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Abstract: This paper describes a new method called adaptive hybrid Transformable geometric segmentation that uses knowledge 

of tissue intensity properties and intensity in-homogeneities to correct and segment MR images. Use of the expectation-

maximization (EM) algorithm leads to a method that allows for more accurate segregation of tissue types as well as better 

visualization of magnetic resonance imaging (MRI) data, we have described an unsupervised fuzzy segmentation method, based 

on new objective function, which seems well adapted and efficient for functional MRI data segregation. The proposed 

segmentation method is more robust than the FCM algorithm and BCFCM. The proposed segmentation uses an automatic 

algorithm for robust WM, GM, and cerebrospinal fluid (CSF) segmentation to facilitate accurate measurement of brain tissues. 

Both qualitative and quantitative results on synthetic and real brain MRI scans indicate superior and consistent performance. One 

popular family of brain tissue segregation methods is based on normalizing the brain scans by storing (or aligning) them to a pre 

defined realistic view of brain tissues. 

Keywords: magnetic resonance imaging (MRI), Brain Mask, Brain Extraction. 

1. Introduction 

The term digital image refers to processing of a two 

dimensional picture by a digital computer. In a broader 

context, it implies digital processing of any two dimensional 

data. A digital image is an array of real or complex numbers 

represented by a finite number of bits. An image given in the 

form of a transparency, slide, photograph or an X-ray is first 

digitized and stored as a matrix of binary digits in computer 

memory. 

 

 

 

 

 

 

 

 

 

 

 

 

Digitizer A digitizer converts an image into a numerical 

representation suitable for input into a digital computer. Some 

common digitizers are 

1. Microdensitometer 

2. Flying spot scanner 

3. Image dissector 

4. Videocon camera 

5. Photosensitive solid- state arrays. 

Mass Storage The secondary storage devices normally used 

are floppy disks, CD ROMs etc. 

Image Processor An image processor does the functions of 

image acquisition, storage, preprocessing, segregation, 

representation, recognition and interpretation and finally 

displays or records the resulting image. The following block 

diagram gives the fundamental sequence involved in an image 

processing system 

Digital Computer Mathematical processing of the digitized 

image such as convolution, averaging, addition, subtraction, 

etc. are done by the computer. 

Hard Copy Device The hard copy device is used to produce a 

permanent copy of the image and for the storage of the 

software involved. 

Operator Console The operator console consists of equipment 

and arrangements for verification of intermediate results and 

for alterations in the software as and when require. The 

operator is also capable of checking for any resulting errors 

and for the entry of requisite data. 

 

Magnetic resonance (MR) has become the main modality for 

brain imaging that facilitates safe, noninvasive assessment and 

monitoring of patients with neurodegenerative diseases such as 

Parkinson’s disease, Alzheimer’s disease (AD), epilepsy, 

schizophrenia, and multiple sclerosis (MS). The ability to 

diagnose and characterize these diseases in vivo using MR 

image data promises exciting developments both toward 

understanding the underlying pathologies, as well as 

conducting clinical trials of drug treatments. One important 

biomarker that is often used to assess patients with neuro-de 

generative disease is brain tissue volume. The typical rate of 

global brain atrophy in MS patients has been shown to be 

0.6%– 0.8% annually, which is two to three times the normal 

Digitizer Mass 

Storage 

Hard 

Copy 

Device 

Display 

Image 

Processor 

Digital 

Computer 

Operator 

Console 

 Block Diagram of a Typical Image Processing 

System 

http://www.ijecs.in/
mailto:thirupathij.cse@gmail.com


 

D Chamundeshwari, IJECS Volume 3 Issue 11 November, 2014 Page No.01-10 Page 9314 

 

atrophy rate. Evidence has shown that white matter (WM) and 

gray matter (GM) atrophy at different rates, and each correlates 

differently to disability thus, accurate measurement of the 

WMand GMbrain tissues can provide valuable quantitative 

indicators of disease progression and, potentially, treatment 

out- comes. Thus, the main aim of this paper is to introduce an 

automatic algorithm for robust WM, GM, and cerebrospinal 

fluid (CSF) segregation to provide accurate measurement of 

brain tissues.  

A second family of brain tissue segregation methods assigns a 

label for each tissue based on image statistics either by 

clustering  or by modeling the brain tissue intensity 

distributions as a finite mixture of distributions such as EM , 

maximum a posteriori (MAP), simulated annealing , and 

Gaussian mixture modeling (GMM). Other approaches 

incorporate additional regional information, which is lacking 

from these statistical methods, into their segregation frame- 

work. Such methods extend clustering or EM by integrating 

with fuzzy connectedness, topological constraints,  

Gibbs random field (GRF), and hidden Markov random field 

(HMRF) in the segmentation task. A common difficulty with 

many of these methods, particularly the random field 

approaches, is the requirement for proper parameter settings in 

a supervised setting. 
 A third family of brain tissue segregation methods is 

based on utilizing geometric information such as transformable 

prototypes or active contours  that delineates region boundaries 

using a minimization of an energy functional . Transformable 

prototypes employing level sets provide an effective implicit 

representation rather than explicit parameterization of the 

evolving contour. However, a common problem of directly 

applying the active contour approach in segmenting brain MR 

images is leakage through weak or noisy edges that are 

ubiquitous, especially for edge-based Transformable  

prototypes,  

2. Literature Survey 

An MRI study of patients with Parkinson’s disease with mild 

cognitive impairment and dementia using voxel based 

morphometry. 

 We studied regional gray matter density in the 

hippocampus in Parkinson’s disease (PD) patients. We 

obtained magnetic resonance scans in 44 PD patients (PD 

patients with dementia (PDD) = 9, non-demented PD patients 

with visual hallucinations (PD + VH) = 16, and PD patients 

without dementia and without visual hallucinations (PD - VH) 

= 19) and 56 controls matched for age and years of education. 

A region of interest (ROI) of the hippocampus following 

voxel-based-morphometry (VBM) procedures was used to 

perform group comparisons, single-case individual analysis 

and correlations with learning scores. Group comparisons 

showed that PDD patients and PD+VH patients had significant 

hippocampus gray matter loss compared to controls. In PDD 

patients, hippocampus gray matter loss involved the entire 

hippocampus and in PD+VH this reduction was mainly 

confined to the hippocampus head. 78 % of PDD patients, 31 

% of PD+VH patients and 26 % of PD-VH patients had 

hippocampus head gray matter loss when compared to 

controls. These results suggest that in PD the 

neurodegenerative process in the hippocampus starts in the 

head of this structure and later spreads to the tail and that, in 

addition, memory impairment assessed by Rey’s Auditory 

Verbal Learning Test (RAVLT) correlates with hippocampus 

head gray matter loss. 

2.1 Neuro Imaging In Multiple Sclerosis 

MRI is the dominant neuro imaging modality for multiple 

sclerosis (MS). Revised diagnostic criteria formally 

incorporate abnormalities on MRI for diagnosis. MRI is well-

suited for evaluating dynamic changes in MS patients. This 

paper reviews how conventional and advanced MRIs provide 

important biomarkers of MS pathology and considers the role 

of MRI outcomes in clinical trials and in clinical practice. 

2.2 Current Methods In Automatic Tissue Segregation Of 

3d Magnetic Resonance Brain Images 

To improve the efficiency of brain image analysis, we propose 

a full-automatic method for extracting brain tissue from three-

dimensional magnetic resonance imaging of T1-weighted data 

on the human head. The extraction processing is realized by 

combining signal intensity thresholding by means of the 

discriminate analysis method and an erosion-dilation treatment 

of the image. The accuracy of BREED is evaluated using both 

simulated and subject data. BREED can extract brain tissues 

with high approximate 97% for either simulated or subject 

data. 

2.3 Adaptive Fuzzy Segregation of MRI 

A new approach for robust segregation of magnetic resonance 

images is described. The approach is derived from a 

generalization of the objective function used in Pham and 

Prince's Adaptive Fuzzy C-means algorithm (AFCM). Within 

the objective function, an additional constraint is placed on the 

membership function that forces them to be spatially smooth. 

The efficacy of the algorithm is demonstrated on simulated 

magnetic resonance images. 

2.4 Adaptive Segregation of MRI Data 

Intensity-based classification of MR images has proven 

problematic, even when advanced techniques are used. Intra 

scan and inter scan intensity inhomogeneities are a common 

source of difficulty. While reported methods have had some 

success in correcting intra scan inhomogeneities, such methods 

require supervision for the individual scan. This paper 

describes a new method called adaptive segregation that uses 

knowledge of tissue intensity properties and intensity 

inhomogeneities to correct and segment MR images. Use of the 

expectation-maximization (EM) algorithm leads to a method 

that allows for more accurate segregation of tissue types as 

well as better visualization of magnetic resonance imaging 

(MRI) data, that has proven to be effective in a study that 

includes more than 1000 brain scans. Implementation and 

results are described for segmenting the brain in the following 

types of images: axial (dual-echo spin-echo), coronal [three 

dimensional Fourier transform (3-DFT) gradient-echo T1-

weighted] all using a conventional head coil, and a sagittal 

section acquired using a surface coil. The accuracy of adaptive 

segregation was found to be comparable with manual 

segregation, and closer to manual segregation than supervised 

multivariate classification while segmenting gray and white 

matter. 
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3. Design Methodology 

In this paper we proposed a 3-D brain MR segregation method 

based on Transformable prototypes and demonstrated accurate 

and stable brain tissue segregation on single as well as multiple 

MR sequence scans. 

3.1 Module Separation 

Module 1: Edge based Transformable prototype. 

Module 2: hybrid geometric statistical feature. 

Module 3: Segregation of brain MRI. 

Module 4: Extension to multiple MRI. 

Module 1: Edge Based Transformable Prototype  

In first module, we utilize the geodesic active contour 

prototype Rather than the region-based formulation due to its 

Computation soundness and extendibility. The value of this 

feature function determines the propagation of the surface by 

searching for the minimal Riemannian distance. An ideal edge 

would ultimately have a feature value of zero at all the pixel 

points along this boundary. This process is subjective and ideal 

parameters are often difficult to derive for a fully automated 

segregation framework.  

Module 2: Proposed Hybrid Geometric Statistical Feature 

In this module  to transform the feature function g in the 

traditional geodesic active contour formulation into a hybrid 

feature function by incorporating geometric image features 

with voxel statistics to help automate and regularize the 

evolving contours. This parameter estimation problem for 

GMM solved by employ EM algorithm to image intensity 

histogram. 

Module 3: Segregation of Brain MRI   

To segment the brain tissues, we first estimate the GMM 

parameters such that each mixture distribution represents one 

single class. Based on these estimated distributions, the 

normalized posterior probability of each voxel is calculated. 

We derive the hybrid geometric–statistical feature as described 

above by combining both the voxel statistics and the image 

gradient information.  

Module 4: Extension to Multiple MRI   

We extend our method so that information from multiple MR 

sequences with different contrast properties can be 

incorporated when the data is available. Assuming registered 

images, we first replace the geometric feature component in the 

proposed hybrid active contour feature  with the 

multidimensional vector gradient norm derived from all 

available data sequences. The resulting probability replaces the 

posterior probability derived from single contrast input in the 

segregation procedure. 

4. Design Analysis 

The accurate and effective algorithm for segmenting image is 

very useful in many fields, especially in medical image. In this 

paper we introduced a novel method that focus on segmenting 

the brain MR Image that is important for neural diseases. 

Because of many noises embedded in the acquiring procedure, 

such as eddy currents, susceptibility artifacts, rigid body 

motion, and intensity in homogeneity, segmenting the brain 

MR image is a difficult work. In this algorithm, we overcame 

the inhomogeneous shortage, by modifying the objective 

function with compensating its immediate neighborhood effect 

using Gaussian smooth method for decreasing the influence of 

the in homogeneity and increasing the segmenting accuracy. 

With simulate image and the clinical MRI data, the 

experiments shown that our proposed algorithm is effective. 

4.1 Methods  

4.1.1 Prototype of Fuzzy C-Mean Method (FCM) 

The standard FCM is an iterative, unsupervised clustering 

algorithm, initially developed by FCM algorithm, introduced 

by Bezdek. The following prototype of FCM is described by 

Ahmed. 

The Observed MRI signal is modeled as a product of the 

true signal generated by the underlying anatomy, and a 

spatially varying factor called the gain field 

  k k kY X G   {1,2, , }k N                                          

Groups the values kX , kY  and kG are the true intensity, 

observed intensity and the gain field at the kth voxel, 

respectively. N is the total number of pixels in the MRI 

volume.The application of a logarithmic transformation to the 

intensities allows the artifact to be modeled as an additive bias 

field 

k k ky x        {1,2, , }k N                                

Where kx  and ky  are the true and observed log-transformed 

intensities at the kth voxel, respectively, and k is the bias 

field at the kth voxel. If the gain field is known, then it is 

relatively easy to estimate the tissue class by applying a 

conventional intensity-based segregation to the corrected data. 

The following discussion is based the model of (2) and 

estimation of the gain field k . 

4.1.2 Modified Fcm  Algorithm (M-Fcm) 

In the followings, we will introduce some modifications 

to this algorithm. The evaluation of the method for localized 

measurements, such as the impact on tumor boundary or 

volume determinations also needs further work. 

2 2
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Where ( , )k rw y y  is a weighting function, satisfied the 

following conditions 
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  ,  

the mJ is BCFCM objective function (3) proposed by Ahmed
.
 

The objective function can be calculated as the BCFCM 

algorithm. Taking the first derivatives of mJ  with respect to 

iku , iv , k , and setting them to zero results in three necessary 

but not sufficient conditions for mJ to be at a local maximum. 

In the following sections, we derive these estimating results 

and propose the algorithm. 
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The M-FCM algorithm for correcting the bias field and 

segmenting the image into different clusters can be 

summarized in the following steps. 

 

Step 1:  Select the Weighting function,  in general, 

  

2

2

( )
k ry y

k rw y y e 




    Where 0 1, 1    ; 

Step 2: Select initial class prototypes 1{ }c

i iv  , for example  
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  Set 1{ }N

k k  to equal and 

very small values (e.g., 0.01). 

Step 3: Update the partition matrix using. 

Step 4: The prototypes of the clusters are obtained in the form 

of weighted averages of the patterns using. 

  Step 5:  Estimate the bias term using. Repeat Steps 3 and 5 till 

termination. 

In this section, we describe the application of the M-FCM 

segregation on synthetic images corrupted with multiplicative 

gain and real T1 brain MR images. For compared with the 

BCFCM algorithm, we created the simulating image used by 

Ahmed. Simulating image is a T1-weighted phantom with in-

plane high resolution, Gaussian noise with 6.0, and three-

dimensional linear shading 7% in each direction. We also 

employed the fast algorithm for improving calculation effect, 

because its consumed time is 1/4 of the normal algorithm. 

We applied our proposed segregation to both simulated 

and real clinical MRI scans, and demonstrated in the following 

sections: 

1) The accuracy of the proposed segregation method on 

simulated T1w brain MRIs. 

2) The segregation improvement on multiple MRI sequences. 

3) The accuracy of the proposed method on real clinical MRI 

scans of normal adults. 

4) The qualitative performance of the proposed methods on 

clinical MRI scans of MS and AD patients. 

We first validated our proposed method on 18 simulated 

T1w Brain Web  MRI images (with 0%/1%/3%/5%/7%/9% 

noise, 0%/20%/40% in homogeneity, 181 × 217 × 181 

dimension, 1 × 1 × 1 mm3 spacing). We also performed multi-

sequence segregation based on six T1w/T2w/PD w MRI 

triplets (with 0%/1%/3%/5%/7%/9% noise, 0% in 

homogeneity). Second, 18 real high-resolution clinical T1w 

MRI scans from the Internet Brain Segmentation Repository 

(IBSR)  (coronals acquired, 256 × 128 × 256 dimension, 0.837 

× 0.837 mm2 to 1 × 1 mm2 in-plane spacing, 1.5 mm slice 

thickness) were also segmented. For both datasets, the “ground 

truth” is known for comparisons. For the Brain Web dataset, 

the ground truth is the phantom atlas used to generate the 

simulated scans, whereas for the IBSR dataset, the truth is the 

provided expert-guided manual segregation label for each of 

the clinical scans.  

   The method was tested on the data from eight patients with 

total manual infected volumes ranging from 200 to 28000 mm3 

Each data set had dual echo PD and T2 images. The manual 

segregation of the data was done independently by a trained 

technologist. The automatic segregation results were analyzed 

by comparisons with the manual segregation of the same scans, 

using similarity index and total infected volume correlation 

figures. Results show a total volume correlation of 0.972. 

Lastly, from the MSMRI Research Group (MS/MRI), real 

clinical 1.5 T spoiled gradient (SPGR) MRI scans (axially 

acquired, 256 × 256×120–160 dimension, 

0.937×0.937×1.50mm3 spacing) were taken at multiple sites. 

Real clinical 1.5 T magnetization prepared rapid gradient echo 

(MP-RAGE) MRI scans (Sagittally acquired, 256 × 256 × 166 

dimension, 0.937 × 0.937 × 1.20mm3 spacing) were also 

obtained from the AND euro imaging Initiative (ADNI) of the 

LONI image data archive (IDA) initiated by the National 

Institute on Aging (NIA), the National Institute of Biomedical 

Imaging and Bioengineering (NIBIB), the Food and Drug 

Administration (FDA), private pharmaceutical companies, and 

nonprofit organizations. These clinical scans were segmented 

and qualitatively evaluated. The average surface distance 

between the ground truth and the computed segregation was 

computed for each test scan by approximate nearest neighbor 

searching. In addition, the Dice similarity index was also 

chosen for the quantitative evaluation of the 3-D brain 

segregation results to facilitate direct comparisons to other 

published results Dice similarity index  2T+ 2T+ + F+ + F− × 

100%. We denote the true positives, true negatives, false 

positives, and false negatives as T+, T−, F+, and F−, 

respectively, between the known ground truth and the 

segregation results. We compared our segregation results with 

those of the M3DLS method. 

4.1.3 Segregation Validation Using Simulated Brain MRI 

We first validated a three-class (WM, GM, and CSF) 

segregation using the proposed method on the simulated T1w 

brain MRI data. Segregation was performed using the 

traditional geometric feature only, the statistical in 

homogeneity levels. For the edge-only level set evolution the 

parameter set {ψ = 2.0, c = 1.0, ε = 4.5} was used to enforce a 

stronger smoothness constrain; otherwise, contours leaking 

through weak edges were often observed. For the statistical 

feature term only, the parameter set {ψ = 0.0, c = 1.0 ε = 0.0} 

was used, same as the hybrid approach. Segregation of 

structures such as CSF by using the proposed approach also 

achieved considerable (>70%) similarity of 77.75% (σ = 

6.15%, average distance = 2.24 mm). The CSF results were not 

as stable as WM and GM mainly due to the much smaller 

structural volume, leading to increased sensitivity to estimation 

errors in the active contour initialization and feature derivation. 

Nonetheless, the overall segregation results were on par if not 

better than other previously published results. 

To statistically evaluate the differences of segregation results 

between the proposed hybrid approach, and the contours based 

on geometric-only and statistical-only features, we calculated 

the p-values (p < 0.05 indicates a statistically significant 

difference in the group means). Compare to results from using 

only the traditional geometric feature, the proposed hybrid 

approach achieved significantly higher similarity indexes and 

reduced surface distance across all scans. On average, the 

proposed method achieved increased similarity indexes of 

5.36% (p = 0.0002) in WM, 7.23% (p < 0.0001) in GM, and 

9.30% (p < 0.0001) in CSF segregation results with reduced 

surface distance of 3.99 mm (p < 0.0001) in WM, 0.27 mm (p 

< 0.0001) in GM, and 4.86 mm (p < 0.0001) in CSF. Compare 

to results from using only the statistical feature, the proposed 
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hybrid approach only achieved slightly better similarity 

indexes. However, we observed that, on average, the proposed 

method was able to significantly reduce the average surface 

distance by 4.44mm (p<0.0001) in WM and 3.79mm 

(p<0.0001) in CSF. 

These results showed that using the geometric term alone was 

highly sensitive to image artifacts and require contour 

regularization. Processing a single Brain Web volume takes 

approximately 55 min (dual 3.20 GHz Xeon PC with 3.25 GB 

memory) to 75 min (3.60 GHz Pentium4 PC with 

2GBmemory), comparable to the processing time required by 

other conventional techniques.  

4.1.4 Segregation Improvement Using Multiple MRI 

Sequences 

We next performed a three-class (WM, GM, and CSF) 

segregation using the proposed method on the simulated 

T1w/T2w/PD w brain MRI data. Segregation was performed 

on six datasets with varying noise levels and 0% intensity In 

homogeneity. Qualitative results in Fig. illustrated very good 

resemblance between the provided phantom label and the 

segregation results. When compared to the experiment on 

single simulated T1w brain images, segregation using multiple 

MR sequence data provided an average improvement in 

similarity indexes of 1.29% (p = 0.0479), 0.44% (p = 0.4627), 

and 3.55% (p = 0.1403) for WM, GM, and CSF, respectively.  

Additional MR sequences such as T2w and PD win this case, 

helpful to improve the overall robustness by achieving a much 

better balance between the WM, GM, and CSF estimation as 

observed by the T+ and T− performance.  

4.1.5 Segregation Comparisons Using Clinical MRI Scans 

of Normal Adults 

We applied the proposed method to segment 18 clinical 

IBSR brain images. The images were segmented using a three-

class (WM, GM, and CSF) segregation. The tissue labels were 

then post processed due to a known limitation of the provided 

manual segregation labels. It has been reported previously that 

the expert guided manual segregation label contains much of 

the cortical CSF being mislabeled as GM. We have confirmed 

this with our own observations. As observed, we note that the 

original segregation results matched closely with what can be 

visually observed from the raw images. However, this 

observation did not correspond well to the provided expert 

guided manual segregation label due to the existing limitation. 

4.1.6 Segregation Performance Using Clinical MRI Scans 

Of Ms and Ad Patients 

Lastly, we applied the proposed method to segment 

clinical MRI brain scans of MS and AD patients. The images 

were segmented using a three-class (normal appearing WM, 

GM grouped with diseased WM, and CSF) segregation. The 

qualitative results demonstrating that the proposed approach 

appears stable on clinical scans.  

In our T1w test scans, the intensity difference between 

GM and diseased WM is subtle, and separating these two class 

types is likely not possible without additional MRI sequences 

that are more sensitive to WM pathology, such as PD w or 

T2w, or relying on prior probability maps such as those 

derived from a training set. We have left these experiments for 

future work. In its current form, the proposed method can 

potentially be used for the assessment of disease severity by 

providing stable and consistent segregations of CSF and 

normal appearing WM. 

Where the TR is the percent of divided segregation 

umbers of WM pixels by number of original all the WM pixels. 

Table display TR that can explain the performance of those 

algorithms with different noise level.   

 

 

 

 

 

 

 

Segregation accuracy-TR of different methods with 

different noise for simulated image 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The none column is without noise. The FCM, BCFCM 

M-FCM are 89.24%, 96.76% and 98.20% respectively. In  

 

 

The M-FCM is more robust for noise, in above table, other  

columns except none can explain this point. 

In addition, we segmented 32 T1 brain MR images using 

BCFCM and M-FCM respectively, and then we invited the 

experts to select better one from every image. There are twenty 

nine images from thirty two better images are our results of M-

FCM algorithm. Although the conclusion is personality, M-

FCM is better algorithm.   

In studies of brain pathology, such as Multiple Sclerosis (MS), 

regions of interest (ROIs) that must be well defined are often 

examined in detail in Magnetic Resonance images (MRI). 

Traditionally, ROIs are outlined manually by a skilled operator 

using a mouse or cursor. Computer-assisted methods are used 

for specific applications such as extraction of MS lesions from 

MRI brain scans, or extraction of the cerebral ventricles in 

schizophrenia studies. In many cases, the computer-assisted 

tasks need to segment the whole brain from the head Hybrid 

methods that include both image-processing and prototype-

based techniques are particularly effective for brain 

segregation. The hybrid method presented in this chapter starts 

with a thresholding step followed by a morphological erosion 

TR 
SNR 

None 5db 10db 13db 

FCM 89.24 85.46 79.30 75.46 

BCFCM 96.76 91.10 84.32 82.10 

M-FCM 98.20 96.23 91.57 90.46 

     
(a)         

                    (b) 

     
                          (c)                                          (d)                             

Comparison of segmentation results on simulated T1 MRI 

(a) Original image, (b) FCM, (c) BCFCM, and (d) M-

FCM. 
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to remove small connections between the brain and 

surrounding tissue.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It removes eyes and other non-brain structures with a 

prototype-based approach followed by more image processing 

consisting of a morphological dilation to recover some of the 

eliminated tissue.  A final refinement of the brain contour is 

achieved by an active contour algorithm. In our method, the 

threshold for an initial segregation is computed automatically 

by applying an anisotropic diffusion filter to the image and 

using the resulting voxel intensity histogram. The method 

which is based partly on 2D data and partly on 3D data 

operates best on routine axially-displayed multispectral dual-

echo proton density (PD) and T2 (spin-spin relaxation time) 

sequences. This method has been successfully used to segment 

the brain in each slice of many head images from many 

different MRI scanners (all 1.5 Tesla), using several different 

spin-echo images with different echo times. This method also 

works well on axial and coronal 3D T1-weighted SPGR 

(Spoiled Gradient) sequences. In these images parameters have 

to be adjusted to ensure that the thin dark brain areas will be 

included and to keep the cerebellum attached to the rest of the 

brain which has to be separated from the back of the neck 

tissue and the cheeks.  

4.2 Brain Segregation Method 

Segregation is achieved in three stages a removal of the 

background using intensity histograms, generation of an initial 

mask that determines the intracranial boundary with a 

nonlinear anisotropic diffusion filter, and final segregation with 

an active contour prototype. The use of a visual programming 

environment such as WiT , makes prototype development more 

convenient by allowing some exploration. Preferably the T2-

weighted image is used; otherwise the PD-weighted or T1-

weighted image may also be used for segregation. RF in 

homogeneities are addressed by the smoothing obtained with 

the nonlinear anisotropic diffusion which also reduces the 

intensity of regions that do not belong to the brain. In the third 

stage, the relative insensitivity of the active contours to partial 

volume effects provides consistent edge tracking for the final 

segregation. This sequence of operations provides a relatively 

robust approach those results in good segregation even in the 

presence of RF in homogeneity, where simple thresholding 

techniques would be difficult to use. 

Two types of prior knowledge are needed in the second stage, 

while the first and third stages do not require prior information. 

The first type of prior information relates to tissues other than 

the brain, for example the scalp and eyes. Using the anisotropic 

diffusion filter on T2 (or PD) images, the majority of the tissue 

other than the brain can be darkened, allowing a simple 

threshold to be used subsequently for segregation.  

4.2.1 Background Removal 

Considering the fact that MR scanners typically generate 

normally distributed white noise, the best threshold for 

separating background noise is determined with the technique 

of Bummer at all. In reconstructed MR data, background noise 

has a Rayleigh distribution given by: 











2

2

2 2
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ff
fpnoise      Where f  is the intensity 

and   is the standard deviation of the white noise. This 

distribution is observed in the lower intensities of the 

uncorrected histogram of MR volumes as illustrated. A 

bimodal distribution g(f) is obtained if the best fit Rayleigh 

curve, 

)( fr , is subtracted from the volume histogram,  

)( fh : )()()( frfhfg   

We can obtain a minimum error threshold,  , by minimizing 

an error term, r  given by: 
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Segregation of the original image in with this automatic 

threshold  produces the head mask where some misclassified 

pixels within the head region and speckle outside the head 

region are apparent. Morphological operations with a small 

structuring element such as a 5x5 kernel can effectively 

remove such noise components. 

4.2.2 INITIAL BRAIN MASK 

The process that generates the initial brain mask has three 

steps. First it smooth’s the brain image using 2D nonlinear 

anisotropic diffusion and attenuates narrow non-brain regions. 

Then, it sets an automated threshold to the diffused MR 

volume and produces a binary mask. Third, it removes 

misclassified non-brain regions such as the eyes from the 

binary mask based on morphology and spatial information 

obtained from the head mask. 

4.2.2.1 Nonlinear anisotropic diffusion 

Nonlinear anisotropic diffusion filters introduced by Perona 

and Malik are tunable iterative filters that can be used to 

enhance MR images. Nonlinear anisotropic diffusion filters can 

be used also to enhance and detect object edges. The 

anisotropic diffusion filter is a diffusion process that facilitates 

intraregional smoothing and inhibits interregional smoothing: 

     
(a)        

                   (b) 

      
(c)                               

(d) 

 Comparison of segmentation results on real brain 

MRI, T1 weighted image  
(a) Original image, (b) FCM, (c) BCFCM, and (d) M- FCM. 
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Consider ),( txI  being the MR image where x  represents the 

image coordinates (i.e. x, y) t is the iteration step, and ),( txc , 

Edges can be selectively smoothed or enhanced according to 

the diffusion function. An effective diffusion function is: 
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Where  is the diffusion or flow constant that dictates the 

behavior of the filter. Good choices of parameters that produce 

an appropriately blurred image for threshold are   = 128 with 

25 iterations and a time step value of just under 0.2. Filtering 

can be fairly sensitive to these three parameters, however, for 

all the PD, T2, and T1 - weighted data sets displayed axially or 

corporally, the above parameter settings provide good initial 

brain segregation.  

4.2.2.2 Automated threshold 

After diffusion filtering brain voxel distribution becomes close 

to normal for T2-weighted and even PD images. Consequently, 

the threshold can be determined by fitting a Gaussian curve to 

the histogram of the diffused volume data. For PD and T2-

weighted slices, a good threshold is set at 2 standard deviations 

below the mean. For T1-weighted axially-displayed images, 

the minimum value in the brain histogram plot is selected as 

the threshold. This value typically corresponds to about 0.5 

standard deviations below the mean of the fitted Gaussian.  

4.2.2.3 Refinement of mask  

Misclassified regions, such as the eyes, that occur after 

automatic thresholding are removed using morphological 

filtering and spatial information provided by the head mask. In 

each region of the binary mask, first holes are filled and then 

binary erosion separates weakly connected regions. The width 

of this element is sufficient to separate the brain from the eyes 

in all axial slices we studied whose fields of view were 

between 200 and 260 mm. Two bounding boxes will be 

required for serially displayed images where there is no 

symmetry. The remaining regions are returned close to their 

original size with binary dilation using the same 10x10 kernel. 

Since thresholding eliminates the darkest pixels at the brain 

edge, this dilation step ensures that the mask is closer to the 

required edge.  

4.2.3 Final Brain Mask 

      The final boundary between the brain and the intracranial 

cavity is obtained with an active contour prototype algorithm 

that uses the initial brain mask as its initial condition. The 

active contour prototype, extended from the ``Snakes'' 

algorithm introduced by Kass et al. gradually deforms the 

contour of the initial brain mask to lock onto the edge of the 

brain. The active contour is defined as an ordered collection of 

n points in the image plane such that:  
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An energy minimization criterion iteratively brings the points 

of the contour closer to the intracranial boundary. For each 

point, iv , an energy matrix, )( ivE , is computed: 

)()()()()( int igradiibaliconti vEvEvEvEvE    

where )( icont vE is a ``continuity'' energy function that forces 

the contour to take a smooth shape, )( ibal vE  is an adaptive 

``balloon'' force used to push the contour outward until a strong 

gradient is encountered , )(int ivE  is an ``intensity'' energy 

function, computed from the PD-weighted MRI volume, that 

tends to move the contour towards low intensity regions, and 

)( igrad vE is a ``gradient'' energy function, computed from the 

diffused MRI volume, that draws the contour towards regions 

where the image gradient is high. Relative weights of the 

energy terms are provided by the scalar constants  ,,  and

 . This procedure moves each iv  to the point of minimum 

energy in its neighborhood. The active contour prototype 

algorithm finds the intracranial boundary in all image slices 

using the same relative energy weightings for the combination 

of energy functions described above. The gradient energy term 

computed on the diffused volume significantly stabilizes the 

active contour algorithm because the gradient derivatives are 

small in the diffused volume data . The active contour 

prototype algorithm applied to the MR slice. Good results were 

obtained with 5.1,2,1   , and 2  on all data 

sets mentioned. 

4.2.4 Brain Studies and Validation 

PD and T2 data sets were acquired axially on a GE 1.5 Tesla 

MRI scanner, with repetition time TR = 2000 ms, and echo 

times of 35 ms and 70 ms respectively. The slice thickness was 

5 mm and the pixel size was 0.781 mm
2
, Each data set had 22 

slices with 256 x 256 pixels per slice, and was scaled linearly 

from the original 12-bit data to 8-bits.  

Comparable results are obtained with our algorithm on more 

than 30 data sets from five scanners with fields-of-view 

varying from 200 to 260 mm. The algorithm also works on 

images acquired on a GE scanner with a SPRG sequence, with 

TR=39 msecs and Te=8 msecs, pixel size = 1.0156 mm
2
 and 

slice thickness = 2.5 mm. The computer processing time for 

each study for all the stages was less than 5 minutes on a SUN 

SPARC workstation – even the 120 slice 3D studies. In all 

cases, our algorithm detects the intracranial boundary without 

user interaction and without changing the parameters. 

Tissue contours determined with a fully automated algorithm 

have to be validated with a study that compares them to 

contours traced manually by an expert. The similarity index 

described by Zijdenbos , derived from the kappa statistic can 

be used to compare an automated contour one drawn manually. 

Each binary segregation can be considered as a set A of pixels. 

The similarity between two segregations 1A and 2A is 

computed with a real number 
    
S  0 1 defined by 
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S  2
A1 A2

A1  A2

. 

This similarity index is sensitive to both size and location since 

it depends on their intersection as well as the sum of their 

sizes. Two regions with equal size that overlap with half of 

their area have S=1/2 while a region that completely covers a 

smaller one of half its size yields S=2/3. In this manner, two 

regions where one fully encompasses the other are more 

similar than two partially overlapping regions. According to 

good agreement is indicated by S>0.7 but the absolute value of 

S may be difficult to interpret. In a validation study that we 

conducted, three volumes were chosen and each volume was 

acquired using a different PD/T2-weighted echo sequence, and 

a different field of view size. For each volume, some axial 

slices were selected, such that the entire range of the image 

volume from ``low" to ``high" slices was covered. An expert 

radiologist traced the brain contour manually on each slice and 

the manual contour was compared with the automatically 

drawn contour using the similarity index. Table shows the 

number of pixels included inside the manually drawn and 

automatically-calculated brain contours as well as the 

similarity index. 

In axial slices containing the eyes, the algorithm usually 

included the pituitary gland and basilar artery, and sometimes 

the internal carotid artery, while the radiologist excluded these 

structures. Also, while the radiologist drew carefully around 

the petrous temporal bone, it was often included by the 

algorithm. In the high slices, manual contours were comparable 

to the automated ones except in the extreme case of the top 

slice of the 5mm thick datasets where the partial volume effect 

was noticeable. The sagittal sinus was usually included by the 

algorithm whereas it was always excluded by the radiologist. 

Overall, this algorithm provided a similarity index always 

above 0.925, it was maximal 0.99 on middle slices, and 

dropped to 0.95 on the highest slices. These results compare 

favorably with those reported by others as the brain volumes 

are within 4% in most cases. 

5. Result and Analysis 

 
Input image 

Qualitative segregation performance of two simulated T1w 

brain images showing the provided phantom label, raw images 

and the segregation results obtained by using the proposed 

hybrid feature. We show three slices for both the best case (0% 

noise, 0% in homogeneity) and worst-case (9% noise, 

40%inhomogeneity) scenarios. White, light gray, and dark gray 

colors represent, respectively, the WM, GM, and CSF classes 

in the tissue and phantom labels. We note the results from the 

hybrid approach resemble the phantom for both the best and 

worst input scenarios. Segregation performance of real clinical 

T1w brain images (UBC MS/MRI and LONI IDA) showing 

the raw images and the segregation results obtained by using 

the proposed approach.  

We show two slices each for the three-class segregation. 

White, light gray, and dark gray colors represent, respectively, 

the normal appearing WM, GM grouped with diseased WM, 

and CSF classes in the segregation labels. Qualitative 

segregation performance of a multiple simulated MR 

sequence(T1w, T2w, PDw) brain images showing the provided 

phantom label, raw  images (0% noise, 0% in homogeneity), 

and the segregation results obtained by using the proposed 

approach. White, light gray and dark gray colors represent, 

respectively, the WM, GM, and CSF classes in the tissue and 

phantom labels. We show three slices for the test case and note 

improved segregation results on multiple MR sequence. 

Qualitative segregation performance of a real clinical T1w 

brain images (IBSR #08) showing the raw images, the expert-

guided manual segregation label, and the segregation results 

obtained by using the traditional edge feature and the proposed 

hybrid approach. We show three slices for the three-class 

segregation case and the post processed case. 

 

Brain Extraction 

 

White, light gray, and dark gray colors represent, respectively, 

the WM, GM, and CSF classes in the segregation labels. We 

note the good resemblance between the segregation results and 

the raw image, and between the post processed results and the 

expert-guided manual segregation labels.  

The image is converted to log-polar coordinates, its gradient is 

computed and the 2D segregation is recovered by finding the 

shortest path in the inverse of the gradient image. Fig shows 

the segregation in the log-polar space with highlighted 

contour and the corresponding contour converted to the 

Cartesian space image. 
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2D Realized 

Once the infected area has been segmented in the interaction 

plane, pixels inside the lesion are used to update the lesion 

histogram H L and pixels within 10 pixels outside the infected 

area is used to generate the background histogram H B .The 

segmented 2D contour is recovered in the same manner on the 

other planes. In the case of a clicked point, the two other main 

MPRs (multi-planar reconstructions) are processed. In the case 

of a stroke, the plane that is perpendicular to the stroke plane 

and also contains the stroke is also processed. FIG. shows the 

results of the 2D segmentations 4 segmentations in image 

series  in 4 planes for a stroke and 3 segmentations in image 

series  in 3 planes for a click point. Since background statistics 

have now also been collected.   

 

3D Segmentation 

A semi-automatic 3D segmentation method for brain structures 

from Magnetic Resonance Imaging (MRI). There are three 

main contributions. First, our method combines boundary-

based and region-based approaches but differs from previous 

hybrid methods in that we perform them in two separate 

phases. This allows for more efficient segregation. Second, a 

probability map is generated and used throughout the 

segregation to account for the brain structures with low-

intensity contrast to the background. Third, we develop a set of 

tools for manual adjustment after the segregation. This is 

particularly important in clinical research because the 

reliability of the results can be ensured. 

Conclusion 

We validated our technique first by using both single and 

multiple simulated brain MRI sequence data. Improved 

segregation accuracy and robustness were shown in results 

from the proposed hybrid approach against those using 

individual geometric or statistical features only. Furthermore, 

on real clinical MRI datasets, we also demonstrated improved 

accuracy over a state-of-the-art approach, the region-based 

M3DLS. We also demonstrated consistent and robust results 

when segmenting MRI scans of both MS and AD patients. 

MRI is the dominant neuro imaging modality for multiple 

sclerosis (MS). Revised diagnostic criteria formally 

incorporate abnormalities on MRI for diagnosis. MRI is well-

suited for evaluating dynamic changes in MS patients. The 

suppression of new gadolinium-enhanced T1-weighted and 

newly active T2-weighted lesions on MRI are now standard 

outcome measures in clinical trials. This article reviews how 

conventional and advanced MRIs provide important 

biomarkers of MS pathology and considers the role of MRI 

outcomes in clinical trials and in clinical practice. 

The results presented in this paper are preliminary and further 

clinical evaluation is required. There are also need new 

methods for preprocessing the original image, including de-

noising and enhancing to increase the SNR. How to combine 

segmenting with preprocessing procedure is our work in future. 

 

Future Work 

In future we can develop a Novel Active Volume Model. 

Which is a natural extension of parametric transformable 

prototypes and it is to integrate object appearance and region 

information. The main contributions include: (1) a clean 

formulation to integrate online learning and region statistics 

into active contours and surfaces, which provides flexible 

initialization and rapid convergence, (2) the finite differences 

optimization framework that enables very fast gradient and 

appearance-statistics based model deformations, (3) the 

combination of multiple sources of information in a unified 

framework for predicting object region and boundary. Using 

various experiments on 3D medical images, we demonstrate 

that the AVM model can perform segmentation efficiently and 

reliably on CT and MRI images. However, due to the local 

smoothness of simplex-mesh, it is still hard for the model to 

reach details on branch structures. In the future, we plan to 

address this problem by re-parameterizing the model near 

branches since vertices. in such areas are sparser than those on 

the main body. We propose a principled approach for brain 

MRI image segmentation by fusing together adaptive atlas 

(generative) and informative features through a discriminative 

framework. This approach uses a new way of combining 

generative and discriminative models. It takes advantage of the 

generative model being explicit and the discriminative 

classifier having high discrimination power. We demonstrated 

improved and robust results over the state-of-the-art algorithms 

on several clinical MRI datasets. Including a more explicit 

shape model may further improve our system, which is left for 

future research. 
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