

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 4 April, 2014 Page No. 5288-5297

Madhu Kumari
1
, IJECS Volume 3 Issue 4 April, 2014 Page No.5288-5297 Page 5288

A Review of Research Work in Software Engineering

Madhu Kumari
1
, Meera Sharma

2
, Ajay Kumar

3

1Delhi College of Arts & Commerce

University of Delhi, India

mesra.madhu@gmail.com

2Swami Shraddhanand College

University of Delhi, India

meerakaushik@gmail.com

3Shivaji College

University of Delhi, India

Ajaykr.bhu@gmail.com

Corresponding Author

Abstract: The development of open source software is a multidisciplinary approach and it requires different areas of expertise,

knowledge, tools and techniques. The open source software development has an important role. During the last decades, open

source software development has changed the dynamics of software engineering research and added different new domains. In

closed source software, the data related to software development, bug reported before release and post release was not available. It

was difficult for researchers to validate their methods and models due to non-availability of data. In open source software, different

repositories namely Source control repositories, Bug repositories, Archived communications, Deployment logs, Code repositories

are available. Researchers are developing methods to mine useful information from these repositories to improve the quality of

software projects. Different machine learning techniques have been applied to determine the level of severity and priority of bugs,

to find the buggy module, security bugs and right developers. In this paper we are trying to focus on various domains such as

Artificial Intelligence based Software Engineering to develop new tools, Model Based Software Engineering, Search Based

Software Engineering , Role of Software Engineering in Cloud Computing, Quantitative and Qualitative Software Engineering,

Empirical Software Engineering ,regression based prediction models and machine learning techniques used to predict the bug fix

time, man power involved in fixing that bug , assign a bug to the right fixer and .

Keywords: Software engineering , Artificial Intelligence, Search based software engineering, Model based software engineering,

Machine learning techniques, quantitative and qualitative software engineering, Empirical software engineering .

1. Introduction

As pointed out by David Rice, ―Like cement, software is

everywhere in modern civilization. Software is in your mobile

phone, in your home computer, in cars, airplanes, hospitals,

businesses, public utilities, financial systems, and national

defense systems. ―[1]

Software is basically computer instructions or data used

in software engineering which refers to the process of

developing software initially, then repeatedly updating it for

various reasons for development. Software engineering (SE) is

concerned with the quantifiable approach to the development,

design, operation, and maintenance of software.

For the last 50 years, many critical issues (low quality and

productivity, and high cost and risk, unreliable, un-

maintainable, inconsistent etc.) have existed in the old-

established software development process. The major reason

behind this, unorganized, nonlinear and not well engineered

structure of software engineering paradigm in which a small

change at one place in a nonlinear system may bring a large

variation to the entire system in a later state– the “Butterfly-

Effect‖. But in the recent era the improved software

development methodology gives the better understanding of

complex system in terms of their components, so that all the

software engineering research activities are performed linearly,

partially, locally, quantitatively and qualitatively.

The rest of the paper is organized as follows. Section 2 of the

paper presents an overview of the current trends in software

engineering that includes Artificial Intelligence techniques can

be used in the field of Software Engineering to develop new

tools, Model Based Software Engineering, Search Based

Software Engineering, Role of Software Engineering in Cloud

Computing, Quantitative and Qualitative Software Engineering,

Empirical Software Engineering and the usage of Machine

Learning Techniques. Description of Machine Learning

techniques have been presented in section 3. Section 4 briefly

motivates on the regression models and finally the paper is

concluded in section 5.

mailto:meerakaushik@gmail.com
mailto:Ajaykr.bhu@gmail.com

Madhu Kumari
1
, IJECS Volume 3 Issue 4 April, 2014 Page No.5288-5297 Page 5289

2. Current Trends in Software Engineering
It was only in the last decade of development that the

production of higher quality and lower cost software started to

emerge and software engineering gained its present

importance. Today, software represents the key to success of

many computer systems, and the factor of differentiation of

organizations that have it. Software has become an essential

component in business decisions and a basis in scientific

research and engineering problem solving. It also represents a

significant component in industrial, transportation, medical,

telecommunications, military and many other types of systems.

In the modern world, the software is virtually inevitable and

ubiquitous. On beginning of the 21
st
 century, understanding of

the software has changed and is accepted by the public as

technological reality in the future development. Present

software development is similar to that in the early days.

Although programming tools and languages are more

advanced, technical equipment and information easily

available, and the possibilities wider, these factors do not apply

to specific development methodologies which remain

equivalent to the first basic models.

Nowadays, the competitive advantages of developing software

products derive mainly from speed and flexibility. To be

competitive, organizations need to be closely associated with

their customers, and be open to changes in user requirements.

For this reason, today, the traditional models of development,

with organizations that are willing to innovate, are being

replaced by agile methods. All these ―new‖ models of

development have their own advantages and disadvantages –

there is no best method. Selection of the most appropriate

methodology will always depend on the organization, the scope

and complexity of projects, cooperation of clients, staff

experience, and other external and internal factors.

Software Engineering can be used to make the software simple

and cost efficient. For that purpose new areas are explored to

develop better techniques and tools to manage the complexity

of software systems. In this paper, we have discussed different

trends of software engineering.

2.1 Artificial Intelligence and software Engineering

AI is a branch of computer science which is concerned with the

study and modeling human cognition using intelligence

computer system . According to the Mark Harman[]Artificial

Intelligence is about making machines intelligent, while

software engineering is the activity of defining, designing and

deploying some of the most complex and challenging systems

mankind has ever sought to engineer. Though software

engineering is one of the most challenging of all engineering

disciplines, it is often not recognized as such, because software

is so well concealed.

There are various Artificial intelligences techniques such as

knowledge based systems, neural networks, fuzzy logic, data

mining, natural language processing techniques, neural

networks, genetic algorithms, fuzzy logic and ant colony

optimization which have potential to improve the theory and

the implementation of modeling and designing the software

development paradigm.

In traditional software engineering development process begins

at the requirement analysis and specification phase and end at

the testing phase. At each of these phases different types of

knowledge are required (design knowledge, domain knowledge

and programming knowledge).There are various error can

occur at any phase of software development process. Such

errors are usually difficult and expensive to correct [62].

The basic problem of software engineering is the long gap

between requirement specification and the delivery of the

product. This long gap must be reduced before product arrival.

In addition, there is the problem of phase independence of

requirements, design and codes. Phase independence means

that any decision made at one level becomes fixed for the next

level. Thus, the coding team is forced to recode whenever there

is change in design [61].

Figure 1.Traditional software development process[61]

Knowledge-based techniques in AI can be used to modify this

traditional approach the AI technique that handles this problem

is automated programming which results in reusable

code[63][64]. Thus, when a change is made in the design, that

part of the design that does not change remains unaffected.

Thus, automated tools for system redesign and reconfiguration

resulting from a change in the requirements will serve a useful

purpose. This technique requires constraint propagation

technique. With the help of automated programming approach

AI based systems are free from risk management strategies [61].

Figure2 : Expert System development process

Table1: Research Works in Software Engineering based on

AI

Authors

[Ref]
Objective Of Research

[58]

Ammar,

Abdelmoez

and Hamdi

This paper surveys the application of artificial

intelligence approaches to the software

engineering processes. These approaches can

have a major impact on reducing the time to

market and improving the quality of software

systems. They surveyed research in the

development activities of requirements

engineering, software architecture design, and

coding and testing processes.

[59]

Ebbah

The author focuses on techniques developed (or

that are being developed) in artificial

intelligence that can be used to solve the

problems associated with software engineering

Madhu Kumari
1
, IJECS Volume 3 Issue 4 April, 2014 Page No.5288-5297 Page 5290

processes.

[60]

Prince Jain

They describe the interaction area between AI

and SE. But before interaction, there is need of

proper knowledge, discussion and

understanding of factors and issues that

originates while performing interaction. There

is needed to be reducing and resolving the

factor and issues which comes between while

communicating the AI and SE

[61]

Raza

The author highlights a comparative study

between the traditional software development

process and expert system development

process. This paper also highlights how AI can

be used to modify this traditional approach

.With the help of automated programming

structure AI based systems are free from risk

management strategies. Because of Artificial

Intelligence Techniques in Software

Engineering (AITSE) we can reduce the

development time in software development.

Coding phase in software development process

can be changed into Genetic Code.

2.2 Model Based Software Engineerin g

 “Test data creation is a tedious, expensive, time-consuming

and error-prone activity. Model driven approaches are

springing up to aid up auto generation of test data.”

Anjaneyulu Pasala PhD

Senior Research Scientist

Infosys Labs, Infosys Ltd.

Model based software engineering is a software development

methodology which is used to create and exploit model in such

a way that is easily understandable. It gives the abstract

representation of the knowledge rather than the computing

concepts. Its main objective is to change the software

development process from manual coding to automatic code

generation to achieve code reuse and perform maintenance and

product development through the use of software modeling

technology.

Table 2: Research Works in Software Engineering based

on MBSE

Authors

[Ref]
Objective Of Research

[6]

Basha, Moiz

 And

 Rizwanullah

The authors presents the state-of-the-art of the

Model-Based Software Development, the

Model-Based Software Engineering (MBSE),

Model Centric Software Development

(MCSD) and Domain Engineering process

with the specific domain .They demonstrates

the purpose of DARE-COTS tool along with

the scope of product lines. They also

highlights the research challenges in terms of

Multi Aspect Modeling.

[7]

Karsai,

JSztipanovits,

 Ledeczi, and

Ted Bapty

The authors describe a model-integrated

approach for embedded software development

that is based on domain-specific, multiple

view models used in all phases of the

development process. They also demonstrate

the principles and techniques of model-

integrated embedded software development,

as well as the capabilities of the tools

supporting the process.

2.3 Search Based Software Engineering

In the past five years, Search Based Software Engineering

(SBSE) becomes an emerging trend in software engineering

research problem. It deals with metaheuristic search such as

genetic algorithms (GA), simulated annealing and tabu search.

It is based on computational search and optimization technique

that is widely applicable to almost all phases of the software

development process. SBSE has been applied throughout the

software engineering lifecycle such as testing, debugging and

maintenance, design, management, verification, general

aspects, requirement engineering, project planning and re-

engineering.

The term SBSE was first used by Harman and Jones [18] in

2001. This was the first time in the literature that it was

suggested that search based optimization could be applicable

right across the full spectrum of activities in Software

Engineering.

Fig. 3 and 4 show the trend of publications on SBSE and

Software Engineering topic area [17].

Figure 3 : The trend of publications on SBSE.

Figure 4: The trend of publications on Software

Engineering Topic Areas

Table 3: Research Works in Software Engineering based

on SBSE

Authors

[Ref]
Objective Of Research

Madhu Kumari
1
, IJECS Volume 3 Issue 4 April, 2014 Page No.5288-5297 Page 5291

[19] Alshahwan and

Harman

SBSE applications including

tools for testing.

[20] Fraser and Arcuri

[21] Jia and Harman

[22] Lakhotia, Harman,

and Gross

[23] Mitchell and

Mancoridis
Modularization

[24] Goues, Nguyen,

Forrest, and Weimer
Bug Fixing

[25] Antoniol, Penta,

and Harman

Authors show that an ordering-

based genome encoding (with

tailored cross over operator)

and the genetic algorithm

appear to provide the most

robust solution, though the hill

climbing approach also

performs well. The best search

technique results reduce the

project duration by as much as

50%.

[26] Davis Project Scheduling

[27] Falkenauer Grouping Problems

[28] Bagnall, Rayward-

Smith, and Whittley

The life-cycle of requirements

engineering

[29] Aguilar-Ruiz,

Ramos, Riquelme, and

Toro

Project planning and cost

estimation .

[30] Antoniol, Penta,

and Harman

[31] Antoniol, Penta,

and Harman

[32] Burgess and

Lefley

[33] Dolado

[34] Kirsopp,

Shepperd, and Hart

[35] Baresel, Binkley,

Harman, and Korel

Testing

[36] Baresel, Sthamer,

and Schmidt

[37] Bottaci

[38] Briand, Feng, and

Labiche

[39] Briand, Labiche,

and Shousha

[40] Guo, Hierons,

Harman, and Derderian

[41] Harman, Hu,

Hierons, Wegener,

Sthamer, A.

[42] Li, Harman, and

Hierons

[43] McMinn, Harman,

Binkley, and Tonella

[44] J. Wegener, A.

Baresel, and H.

Sthamer

[45] Bouktif, Antoniol,

Merlo, and Neteler
Automated Maintenance

[46] Fatiregun,

Harman, and Hierons.

[47] Harman, Hierons,

and Proctor

[48] Mitchell and

Mancoridis

[49] Mitchell and

Mancoridis.

[50] O‘Keeffe and

O‘Cinneide.

[51] Seng, Bauer,

Biehl, and Pache.

[52] O. Seng, J.

Stammel, and D.

Burkhart

[53] Canfora, Penta,

Esposito, and Villani

Service oriented software

engineering

[54]Cohen, Kooi, and

Srisa-an
Compiler optimization

[55] Cooper, Schielke,

and Subramanian

[56] Bouktif, Sahraoui,

and Antoniol.
Quality assessment

[57] Khoshgoftaar, L.

Yi, and Seliya

2.4 Cloud Computing and Software Engineering

Cloud computing enables on-demand network access to shared

pool of computing resource such as storage, software‘s,

different platforms etc. Cloud computing lets a consumer to

consume it‘s services and are charged according to the service

that they have used. When engineering is disciplines to cloud

computing it forms cloud engineering. Cloud engineering

invests the methods and tools of software engineering in

conceiving, developing, operating and maintaining cloud

computing systems and its services.

By combining cloud computing and software engineering, we

can meet the individually challenges faced by the cloud

computing and software engineering. For example, a major

challenge in software engineering is to manage the runtime

QoS of loosely coupled service in distributed environment.

Cloud computing can meet this challenge through resource

allocation and virtualization.

On the other hand, cloud computing struggles both with

providing interoperability across different clouds and with the

rapid development and adaptation to, ever-changing business

environments and requirements. SOA‘s standard interfaces and

protocols could help address this interoperability challenge

[http://www.infoq.com/articles/ieee-software-engineeering-

services-cloud-computing/].

Table 4: Research Works in Software Engineering based

on SBSE

Authors

[Ref]
Objective Of Research

[66]

Yadav, Khatri

 and Singh

They proposed a framework that

makes cloud smarter and intelligent

than simple cloud by using Artificial

intelligence techniques. AI based

cloud service models for higher

education will help in cutting the

costs spent on buying resources.

http://www.bibsonomy.org/author/Antoniol
http://www.bibsonomy.org/author/Penta
http://www.bibsonomy.org/author/Harman

Madhu Kumari
1
, IJECS Volume 3 Issue 4 April, 2014 Page No.5288-5297 Page 5292

With the help of this model quality

of cloud will increase and make our

education system more modern and

transparent with smaller budgets.

[67]
Yadav, Singh

 and Kumari

They concluded that software with

minimum bug complexity and

minimum operating time are much

reliable. These software follows

delayed and more delayed

exponential distribution while newer

software component follows

exponential distribution that are

more prone to failure‘s and less

reliable. Their proposed model is

based on Weibull distribution for

hardware and delayed exponential

for software.

[68]

Thanakornworakij,

Nassar,

Leangsuksun1,

 Păun

They have developed a reliability

model and estimate the mean time to

failure and failure rate based on a

system of k nodes and s virtual

machines under four major scenarios

that are combinations of software

and hardware failure correlation.

They demonstrate that if the failure

of the hardware and/or the software

in the system have a degree of

dependency, the system becomes

less reliable, which means that the

failure rate of the system increases

and the mean time to failure

decreases. Additionally, an increase

in the number of nodes decreases the

reliability of the system.

[70]
Dai, Yang,

Dongarra and

Zhang

They conducted a systematic

approach on reliability modeling

and analysis of cloud service They

elaborated various types of possible

failures in a cloud service such as

overflow failure, timeout failure,

resource missing failure, network

failure, hardware failure, software

failure, and database failure. Based

on these failures they have

developed holistic reliability model

using Markov models, Queuing

Theory and Graph Theory.A new

algorithm is proposed to evaluate

cloud service reliability based on

the developed model by using

Bayesian approaches and Graph

Theory.

2.5 Quanlitative and Quantitative Software Engineering

Software engineering commonly classified as either

quantitative or qualitative. But these two distinct research

methods exist simultaneously in software engineering.

Qualitative Software engineering deals with the data that is

represented as words and pictures not numbers. Basically the

qualitative software engineering is the study of the complexities

of human behavior (e.g. motivation, communication, and

understanding). In qualitative research method data are

descriptive, expressed in terms of words like experiments,

questionnaires and psychometric tests rather than numbers.

Qualitative data is sometimes referred to as categorical data.

They need to be quantifying to do analysis. But in quantitative

approach, data are anything that can be expressed as a number,

or quantified. Both types of data are valid types of

measurement, and both are used in software engineering

methodology but only quantitative data can be analyzed

statistically because of its numeric form, and thus more

rigorous assessments of the data are possible.

Table 5: Characteristics of quantitative and qualitative

research [15].

Quantitative Qualitative

Objective Subjective

Research questions: How

many? Strength of

association?

Research questions:

What? Why?

"Hard" science "Soft" science

Literature review must be

done early in study

Literature review may be

done as study progresses or

afterwards

Test theory Develops theory

One reality: focus is concise

and narrow

Multiple realities: focus is

complex and broad

Facts are value-free and

unbiased

Facts are value-laden and

biased

Reduction, control, precision Discovery, description,

understanding, shared

Interpretation

Measurable Interpretive

Mechanistic: parts equal the

whole

Organismic: whole is greater

than the parts

Report statistical analysis.

Basic element of analysis is

numbers

Report rich narrative,

individual; interpretation.

Basic element of analysis is

words/ideas.

Researcher is separate Researcher is part of process

Subjects Participants

Context free Context dependent

Hypothesis Research questions

Reasoning is logistic and

deductive

Reasoning is dialectic and

inductive

Establishes relationships,

causation

Describes meaning,

discovery

Uses instruments Uses communications and

observation

Strives for generalization

Generalizations leading to

prediction, explanation, and

understanding

Strives for uniqueness

Patterns and theories

developed for understanding

Highly controlled setting:

experimental setting

(outcome oriented)

Flexible approach: natural

setting (process oriented)

Sample size: n

Sample size is not a concern;

seeks "informal rich" Sample

"Counts the beans" Provides information as to

"which beans are worth

counting"

Madhu Kumari
1
, IJECS Volume 3 Issue 4 April, 2014 Page No.5288-5297 Page 5293

2.6 Empirical Software Engineering

Empirical software engineering requires the scientific use of

quantitative and qualitative data to understand and improve the

software product, software development process and software

management.

Empirical software engineering do not only deal with the

software development process but also deal with the people

involved in software development. So, the integration of both

quantitative and qualitative research methods are necessary in

software engineering development process. In the early days,

empirical research in software engineering has been based on

quantitative approach only but now these days studies in

empirical software engineering are often involve software

developers as well as software development organization.

Table 6: Research Works in Software Engineering based

on Empirical Software Engineering

Authors

[Ref]
Objective Of Research

[14]
Lázaro,

and

Marcos

The authors observed that if these two SE

research methods are applied separately the

results obtained are incomplete. Hence, it is

difficult to choose definitively between

quantitative and qualitative methods when

embarking on a specific research. To address

this problem, a new research method based on

integrating quantitative and qualitative

methods is proposed and here a first approach

to a new research method is proposed that is

similar to the implementation of integrated

qualitative and quantitative methods in the

social sciences. Specifically, of the three types

of integration taken from the field of social

sciences, complementation is chosen, and this

modified and redefined for improved usage in

the field of SE.

3. Machine Learning Techniques and Software

Engineering
In the traditional approach, usage of statistical estimation

models provides incomplete, unreliable and poor performance

result. They do not deal with categorical data, missing data

points, spread of data points, and data with outliers. Machine

Learning techniques remove all the demerits of traditional

approach by improving performance through mechanizing the

acquisition of knowledge from experience. ML algorithms not

only can be used to build tools for software design,

development and maintenance task but also can be used in

tackling software engineering problem.
Machine learning deals with the issue of how to build computer

programs that improve their performance at some task through

experience [12]. Machine learning algorithms have been

utilized in: (1) data mining problems where large databases

may contain valuable implicit regularities that can be

discovered automatically; (2) poorly understood domains

where humans might not have the knowledge needed to

develop effective algorithms; and (3) domains where programs

must dynamically adapt to changing conditions [12].

Machine learning also identifies the software development and

maintenance tasks in the following areas : requirement

engineering (knowledge elicitation, prototyping); software

reuse (application generators); testing and validation;

maintenance (software understanding); project management

(cost, effort, or defect prediction or estimation). Machine

learning is the subfield artificial intelligence that allow

computers to improve their performance and automatically

produce (induce) models, such as rules and patterns, from data.

Hence, machine learning is closely related to fields such as data

mining, statistics, inductive reasoning, pattern recognition, and

theoretical computer science.

Table 7 contains a list of software engineering tasks for which

ML methods are applicable [13].

Table 7: SE tasks and applicable ML methods.

 SE tasks Applicable type(s) of learning

Requirement engineering AL, BBN, LL, DT, ILP

Rapid prototyping GP

Component reuse IBL (CBR4)

Cost/effort prediction IBL (CBR), DT, BBN, ANN

Defect prediction BBN

Test oracle generation AL (EBL5)

Test data adequacy CL

Validation AL

Reverse engineering CL

The field of Machine Learning includes: supervised learning,

unsupervised learning and reinforcement learning.

 Supervised learning :

Supervised learning includes neural networks (NN), Bayesian

learning (BL), Case-based reasoning(CBR), Decision

trees(DT), Instance-based learning (IBL), Support vector

machines(SVM), Regression analysis, Information fuzzy

networks (IFN), inductive logic programming (ILP), concept

learning (CL), genetic algorithms (GA) and genetic

programming (GP), analytical learning (AL), combined

inductive and analytical learning (IAL), ensemble learning

(EL), explanation-based learning(EBL) etc.

 Unsupervised learning :
Unsupervised learning includes Artificial neural network ,Data

clustering, Expectation-maximization algorithm, Self-

organizing map, Radial basis function network,Vector

Quantization, Generative topographic map, Information

bottleneck method etc.

 Reinforcement learning :
Reinforcement learning includes reinforcement learning

(RL),Temporal difference learning, Q-learning, Learning

Automata, Monte Carlo Method ,SARSA etc.Table 2

demonstrates the distribution of ML algorithms in the seven SE

application areas.

Table 8: ML methods in SE application areas.

http://www.informatik.uni-trier.de/~ley/pers/hd/m/Marcos:Esperanza.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Marcos:Esperanza.html

Madhu Kumari
1
, IJECS Volume 3 Issue 4 April, 2014 Page No.5288-5297 Page 5294

Many machine learning techniques like Artificial Neural

Networks, Decision Tree, Linear Regression, Support Vector

Machine, Fuzzy Logic, Genetic Algorithm, Empirical

Techniques, and Theory based techniques has been used by

researchers to tackle software engineering problems. In the 21st

century, using the technique is not a big deal , the problem is

,which technique is most appropriate for a particular data set.

There are various ML tools for machine learning and statistical

analysis including SAS, SPSS, Weak and the

R language – allow deep analysis of smaller data and Mahout,

Pentaho or Rapid Miner – allow shallow analysis of

big-data and tools such as Spark, Twister, HaLoop, Hama and

Graph Lab – facilitate deeper analysis of big-data .

The information given in figure 5 indicates that the increased

interest in Machine Learning techniques in software

engineering.

Figure 5: Publications on applying ML algorithms in SE.

4. Regression Model

In Quantitative Software Engineering, research methods work

with data in numerical form collected from representative open

source repositories and analyzed through statistical methods.

One of the the statistical method is regression. The objective of

regression analysis is to identify the relationship between the

dependent and independent variables, eliminating insufficient

and imprecise variables, and reduce the complexity of the

problem so that the research reach their goals or conclude some

results.

Authors

[Ref]
Objective Of Research

[2]

Sharma,

Kumari and

Singh

They Proposed prediction models based on

linear regression to predict the bug attributes

and to determine their linear relationships

[3]

Chaturvedi

and Singh

An attempt to demonstrate the applicability

of machine learning algorithms to predict

the bug severity level of summary of bug

reports of NASA project.

[4]

Bhattacharya

and Neamtiu

They demonstrate that, the bug-fix time in

open source projects is not influenced by the

bug-opener‘s reputation. They proposed that

various bug report attributes which have

been previously used to build bug-fix time

prediction models do not always correlate

with bug-fix time.

[5]

Yan et al

It is clear from the literature that very few

efforts have been made to predict the

severity of a bug and bug fix time by using

the other bug attributes. Sharma et al.

[8]
Sharma,

Bedi,

Chaturvedi

and Singh.

They have shown the applicability of

machine learning algorithms namely to

predict the bug priority. They reported that

cross-project priority prediction worked

with 72% accuracy.

[9]

Currently,

Tian et al.

They proposed a new approach to predict

severity of a bug automatically in particular

BM25-based document similarity function.

They focused on predicting fine-grained

severity labels, namely the different severity

labels of Bugzilla . They proposed a new

approach ,automatically analyzes bug

reports reported in the past along with their

assigned severity labels, and recommends

severity labels to newly reported bug reports

.

[10]

Bhattacharya

and Neamtiu

They proposed an idea of reducing tossing

path lengths of a bug to 1.5-2 tosses for

most bugs, which represents a reduction of

up to 86.31% compared to original tossing

paths. This reduction in tossing path length

improved triaging accuracy and got 83.62%

prediction accuracy in bug triaging.They

have shown how intra-fold updates are

beneficial for achieving higher prediction

accuracy in bug triaging when using

classifiers in isolation.
[11]

Kim and

Whitehead

They demonstrates the distribution of bug

counts for each bug fix time .

5. Conclusion

6. Software development is a very complicated process and it

needs to be improved day by day .Now these days, Software

Programmer has a different view in the field of Software

Engineering development paradigm. Software engineering term

first appeared in the 1968 NATO Software Engineering .

During past 45 years, an exponential growth has been occurred

in the several fields of software engineering such as process

models, the software development methods, the test paradigm,

the quality assurance paradigm, the documentation paradigm,

the maintenance paradigm, the project management paradigm,

etc.

Madhu Kumari
1
, IJECS Volume 3 Issue 4 April, 2014 Page No.5288-5297 Page 5295

During the last decades, many critical issues (low quality and

productivity, and high cost and risk, unreliable, un-

maintainable, inconsistent etc.) have existed in the old-

established software engineering development process.

Software Engineering can be used to make the software simple

and cost efficient. For that purpose new areas are explored to

develop better techniques and tools to manage the complexity

of software systems. In this paper we have demonstrate an

abstract view of different research area associated with

software development paradigm. We have discussed different

trends of software engineering such as Artificial Intelligence

techniques can be used in the field of Software Engineering to

develop new tools, Model Based Software Engineering, Search

Based Software Engineering, Role of Software Engineering in

Cloud Computing, Quantitative and Qualitative Software

Engineering, Empirical Software Engineering and the usage of

Machine Learning Techniques in Software Engineering.

References

[1] Rice D (2008) Geekonomics: the real cost of \ insecure

 software. Addison-Wesley, Upper Saddle River.

[2] Sharma Meera, Kumari Madhu, and Singh VB,

―Understanding the Meaning of Bug Attributes and

Prediction Models‖ I CARE '13 Proceedings of the 5th

IBM Collaborative Academia Research Exchange

Workshop Article No. 15 ,ACM New York, NY,

USA ©2013

[3] Chaturvedi K.K. and Singh V.B., 2012. Determining bug

severity using machine learning techniques. In Proceedings

of International Conference Software Engineering

(CONSEG). CSI-IEEE, 2012, 378-387. DOI=

http://ieeexplore.ieee.org/

10.1109/CONSEG.2012.6349519.

[4] Bhattacharya, P. and Neamtiu, I. 2010. Bug-fix Time

Prediction Models: Can We Do Better? In Proceedings of

the 8th Working Conference on Mining Software

Repositories (New York, NY, USA, 2012). ACM, 207-

210. DOI= http://dl.acm.org/10.1145/1985441.1985472.

[5] Yan, Z., Chen, X., and Guo, P. 2010. Software Defect

Prediction Using Fuzzy Support Vector Regression. In

Proceedings of the 7th International Symposium on Neural

Networks (Shanghai, China, June 6-9, 2010). Springer-

Verlag Berlin Heidelberg 2010, 17-24. DOI=

http://link.springer.com/chapter/10.1007%2F978-3-642-

13318-3_3.

[6] Basha, N Md Jubair ., Moiz , Salman Abdul ., and

Rizwanullah, Mohammed., Model Based Software

Development: Issues & Challenges. Special Issue of

International Journal of Computer Science & Informatics

(IJCSI), ISSN (PRINT) : 2231–5292, Vol.- II, Issue-1,

2,226-230.

[7] Karsai, Gabor., Sztipanovits, Janos., Ledeczi, Akos., and

Bapty Ted .Model-Integrated Development of Embedded

Software. PROCEEDINGS OF THE IEEE, VOL. 91, NO.

1, JANUARY 2003

[8] Sharma,M., Bedi,P., Chaturvedi, K.K., and Singh., V.B.

2012. Predicting the Priority of a Reported Bug using

Machine Learning Techniques and Cross Project

Validation. In Proceedings of the 12th International

Conference on Intelligent Systems Design and

Applications (Kochi, India, Nov. 27-29, 2012).IEEE, 539-

545.DOI=http://ieeexplore.ieee.org/

10.1109/ISDA.2012.6416595.

[9] Tian, Y., David L., and Sun, C. 2012. Information

Retrieval Based Nearest Neighbor Classification for Fine-

Grained Bug Severity Prediction. In Proceedings of the

19th Working Conference on Reverse Engineering

(WCRE),(15-18 Oct. 2012). 215-224.

[10] Bhattacharya, P. and Neamtiu, I. 2010. Fine-grained

 incremental learning and multi-feature tossing graphs to

 improve bug triaging. In Proceedings of the International

 Conference on Software Management(Washington, DC,

 USA, 2010).ACM, 1-10. DOI=

 http://dl.acm.org/10.1109/ICSM.2010.5609736.

[11] S. Kim and E. J. Whitehead, Jr. How long did it take to

 fix bugs? In MSR, 2006.12. T. Mitchell, Machine

 Learning, McGraw-Hill, 1997.

[12] Zhang. Du and Tsai, J.P. Jeffery Machine Learning

 and Software Engineering , Software Quality Journal, 11,

 87–119, 2003

 [13] Du Zhang, Applying Machine Learning Algorithms In

 Software Development, Department of Computer

 Science, California State University, Sacramento, CA

 95819-6021, zhangd@ecs.csus.edu

[14] María Lázaro, Esperanza Marcos: An Approach to the

Integration of Qualitative and Quantitative Research

Methods in Software Engineering Research. PhiSE 2006

[15] Imperial COE, 2006. John D. Anderson, Superintendent

 of Schools. Page 3. Qualitative and Quantitative

 Research.

[16] Harman, M. 2006. Search Based Software Engineering,

 In Workshop on Computational Science in Software

 Engineering.

[17] Harman Mark, Mansouri S. Afshin, Zhang Yuanyuan,

 Search Based Software Engineering: Trends, Techniques

 and Applications. ACM Computing Surveys, Volume 45

 Issue 1, November 2012, Article No. 11

 [18] Harman, M. and Jones, B. F. (2001a). Search-based

 Software Engineering. Information & Software

Technology,43(14), 833–839.

[19] N. Alshahwan and M. Harman, ―Automated web

 application testing using search based software

 engineering,‖ in 26thIEEE/ACM International Conference

 on Automated Software Engineering (ASE 2011),

 Lawrence, Kansas, USA, 6th - 10th November 2011, pp. 3

 – 12.

[20] G. Fraser and A. Arcuri, ―Evosuite: automatic test suite

 generation for object-oriented software,‖ in 8th European

 Software Engineering Conference and the ACM

 SIGSOFT Symposium on the Foundations of Software

 Engineering (ESEC/FSE‘11). ACM, September 5th - 9th

 2011, pp. 416–419.

[21] Y. Jia and M. Harman, ―Milu: A customizable, runtime-

 optimized higher order mutation testing tool for the full

 CLanguage,‖ in 3rd Testing Academia and Industry

 Conference -Practice and Research Techniques (TAIC

 PART‘08),Windsor, UK, August 2008, pp. 94–98.

[22] K. Lakhotia, M. Harman, and H. Gross, ―AUSTIN: A tool

 for search based software testing for the C language and

 its evaluation on deployed automotive systems,‖ in 2nd

 International Symposium on Search Based Software

 Engineering (SSBSE 2010), Benevento, Italy, September

 2010, pp. 101 – 110.

[23] B. S. Mitchell and S. Mancoridis, ―On the automatic

 modularization of software systems using the bunch

 tool,‖IEEE Transactions on Software Engineering, vol.

http://www.acm.org/publications
http://ieeexplore.ieee.org/
http://api.viglink.com/api/click?format=go&key=a187ca0f52aa99eb8b5c172d5d93c05b&loc=http%3A%2F%2Fieeexplore.ieee.org%2Fxpl%2Flogin.jsp%3Ftp%3D%26arnumber%3D6349519%26url%3Dhttp%253A%252F%252Fieeexplore.ieee.org%252Fxpls%252Fabs_all.jsp%253Farnumber%253D6349519&v=1&libId=6e044518-41ad-4044-9c3c-e502be28757b&out=http%3A%2F%2Fdx.doi.org%2F10.1109%2FCONSEG.2012.6349519&ref=http%3A%2F%2Fwww.google.co.in%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26frm%3D1%26source%3Dweb%26cd%3D1%26ved%3D0CC8QFjAA%26url%3Dhttp%253A%252F%252Fieeexplore.ieee.org%252Fxpls%252Fabs_all.jsp%253Farnumber%253D6349519%26ei%3D6RgSUuXFE8SPrQfsgIHgBQ%26usg%3DAFQjCNGScsE0K3AQbwQre0qtSkN1Wyvbgw%26sig2%3Dw74gVbm0_r5grN1E0X0eXw%26bvm%3Dbv.50768961%2Cd.bmk&title=IEEE%20Xplore%20-%20Determining%20Bug%20severity%20using%20machine%20learning%20techniques&txt=10.1109%2FCONSEG.2012.6349519&jsonp=vglnk_jsonp_13769179019896
http://dl.acm.org/10.1145/1985441.1985472
http://link.springer.com/chapter/10.1007%2F978-3-642-13318-3_3
http://link.springer.com/chapter/10.1007%2F978-3-642-13318-3_3
http://dx.doi.org/10.1109/ISDA.2012.6416595

Madhu Kumari
1
, IJECS Volume 3 Issue 4 April, 2014 Page No.5288-5297 Page 5296

 32, no. 3,pp. 193–208, 2006.

[24] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer,

 ―GenProg: A generic method for automatic software

 repair,‖IEEE Transactions on Software Engineering, vol.

 38, no. 1,pp. 54–72, 2012.

[25] Antoniol, Giulio., Penta, Massimiliano Di. and Harman,

 Mark. Search-Based Techniques Applied to Optimization

 of Project Planning for a Massive Maintenance Project.

 ICSM, page 240-249. IEEE Computer Society, (2005)

[26] L. Davis. Job-shop scheduling with genetic algorithms. In

 International Conference on GAs, pages 136–140.

 Lawrence Erlbaum, 1985

[27] E. Falkenauer. Genetic Algorithms and Grouping

 Problems. Wiley-Inter Science, Wiley - NY, 1998.

[28] A. Bagnall, V. Rayward-Smith, and I. Whittley. The next

 release problem. Information and Software Technology,

 43(14):883–890, Dec. 2001.

[29] J. Aguilar-Ruiz, I. Ramos, J. C. Riquelme, and M.

 Toro.An evolutionary approach to estimating software

 development projects. Information and Software

 Technology, 43(14):875–882, Dec. 2001.

[30] G. Antoniol, M. Di Penta, and M. Harman. A robust \

 search–based approach to project management in the

 presence of abandonment, rework, error and uncertainty.

 In 10th InternationalSoftware Metrics Symposium

 (METRICS 2004), pages 172–183, Los Alamitos,

 California, USA, Sept. 2004.IEEE Computer Society

 Press.

[31] G. Antoniol, M. D. Penta, and M. Harman. Search-based

 techniques applied to optimization of project planning for

 amassive maintenance project. In 21st IEEE International

 Conference on Software Maintenance, pages 240–249,

 LosAlamitos, California, USA, 2005. IEEE Computer

 Society Press.

[32] C. J. Burgess and M. Lefley. Can genetic programming

 improve software effort estimation? A comparative

 evaluation.Information and Software Technology,

 43(14):863– 873, Dec. 2001.

[33] J. J. Dolado. A validation of the component-based method

for software size estimation. IEEE Transactions on

Software Engineering, 26(10):1006–1021, 2000.

[34] C. Kirsopp, M. Shepperd, and J. Hart. Search heuristics,

case-based reasoning and software project effort

prediction.In GECCO 2002: Proceedings of the Genetic

and Evolutionary Computation Conference, pages 1367–

1374, SanFrancisco, CA 94104, USA, 9-13 July 2002.

Morgan Kaufmann Publishers.

[35] A. Baresel, D. W. Binkley, M. Harman, and B. Korel.

Evolutionary testing in the presence of loop–assigned

flags: A testability transformation approach. In

International Symposium on Software Testing and

Analysis (ISSTA 2004), pages 108–118, Omni Parker

House Hotel, Boston, Massachusetts, and July 2004.

Appears in Software Engineering Notes, Volume 29, and

Number 4.

[36] A. Baresel, H. Sthamer, and M. Schmidt. Fitness function

design to improve evolutionary structural testing. In

GECCO 2002: Proceedings of the Genetic and

Evolutionary Computation Conference, pages 1329–

1336, San Fran-12 cisco, CA 94104, USA, 9-13 July

2002. Morgan Kaufmann Publishers.

[37] L. Bottaci. Instrumenting programs with flag variables for

test data search by genetic algorithms. In GECCO2002:

Proceedings of the Genetic and Evolutionary

Computation Conference, pages 1337–1342, New York,

9-13 July2002. Morgan Kaufmann Publishers. Seattle,

Washington, USA, 8-12 July 2006. ACM Press.

[38] L. C. Briand, J. Feng, and Y. Labiche. Using genetic

algorithms and coupling measures to devise optimal

integration orders. In SEKE, pages 43–50, 2002.

[39] L. C. Briand, Y. Labiche, and M. Shousha. Stress testing

real-time systems with genetic algorithms. In Genetic

andEvolutionary Computation Conference, GECCO

2005, Proceedings, Washington DC, USA, June 25-29,

2005, pages 1021–1028. ACM, 2005.

[40] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian.

Constructing multiple unique input/output sequences

using evolutionary Optimization techniques. IEE

Proceedings — Software, 152(3):127–140, 2005.

[41] M. Harman, L. Hu, R. M. Hierons, J. Wegener, H.

Sthamer, A. Baresel, and M. Roper. Testability

transformation. IEEETransactions on Software

Engineering, 30(1):3–16, Jan.2004.

[42] Z. Li, M. Harman, and R. Hierons. Meta-heuristic search

algorithms for regression test case prioritization. IEEE

Transactions on Software Engineering. To appear.

[43] P. McMinn, M. Harman, D. Binkley, and P. Tonella. The

species per path approach to search-based test data

generation.In International Symposium on Software

Testing and Analysis (ISSTA 06), pages 13–24, Portland,

Maine, USA. 2006.

[44] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test

environment for automatic structural testing.

Informationand Software Technology Special Issue on

Software Engineering using Metaheuristic Innovative

Algorithms,43(14):841–854, 2001.

[45] S. Bouktif, G. Antoniol, E. Merlo, and M. Neteler. A

novel approach to optimize clone refactoring activity. In

GECCO 2006: Proceedings of the 8th annual conference

on Genetic and evolutionary computation, volume 2,

pages 1885–1892,Seattle, Washington, USA, 8-12 July

2006. ACM Press.

[46] D. Fatiregun, M. Harman, and R. Hierons. Search-based

amorphous slicing. In 12th International Working

Conference on Reverse Engineering (WCRE 05), pages

3–12, Carnegie Mellon University, Pittsburgh,

Pennsylvania, USA, and Nov. 2005.

[47] M. Harman, R. Hierons, and M. Proctor. A new

representation and crossover operator for search-based

optimization of software modularization. In GECCO

2002: Proceedings of the Genetic and Evolutionary

Computation Conference, pages 1351–1358, San

Francisco, CA 94104, USA, 9-13 July 2002. Morgan

Kaufmann Publishers.

[48] B. S. Mitchell and S. Mancoridis. Using heuristic search

techniques to extract design abstractions from source

code. In GECCO 2002: Proceedings of the Genetic and

Evolutionary Computation Conference, pages 1375–

1382, San Francisco, CA 94104, USA, 9-13 July 2002.

Morgan Kaufmann Publishers.

[49] B. S. Mitchell and S. Mancoridis. On the automatic

modularization of software systems using the bunch

tool.IEEE Transactions on Software Engineering,

32(3):193–208, 2006.

[50] M. O‘Keeffe and M. O‘Cinneide. Search-based software

maintenance. In Conference on Software Maintenance

Madhu Kumari
1
, IJECS Volume 3 Issue 4 April, 2014 Page No.5288-5297 Page 5297

and Reengineering (CSMR‘06), pages 249–260, Mar.

2006.

[51] O. Seng, M. Bauer, M. Biehl, and G. Pache. Search based

improvement of subsystem decompositions. In H.-G.

Beyer and U.-M. O‘Reilly, editors, Genetic and

Evolutionary Computation Conference, GECCO 2005,

Proceedings,Washington DC, USA, June 25-29, 2005,

pages 1045–1051.ACM, 2005.

[52]O. Seng, J. Stammel, and D. Burkhart. Search-based

determination of refactoring for improving the class

structure of Object-oriented systems. In GECCO 2006:

Proceedings of the 8th annual conference on Genetic and

evolutionary computation, volume 2, pages 1909–1916,

Seattle, Washington,USA, 8-12 July 2006. ACM Press.

[53] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani.

An approach for QoS-aware service composition based

on genetic algorithms. In H.-G. Beyer and U.-M.

O‘Reilly, editors, Genetic and Evolutionary Computation

Conference,GECCO 2005, Proceedings, Washington DC,

USA, June 25-29, 2005, pages 1069–1075. ACM, 2005.

[54] M. Cohen, S. B. Kooi, and W. Srisa-an. Clustering the

heap in multi-threaded applications for improved

garbagecollection. In GECCO 2006: Proceedings of the

8th annual conference on Genetic and evolutionary

computation, volume2, pages 1901–1908, Seattle,

Washington, USA, 8-12 July 2006. ACM Press.

[55] K. D. Cooper, P. J. Schielke, and D. Subramanian.

Optimizing for reduced code space using genetic

algorithms. In Proceedings of the ACMSigplan 1999

Workshop on Languages, Compilers and Tools for

Embedded Systems (LCTES‗99),volume 34.7 of ACM

Sigplan Notices, pages 1–9, NY, May 5 1999. ACM

Press.

[56] S. Bouktif, H. Sahraoui, and G. Antoniol. Simulated

annealing for improving software quality prediction. In

GECCO 2006: Proceedings of the 8th annual conference

on Genetic and evolutionary computation, volume 2,

pages 1893–1900,Seattle, Washington, USA, 8-12 July

2006. ACM Press.

[57] T.M. Khoshgoftaar, L. Yi, and N. Seliya. A

multiobjective module-order model for software quality

enhancement.IEEE Transactions on Evolutionary

Computation, 8(6):593– 608, December 2004.

[58] H. H. Ammar, W. Abdelmoez, and M. S.

Hamdi,"Software Engineering Using Artificial

Intelligence Techniques: Current State and Open

Problems", Proceedings of the First Taibah University

International Conference on Computing and Information

Technology (ICCIT 2012), Al-Madinah Al-Munawwarah,

Saudi Arabia, 12-14 March 2012.

[59] Jonathan onowakpo goddey ebbah, deploying Artificial

intelligence technique in Software engineering, American

Journal of Undergraduate Research, VOL. 1 NO. 1,

Department of Computer Science, University of Ibadan,

Nigeria, Page: 19-24, 2002.

[60] Jain Prince, Interaction between Software Engineering

and Artificial Intelligence- A Review , International

Journal on Computer Science & Engineering; December

2011, Vol. 3 Issue 12, p3774.

[61] Raza, Farah Naaz, Artificial Intelligence Techniques in

Software Engineering (AITSE), International Multi

Conference of Engineers & Computer Scientists; January

2009, p1086 .

[62] Roger S. Pressman, Software Engineering: A Beginner‘s

Guide (McGraw Hill Higher education Publishers, New

York,New York, USA) 1988. [63]M.L. Emrich, A.Robert

Sadlowe, and F. Lloyd Arrowood (Editors), Expert

Systems And Advanced Data Processing: Proceedings of

the conference on Expert Systems Technology the ADP

Environment (Elsevier-North Holland, New York,USA)

1988.

[64] Shari Lawrence Pfleeger, Software Engineering: theory

and Practice (Prentice Hall Publishers, Upper Saddle

River, New Jersey, USA) 1998. [65]Harman Mark, The

Role of Artificial Intelligence in Software Engineering,

CREST Centre, University College London, Malet Place,

London, WC1E 6BT, UK.

[66] Yadav Nikita, Sujata Khatri ,Singh VB, Developing an

Intelligent cloud for Higher Education, ACM SIGSOFT

Software Engineering Notes, Volume 39 Issue 1, January

2014,Pages 1-5, ACM New York, NY, USA

[67] Yadav Nikita, Singh V B, Kumari Madhu, Generalized

Reliability Model for Cloud Computing, International

Journal of Computer Applications (0975 – 8887) Volume

88 – No.14, February 2014

[68] Thanadesh Thanakornworakij, Raja F. Nassar, Chokchai

Leangsuksun, and Mihaela Păun: A Reliability Model for

Cloud Computing for High Performance Computing

Applications. In Springer-Verlag Berlin Heidelberg 2013,

Euro-Par 2012 Workshops, LNCS 7640, pp. 474–483,

2013.

[69] Sujata Khatri, R.S.Chhillar, V.B.Singh: Measuring Bug

Complexity in Object Oriented Software System. In ACM

SIGSOFT Software Engineering Notes, volume 36 Issue

6, November 2011, pages 1-8.

[70] Dai, Y.S., Yang, B., Dongarra, J., Zhang, G.: Cloud

Service Reliability: Modeling and Analysis. In: The 15th

IEEE Pacific Rim International Symposium on

Dependable Com- puting (2009).

