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Abstract: In this paper a finite element method involving Petrov-Galerkin method with quintic B-splines as basis functions and septic B-

splines as weight functions has been developed to solve a general eighth order boundary value problem with a particular case of boundary 

conditions. The basis functions are redefined into a new set of basis functions which vanish on the boundary where the Dirichlet, the 

Neumann and second order type of boundary conditions are prescribed. The weight functions are also redefined into a new set of weight 

functions which in number match with the number of redefined basis functions. The proposed method was applied to solve several examples 

of eighth order linear and nonlinear boundary value problems. The obtained numerical results were found to be in good agreement with the 

exact solutions available in the literature. 
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1. Introduction  

In this paper, we consider a general eighth order boundary 

value problem 
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where A0, C0, A1, C1,  A2, C2, A3, C3   are finite  real 

constants and a0(x), a1(x), a2(x), a3(x), a4(x), a5(x), a6(x), 

a7(x), a8(x) and b(x)  are all continuous functions defined 

on the interval [c, d].  

The literature on the numerical solutions of eighth-order 

boundary value problems and associated eigenvalue problems 

is very scarce. Chandrasekhar [1] reported that when an infinite 

horizontal layer of fluid is heated from below and is under the 

action of rotation, instability sets in. When this instability is 

ordinary convection the ordinary differential equation is sixth 

order and when the instability sets in as overstability, it is 

modelled by an eighth-order ordinary differential equation. The 

existence and uniqueness of the solution for these types of 

problems have been discussed in Agarwal [2]. Finding the 

analytical solutions of such type of boundary value problems in 

general is not possible. Over the years, many researchers have 

worked on eighth order boundary value problems by using 

different methods for numerical solutions. Boutayed and 

Twizell [3] developed a family of finite difference methods for 

the solution of special nonlinear eighth order boundary value 

problems by writing the eighth order differential equation as a 

system of four second order differential equations. Siddiqi and 

Twizell [4] presented the solution of a special case of linear 

eighth order boundary value problems by using sextic spline 

functions. Rashidinia et al. [5] developed non-polynomial 

spline techniques to solve a special case of linear eighth order 

boundary value problems. Liu and Wu [6] developed 

Differential quadrature solutions of a special case of linear 

eighth order boundary value problems. Ghazala and Siddiqi [7] 

presented the solution of a special case of linear eighth order 

boundary value problems by using nonic spline functions. 

Golbabai and Javidi [8] presented homotopy perturbation 

method for the solution eighth order boundary value problems.  

Mladen [9] presented the solution of a special case of eighth 

order boundary value problems by using a modified Adomian 

decomposition method. Noor and Sayed [10] developed the 

variational iteration decomposition method to solve a special 

case of linear eighth order boundary value problems. Haq et al. 

[11] presented the optimal homotopy asymptotic method for 

the solution of eighth order boundary value problems. kasi 

viswanadham and Showri raju [12] developed  quintic B-spline 

collocation  method are used to solve a general eighth order 

boundary value problems. Costabile and Napoli [13] presented 

the solution of eighth order boundary value problems with 

Bernoulli boundary conditions by using collocation method. 

Ghazala and Rehman [14] developed the solution of eighth 

order boundary value problems by using reproducing kernel 

space method and also they investigated searching least value 

method for eighth order nonlinear boundary value problems. 

Kasi Viswanadham and Sreenivasulu [15] developed the 

quintic B-spline Galerkin method to solve a general eighth 

order boundary value problem. So far, eighth order boundary 

value problems have not been solved by using Petrov-Galerkin 

method with quintic B-splines as basis functions and septic B-

splines as weight functions. This motivated us to solve a eighth 

order boundary value problem by Pertrov-Galerkin method 

with quintic B-splines as basis functions and septic B-splines as 

weight functions. 
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In this paper, we try to present a simple finite element method 

which involves Petrov-Gelerkin approach with quintic            

B-splines as basis functions and septic B-splines as weight 

functions to solve the eighth order boundary value problem of 

the type (1)-(2). This paper is organized as follows. Section 2, 

deals with the justification for using Petrov-Galerkin Method. 

In section 3, the definition of quintic B-splines and septic       

B-splines has been described. In section 4, description of the 

Petrov-Galerkin method with quintic B-splines as basis 

functions and septic B-splines as weight functions has been 

presented and in section 5, solution procedure to find the nodal 

parameters is presented. In section 6, the proposed method is 

tested on several linear and nonlinear boundary value 

problems. The solution to a nonlinear problem has been 

obtained as the limit of a sequence of solution of linear 

problems generated by the quasilinearization technique [16]. 

Finally, in the last section, the conclusions are presented. 

2. Justification for using Petrov-Galerkin 

method 

In Finite Element Method (FEM) the approximate solution can 

be written as a linear combination of basis functions which 

constitute a basis for the approximation space under 

consideration. FEM involves variational methods like Rayleigh 

Ritz method, Galerkin method, Least Squares method, Petrov-

Galerkin method and Collocation method etc. In Petrov-

Galerkin method, the residual of approximation is made 

orthogonal to the weight functions. When we use Petrov-

Galerkin method, a weak form of approximation solution for a 

given differential equation exists and is unique under 

appropriate conditions [17, 18] irrespective of properties of a 

given differential operator. Further, a weak solution also tends 

to a classical solution of given differential equation, provided 

sufficient attention is given to the boundary conditions [19]. 

That means the basis functions should vanish on the boundary 

where the Dirichlet type of boundary conditions are prescribed 

and also the number of weight functions should match with the 

number of basis functions. Hence in this paper we employed 

the use of Petrov-Galerkin method with quintic B-splines as 

basis functions and septic B-splines as weight functions to 

approximate the solution of eighth order boundary value 

problem. 

 

 

3. Definition of quintic B-spline and  

Septic B-spline 
 

The quintic B-splines  and septic B-splines are defined in [20]-

[22]. The existence of quintic spline interpolate s(x) to a 

function in a closed interval [c, d] for spaced knots (need not 

be evenly spaced) of a partition c = x0 < x1 <…< xn-1 < xn= d     

is established by constructing it. The construction of s(x) is 

done with the help of the quintic B-splines. Introduce ten 

additional knots  x-5, x-4, x-3, x-2, x-1, xn+1, xn+2, xn+3, xn+4 and xn+5 

in such a way that  

x-5<x-4<x-3<x-2<x-1<x0   and   xn<xn+1<xn+2<xn+3<xn+4< xn+5. 

Now the quintic  B-splines sxBi )'(  are defined by 
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where {B-2(x), B-1(x), B0(x), B1(x),…,Bn(x), Bn+1(x), Bn+2(x)} 

forms a basis for the space 5( )s   of quintic polynomial 

splines. Schoenberg [22] has proved that quintic B-splines are 

the unique nonzero splines of smallest compact support with 

the knots at            

 x-5<x-4<x-3<x-2<x-1<x0<x1<…<xn-1<xn<xn+1<xn+2<xn+3 

<xn+4< xn+5.     

In a similar analogue septic B-splines Ri(x)'s are defined by 
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where { S-3(x), S-2(x), S-1(x), S0(x), S1(x),…, Sn-1(x), Sn(x), 

Sn+1(x),Sn+2(x), Sn+3(x)} forms a basis for the space 7 ( )s   of 

septic polynomial splines with the introduction of four more 

additional knots 
7 6 6 7, , ,n nx x x x   

 to the already existing knots 

5x  to 
5nx 
. Schoenberg [22] has proved that septic B-splines 

are the unique nonzero splines of smallest compact support 

with the knots at 

x-7< x-6<x-5<x-4<x-3<x-2<x-1<x0<x1<… 

<xn-1<xn<xn+1<xn+2<xn+3<xn+4<xn+5< xn+6< xn+7. 

 

4. Description of the method 

 
To solve the boundary value problem (1) subject to boundary 

conditions (2) by the Petrov-Galerkin method with quintic B-

splines as basis functions and septic B-splines as weight 

functions, we define the approximation for ( )y x  as 

2

2

( ) ( )
n

j j

j

y x B x




                                                             (3) 

where ,

j s  are the nodal parameters to be determined and 

( ) 'jB x s are quintic B-spline basis functions. In Petrov-

Galerkin method, the basis functions should vanish on the 

boundary where the Dirichlet type of boundary conditions are 

specified. In the set of quintic B-splines {B-2(x), B-1(x), 

B0(x),…, Bn(x), Bn+1(x), Bn+2(x)}, the basis functions B-2(x),     

B-1(x), B0(x), B1(x), B2(x), Bn-2(x),   Bn-1(x), Bn(x), Bn+1(x)  and 

Bn+2(x) do not vanish at one of the boundary points. So, there is 

a necessity of redefining the basis functions into a new set of 

basis functions which vanish on the boundary where the 

Dirichlet type of boundary conditions are specified. The 

procedure for redefining of the basis functions is as follows. 
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Using the definition of quintic B-splines, the Dirichlet,  

Neumann and second order derivative boundary conditions  of 

(2), we get the approximate solution at the boundary points as     
2
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equations (3) to (9), we get 
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The new set of basis functions in the approximation y(x) is 

{Sj(x), j=1,2,…,n-1}. Here w(x) takes care of given set of 

Dirichlet, Neumann and second order derivative type of 

boundary conditions and Sj(x)'s and its first and second order 

derivatives vanish on the boundary. In Petrov-Galerkin method, 

the number of basis functions in the approximation should 

match with the number of weight functions. Here the number of 

basis functions in the approximation for y(x) defined in (10) is 

n-1, where as the number of weight functions is n+7. So, there 

is a need to redefine the weight functions into a new set of 

weight functions which in number match with the number of 

basis functions. The procedure for redefining the weight 

functions is as follows: 
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where Sj(x)'s are septic B-splines and here we assume that 

above approximation v(x) satisfies corresponding homogeneous 

boundary conditions of the given boundary conditions of (2). 
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Now the new set of weight functions for the approximation v(x) 

is { ˆ ( )jV x , j=1, 2,…,n-1}. Here ˆ ( )jV x 's and its first, second 

and third order derivatives vanish on the boundary.  

  

Applying the Petrov-Galerkin method to (1) with the new set of 

basis functions {Rj(x), j=1,2,…,n-1} and with the new set of 

weight functions { ˆ ( )jV x , j=1,2,…,n-1}, we get 
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ˆ( ) ( ) (

[

for   i 1,  2, ,  n-

) ( ) ( ) ( ) ( ) ( )] ( )

ˆ( ) 1( .)

n

n

x

x

i

x

i

x

a x y x a x y x a x y x a x y x a x y x

a x y x a x y x a x y x a x y x V x dx

b x V x dx

   

   

 

 





  (32)

                                                                      

Integrating by parts the first three terms on the left hand side of 

(32) and after applying the boundary conditions prescribed in 

(2), we get  

 

0

0

0

4
(8)

0 04

4 5

0 04

3

3 5

ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( )

[ ]

[ ] [ ]

n

n

n

x

i i x

x

x

i x i

x

d
a x y x V x dx a x V x C

dx

d d
a x V x A a x V x y x dx

dx dx



 





  (33) 

 

0 0

4

4

(7)

1 1
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )[ ]

n nx x

i i

x x

d
a x y x V x dx a x V x y x dx

dx
       (34) 

 

0 0

4

4

(6)

2 2
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )[ ]

n nx x

i i

x x

d
a x y x V x dx a x V x y x dx

dx
      (35) 

0 0

4

3 34

(5) ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )[ ]
n nx x

i i

x x

d
a x y x V x dx a x V x y x dx

dx
      (36) 

  

 Substituting (33), (34), (35) and (36)   in (32) and using the 

approximation for y(x) given in (10), and after rearranging the 

terms for resulting equations, we get a system of equations in 

the matrix form as 

                                                     A B                          (37)                                                                                                                     

where [ ];ijaA  

 

  

0

5
(4)

4 05

4

5 14

4

6 24

4

7 34

8

ˆ ˆ{ ( ) ( ) ( ) [ ( ) ( )

ˆ ˆ( ) ( )] ( ) [ ( ) ( )

ˆ ˆ( ) ( )] ( ) [ ( ) ( )

ˆ ˆ( ) ( )] ( ) [ ( ) ( )

ˆ( ) ( )] ( )}

nx

ij i j i
x

i j i

i j i

i j i

i j

d
a a x V x R x a x V x

dx

d
a x V x R x a x V x

dx

d
a x V x R x a x V x

dx

d
a x V x R x a x V x

dx

a x V x R x dx

   
 

  
 

  
 

   
 





                                                                                                                                         

                               for  i= 1, 2,…, n-1;  j=1, 2,…, n-1.        (38) 

      

  

[ ];ibB

0

(4)

4

5

0 55

4

1 64

4

2 74

4

3 84

ˆ ˆ{ ( ) ( ) ( ) ( ) ( )

ˆ ˆ[ ( ) ( ) ( ) ( )] ( )

ˆ ˆ[ ( ) ( ) ( ) ( )] ( )

ˆ ˆ[ ( ) ( ) ( ) ( )] ( )

ˆ ˆ[ ( ) ( ) ( ) ( )] (

nx

i i i
x

i i

i i

i i

i i

b b x V x a x V x w x

d
a x V x a x V x w x

dx

d
a x V x a x V x w x

dx

d
a x V x a x V x w x

dx

d
a x V x a x V x w x

dx

 

    
 

   
 

  
 

  
 



0

4 4

0 3 0 34 4
ˆ ˆ( ) ( ) ( ) ( )

)}

n

i i
x x

d d
a x V x C a x V x A

dx d

dx

x
    
   

          

                                                 for i=1, 2, ....., n-1.               (39) 

 and 11 2 .[ ]T

n               

 

5. Solution procedure to find the nodal  parameters 

 

A typical integral element in the matrix A  is 

1

0

n

m

m

I




  

where 1

( ) ( ) ( )
m

m

x

m i j
x

I xv r x Z x dx


   and ( )jr x  are the quintic B-

spline basis functions or their derivatives. ( )iv x  are the septic 

B-spline weight functions or their derivatives. It may be noted 

that 0mI   if  
4 4 3 3 1( , ) ( , ) ( , )i i j j m mx x x x x x       .  

To evaluate each mI , we employed 7-point Gauss-Legendre 

quadrature formula. Thus the stiffness matrix A  is a thirteen 

diagonal band matrix. The nodal parameter vector   has been 

obtained from the system  A B   using the band matrix 

solution package. We have used the FORTRAN-90 program to 

solve the boundary value problems (1) - (2) by the proposed 
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method. 

 

6. Numerical results 

 

To demonstrate the applicability of the proposed method for 

solving the tenth order boundary value problems of the type (1) 

and (2), we considered three linear and three nonlinear 

boundary value problems. The obtained numerical results for 

each problem are presented in tabular forms and compared with 

the exact solutions available in the literature. 

 

Example 1: Consider the linear boundary value problem 
(8) (7) (6) (5) (4)2 2 2 2 2

14 16 4 , 0 1

y y y y y y y y y

cosx sinx xsinx x

         

    
   (40) 

subject to  

(0) 0, (1) 0, (0) 1, (1) 2 1,

(0) 0, (1) 4 1 2 1,

(0) 7, (1) 6 1 6 1.

y y y y sin

y y cos sin

y y cos sin

     

   

   

 

The exact solution for the above problem is 
2( 1) .y x sinx   

The proposed method is tested on this problem where the   

domain [0, 1] is divided into 10 equal subintervals. The 

obtained numerical results for this problem are given in Table 

1. The maximum absolute error obtained by the proposed 

method is 8.851290x10
-6

. 

                                                     

                 Table 1: Numerical results for Example 1 

x 
Absolute error by the   

  proposed method 

0.1 3.352761E-07 

0.2 1.594424E-06 

0.3 4.053116E-06 

0.4 7.301569E-06 

0.5 8.851290E-06 

0.6 8.255243E-06 

0.7 6.288290E-06 

0.8 3.635883E-06 

0.9 1.430511E-06 

Example 2: Consider the linear boundary value problem 
(8) 3(48 15 ) , 0 1xy xy x x e x                       (41) 

subject to  

(0) 0, (1) 0, (0) 1, (1) , (0) 0,

(1) 4 , (0) 3, (1) 9 .

y y y y e y

y e y y e

       

       
 

The exact solution for the above problem is  (1 ) .xy x x e   

The proposed method is tested on this problem 

where the   domain [0, 1] is divided into 10 equal 

subintervals. The obtained numerical results for this 

problem are given in Table 2. The maximum 

absolute error obtained by the proposed method is 

7.569790x10
-6

.     
               Table 2: Numerical results for Example 2 

x 
Absolute error by the   

  proposed method 

0.1 3.129244E-07 

0.2 1.236796E-06 

0.3 2.861023E-06 

0.4 5.275011E-06 

0.5 6.824732E-06 

0.6 7.569790E-06 

0.7 7.301569E-06 

0.8 5.215406E-06 

0.9 2.399087E-06 

Example 3: Consider the linear boundary value problem 
(8) (5) 2 (4)

2

(1 )

(3 ) , 0 1x

y sinx y x y y

sinx x e x

   

    
                                 (42) 

 subject to  

(0) 1, (1) , (0) 1, (1) , (0) 1, (1) ,

(0) 1, (1) .

y y e y y e y y e

y y e

        

  
 

The exact solution for the above problem is .xy e  

The proposed method is tested on this problem where the   

domain [0, 1] is divided into 10 equal subintervals. The 

obtained numerical results for this problem are given in  Table 

3. The maximum absolute error obtained by the proposed 

method is 7.224083x10
-5

. 

                            
Table 3: Numerical results for Example 3 

x 
Absolute error by the   

  proposed method 

0.1 3.576279E-07 

0.2 9.417534E-06 

0.3 2.944469E-05 

0.4 5.006790E-05 

0.5 6.735325E-05 

0.6 7.224083E-05 

0.7 5.888939E-05 

0.8 3.433228E-05 

0.9 1.358986E-05 

 

Example 4: Consider the nonlinear boundary value problem 
1

(8) 8 2
8

2
7!( ), 0 1

(1 )

yy e x e
x

    


                  (43)                                                                                                         

subject to  
1 1 1

2 2 2

1 1 3

2 2 2

1
(0) 0, ( 1) , (0) 1, ( 1) ,

2

1
(0) 1, ( 1) , (0) 2, ( 1) 2 .

y y e y y e e

y y e y y e e
e





      

          

 

The exact solution for the above problem is (1 ).y ln x   

The nonlinear boundary value problem (43) is 

converted into a sequence of linear boundary value 

problems generated by quasilinearization technique 

[16] as  
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( ) ( )8(8)

( 1) ( 1) ( )

8

8! (8! 7!)

2.7!
, 0,1,2,...

(1 )

n ny y

n n ny e y e y

n
x

 

   

 


                   (44) 

 subject to  
1

2
( 1) ( 1) ( 1)

1 1

2 2
( 1) ( 1)

1 1 3

2 2 2
( 1) ( 1) ( 1)

1
(0) 0, ( 1) , (0) 1,

2

( 1) , (0) 1,

1
( 1) , (0) 2, ( 1) 2 .

n n n

n n

n n n

y y e y

y e e y

y e y y e e
e

  



 



  

   

    

       

 

Here ( 1)ny   is the ( 1)thn  approximation for ( ).y x   The 

domain 

1

2[0, 1]e   is divided into 10 equal subintervals and 

the proposed method is applied to the sequence of linear 

problems (44). The obtained numerical results for this problem 

are presented in Table 4. The maximum absolute error obtained 

by the proposed method is 7.897615x10
-6

. 

                                            
 Table 4: Numerical results for Example 4 

x 
Absolute error by the 

proposed method  

6.487213E-02 3.427267E-07 

1.297443E-01 4.097819E-07 

1.946164E-01 2.682209E-07 

2.594885E-01 1.415610E-06 

3.243607E-01 3.337860E-06 

3.892328E-01 5.841255E-06 

4.541049E-01 7.897615E-06 

4.541049E-01 4.798174E-06 

5.838492E-01 2.413988E-06 

 

Example 5: Consider the nonlinear boundary value problem 
(8) 2 3 , 0 1x x xy e y e e x                                   (45)          

subject to  
1 1

1 1

(0) 1, (1) , (0) 1, (1) ,

(0) 1, (1) , (0) 1, (1) .

y y e y y e

y y e y y e

 

 

      

        
 

The exact solution for the above problem is .xy e  

The nonlinear boundary value problem (45) is converted into a 

sequence of linear boundary value problems generated by 

quasilinearization technique [16] as 
(8) 2 3

( 1) ( ) ( 1) ( )2 0,1,2,...x x x x

n n n ny e y y e y e e n  

         (46) 

subject to   
1 1

( 1) ( 1) ( 1) ( 1)

1 1

( 1) ( 1) ( 1) ( 1)

(0) 1, (1) , (0) 1, (1) ,

(0) 1, (1) , (0) 1, (1) .

n n n n

n n n n

y y e y y e

y y e y y e

 

   

 

   

      

        
 

Here ( 1)ny   is the ( 1)thn  approximation for ( ).y x  The 

domain [0, 1] is divided into 10 equal subintervals and the 

proposed method is applied to the sequence of linear problems 

(46). The obtained numerical results for this problem are 

presented in Table 5. The maximum absolute error obtained by 

the proposed method is 8.761883x10
-6

. 

                           
             Table 5: Numerical results for Example 5 

x 
Absolute error by the   

  proposed method 

0.1 6.556511E-07 

0.2 9.536743E-07 

0.3 4.112720E-06 

0.4 6.735325E-06 

0.5 8.761883E-06 

0.6 8.404255E-06 

0.7 5.841255E-06 

0.8 2.950430E-06 

0.9 1.221895E-06 

 

Example 6: Consider the nonlinear boundary value problem 
(8) (1 ( )) , 0 1x xy siny y sin e e x                   (47) 

subject to 

(0) 1, (0) , (1) 1, (1) , (0) 1,

(1) , (0) 1, (1) .

y y e y y e y

y e y y e

      

    
 

The exact solution for the above problem is .xy e  

The nonlinear boundary value problem (47) is converted into a 

sequence of linear boundary value problems generated by 

quasilinearization technique [16] as 
(8)

( 1) ( ) ( 1) ( ) ( ) ( 1)

( ) ( ) ( )

( ) ( )

(1 ( )) ( ) , 0,1,2,...

n n n n n n

x x

n n n

y sin y y cos y y y

sin e e cos y y y n

  
  

   
(48) 

subject to 

( 1) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1)

(0) 1, (1) , (0) 1, (1) ,

(0) 1, (1) , (0) 1, (1) .

n n n n

n n n n

y y e y y e

y y e y y e

   

   

    

      
 

Here y(n+1) is the (n+1)
th

 approximation for y(x).  The domain 

[0, 1] is divided into 10 equal subintervals and the proposed 

method is applied to the sequence of linear problems (48) . The 

obtained numerical results for this problem are presented in 

Table 6. The maximum absolute error obtained by the 

proposed method is 1.931190x10
-5

. 

 

 

 

 

 

 

 
 Table 6: Numerical results for Example 6 

x 
Absolute error by the  

Proposed method 

  proposed method 

 
0.1 2.503395E-06 

0.2 8.940697E-06 

0.3 1.561642E-05 

0.4 1.823902E-05 

0.5 8.821487E-06 

0.6 7.510185E-06 

0.7 1.883507E-05 
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0.8 1.931190E-05 

0.9 1.168251E-05 

7. Conclusions 

In this paper, we have employed a Petrov-Galerkin method 

with quintic B-splines as basis functions and septic B-splines as 

weight functions to solve eighth order boundary value 

problems with special case of boundary conditions. The quintic 

B-spline basis set has been redefined into a new set of basis 

functions which vanish on the boundary where the Dirichlet, 

the Neumann and second order boundary conditions are 

prescribed. The septic B-splines are redefined into a new set of 

weight functions which in number match the number of 

redefined set of basis functions. The solution to a nonlinear 

problem has been obtained as the limit of a sequence of 

solution of linear problems generated by the quasilinearization 

technique [16]. The proposed method has been tested on three 

linear and three nonlinear eighth order boundary value 

problems. The numerical results obtained by the proposed 

method are in good agreement with the exact solutions 

available in the literature. The strength of the proposed method 

lies in its easy applicability, accurate and efficient to solve 

eighth order boundary value problems.  
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