and fail the test if there are. This is all done

during a dedicated accessibility stage of build pipeline.

 Security Testing:

Combine Selenium and OWASP’s Selenium project or

Zed Attack Proxy (ZAP) in order to perform easy to use

integrated penetration testing for finding vulnerabilities in

web applications.

 Load Testing:

The combination of JMeter and BlazeMeter can be used

to simulate a heavy load on a server, group of servers,

network or object to test its strength or to analyze overall

performance under different load types.

 Web Consistency:

Web Consistency Testing is all about automating how

users visually interact with the site.

7. Advantages of Agile Testing Automation

Framework

The benefits that we experience using automation for agile tests

are:

A. Speed – Takes less time than the Traditional testing

approach.

B. Quality – Delivers excellent quality product software

without any bugs or defects.

C. Malleable code base – Easily adaptable and open to

changes.

D. Rapid feedback – Provides rapid feedback in order to

make necessary changes as and when needed.

E. Efficiency – Delivers efficient product software which

runs smoothly.

8. Challenges for Implementing Agile Testing

Automation Framework

Availability of people & skills is a holistic team-oriented

approach, striking the right balance between automation and

excess test inventory can result in drag. Some teams struggle

with when to automate functional tests – whether to delay

acceptance of a user story until the automated tests are

complete or to have automated test development as a separate

activity. We’ve found that with the right tools, development of

GUI-level tests can easily take place as standard work on a user

story. However, automating functional tests on a story-by-story

basis may lead to test bloat and may not provide the higher-

level coverage that’s desired from these tests. Teams may

choose to write user stories to prioritize and schedule test

development at that level.

9. Conclusion

The main purpose of this paper is to elucidate Agile Testing,

one of the latest trends, which have gained significant

momentum in the field of testing. It briefly explains how Agile

testing collaborates with continuous integration, thus

automating its process and providing rapid feedback without

any compromise with the quality. It exhibits the importance of

test-driven development and explains how automating test

cases play a vital role in the development cycle of the system.

Most agile teams, regardless of any specific methodology, are

looking for fast, efficient and reliable feedback from their

automated tests. Agile Testing Automation Framework makes

uses of these quality factors and provides timely results with

minimal false failures, ideally incorporated as part of the

continuous integration pipeline. This makes Agile Testing

framework more suitable for customer relationship

development-oriented.

References

[1] Crispin, Lisa, and Janet Gregory. Agile Testing:A Practical

Guide for Testers and Agile Teams, Addision-Wesley,

2009.

[2] http://scaledagileframework.com/test-first/
[3] http://www.agiletestingframework.com/atf/testing/test-

driven-development-tdd/

[4] http://www.agiletestingframework.com/atf/reporting/techni

cal-debt/

[5] http://www.agiletestingframework.com/atf/implementation/

continuous-integration/

[6] http://www.agiletestingframework.com/atf/reporting/

[7] https://smartbear.com/learn/automated-testing/testing-in-

agile-environments/

[8] http://testobsessed.com/2008/04/agile-friendly-test-

automation-toolsframework

http://www.agiletestingframework.com/atf/implementation/continuous-integration/
http://www.agiletestingframework.com/atf/implementation/continuous-integration/
https://smartbear.com/learn/automated-testing/testing-in-agile-environments/
https://smartbear.com/learn/automated-testing/testing-in-agile-environments/

