
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 11 November, 2014 Page No. 9223-9226

Maheep Sharma, IJECS Volume 3 Issue 11 November 2014,Page No.9223-9226 Page 9223

A Service-oriented Architecture Based on Windows

Communication foundation for Health Monitoring and Tracking”
Maheep Sharma, Mrs. Pooja Sapra

WCTM, Farukhnagar,

Gurgaon,India

ABSTRACT
WCF (Windows Communication Foundation) developed by Microsoft, is an ideal SOA (Service-Oriented Architecture)

implementation platform. WCF is designed using service oriented architecture principles to support distributed computing where

services have remote consumers. SOA generally provides a way for consumers of services, such as web-based applications.SOA

is applied to build the web-based management system for Lifeline due to its flexibility and reusability. All services are

programmed on .NET. The results of test system which is constructed on .NET show that Lifeline is valuable for practice. The

services are deployed, discovered and consumed as a collection of endpoints. A WCF client connects to a WCF service via an

Endpoint. Web Services are applications that can be published, located, and invoked across the Internet. Web Services are

implemented by SOA .Web Services are applications that can be published, located, and invoked across the Internet. WCF

services provide better reliability and interoperability.

INTRODUCTION

INTRODUCTION OF SERVICE ORIENTED

ARCHITECTURE (SOA)

In Distributed Software Engineering, a Service-Oriented

Architecture (SOA) is a set of principles and methodologies

for designing and developing software in the form of inter

operable services. These services are well-defined business

functionalities that are built as software components

(discrete pieces of code and/or data structures) that can be

reused for different purposes. SOA design principles are

used during the phases of systems development and

integration.

SOA generally provides a way for consumers of services,

such as web-based applications, to be aware of available

SOA-based services. For example, several disparate

departments within a company may develop and deploy

SOA services in different implementation languages; their

respective clients will benefit from a well-defined interface

to access them. XML is often used for interfacing with SOA

services, though this is not required. SOA defines how to

integrate widely disparate applications for a Web-based

environment and uses multiple implementation platforms.

Rather than defining an API, SOA defines the interface in

terms of protocols and functionality. An endpoint is the

entry point for such a SOA implementation.

Service-orientation requires loose coupling of services with

operating systems and other technologies that underlie

applications. SOA separates functions into distinct units, or

services, which developers make accessible over a network

in order to allow users to combine and reuse them in the

production of applications. These services and their

corresponding consumers communicate with each other by

passing data in a well-defined, shared format, or by

coordinating an activity between two or more services.

A service-oriented architecture is a style of design that

guides all aspects of creating and using business services

throughout their life cycle. An SOA is also a way to define

and provision an infrastructure to allow different

applications to exchange data and participate in business

processes, regardless of the operating systems or

programming languages underlying those applications.

An SOA can be thought of as an approach to building

systems in which business services (i.e., the services that an

organization provides to clients, customers, citizens,

partners, employees, and other organizations) are the key

organizing principle used to align IT systems with the needs

of the business. Services are unassociated, loosely coupled

units of functionality that have no calls to each other

embedded in them. Each service implements one action,

such as filling out an online application for an account, or

viewing an online bank statement, or placing an online

booking or airline ticket order. Rather than services

embedding calls to each other in their source code, they use

defined protocols that describe how services pass and parse

messages using description metadata. Underlying and

enabling all of this requires metadata in sufficient detail to

describe not only the characteristics of these services, but

also the data that drives them. Programmers have made

extensive use of XML in SOA to structure data that they

wrap in a nearly exhaustive description-container.

Analogously, the Web Services Description Language

(WSDL) typically describes the services themselves, while

the SOAP protocol describes the communications protocols.

Whether these description languages are the best possible

for the job, and whether they will become/remain the

favorites in the future, remain open questions. As of 2008

SOA depends on data and services that are described by

metadata that should meet the following two criteria:

1. The metadata should come in a form that software

systems can use to configure dynamically by

discovery and incorporation of defined services,

and also to maintain coherence and integrity. For

example, metadata could be used by other

applications, like a catalogue, to perform auto

http://www.ijecs.in/
http://en.wikipedia.org/wiki/Loosely_coupled
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Metadata
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/SOAP_%28protocol%29

Maheep Sharma, IJECS Volume 3 Issue 11 November 2014,Page No.9223-9226 Page 9224

discovery of services without modifying the

functional contract of a service.

2. The metadata should come in a form that system

designers can understand and manage with a

reasonable expenditure of cost and effort.

SOA aims to allow users to string together fairly large

chunks of functionality to form ad hoc applications that are

built almost entirely from existing software services. The

larger the chunks, the fewer the interface points required to

implement any given set of functionality; however, very

large chunks of functionality may not prove sufficiently

granular for easy reuse. Each interface brings with it some

amount of processing overhead, so there is a performance

consideration in choosing the granularity of services. The

great promise of SOA suggests that the marginal cost of

creating the nth application is low, as all of the software

required already exists to satisfy the requirements of other

applications.

Each SOA building block can play one or both of two roles:

1. Service provider - The service provider creates a

web service and possibly publishes its interface and

access information to the service registry. Each

provider must decide which services to expose,

how to make trade-offs between security and easy

availability, how to price the services, or (if no

charges apply) how/whether to exploit them for

other value. The provider also has to decide what

category the service should be listed in for a given

broker service and what sort of trading partner

agreements are required to use the service. It

registers what services are available within it, and

lists all the potential service recipients. The

implementer of the broker then decides the scope of

the broker. Public brokers are available through the

Internet, while private brokers are only accessible

to a limited audience, for example, users of a

company intranet. Furthermore, the amount of the

offered information has to be decided. Some

brokers specialize in many listings. Others offer

high levels of trust in the listed services. Some

cover a broad landscape of services and others

focus within an industry. Some brokers catalog

other brokers. Depending on the business model,

brokers can attempt to maximize look-up requests,

number of listings or accuracy of the listings. The

Universal Description Discovery and Integration

(UDDI) specification defines a way to publish and

discover information about Web services. Other

service broker technologies include (for example)

EBXML(Electronic Business using extensible

Markup Language).

2. Service consumer - The service consumer or web

service client locates entries in the broker registry

using various find operations and then binds to the

service provider in order to invoke one of its web

services. Whichever service the service-consumers

need, they have to take it into the brokers, then bind

it with respective service and then use it. They can

access multiple services if the service provides

multiple services.

Characteristics of SOA

Service-oriented architectures have the following key

characteristics:

 SOA services have self-describing interfaces in

platform-independent XML documents. Web

Services Description Language (WSDL) is the

standard used to describe the services.

 SOA services communicate with messages

formally defined via XML Schema (also called

XSD). Communication among consumers and

providers or services typically happens in

heterogeneous environments, with little or no

knowledge about the provider. Messages between

services can be viewed as key business documents

processed in an enterprise.

 SOA services are maintained in the enterprise by a

registry that acts as a directory listing. Applications

can look up the services in the registry and invoke

the service. Universal Description, Definition, and

Integration (UDDI)is the standard used for service

registry.

 Each SOA service has a quality of service (QOS)

associated with it. Some of the key QOS elements

are security requirements, such as authentication

and authorization, reliable messaging, and policies

regarding who can invoke services.

Benefits of SOA

Some enterprise architects believe that SOA can help

businesses respond more quickly and more cost-effectively

to changing market conditions. This style of architecture

promotes reuse at the macro (service) level rather than

micro (classes) level. It can also simplify interconnection to

– and usage of – existing IT (legacy) assets.

With SOA, the idea is that an organization can look at a

problem holistically. A business has more overall control.

Theoretically there would not be a mass of developers using

whatever tool sets might please them. But rather there would

be a coding to a standard that is set within the business.

They can also develop enterprise-wide SOA that

encapsulates a business-oriented infrastructure. SOA has

also been illustrated as a highway system providing

efficiency for car drivers. The point being that if everyone

had a car, but there was no highway anywhere, things would

be limited and disorganized, in any attempt to get anywhere

quickly or efficiently

 Short-term benefits of implementation:

 Enhances reliability

 Reduces hardware acquisition costs

 Leverages existing development skills

 Accelerates movement to standards-based server

and application consolidation

 Provides a data bridge between incompatible

technologies

 Long-term benefits of implementation:

 Provides the ability to build composite applications

 Creates a self-healing infrastructure that reduces

management costs

 Provides truly real-time decision-making

applications

 Enables the compilation of a unified taxonomy of

information across an enterprise and its customer

and partners

 Benefits from the perspective of Business Value

 Ability to more quickly meet customer demands

 Lower costs associated with the acquisition and

maintenance of technology

http://en.wikipedia.org/wiki/Marginal_cost
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Business_model
http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration
http://en.wikipedia.org/wiki/EbXML
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_service
http://www.javaworld.com/javaworld/jw-06-2005/jw-0613-soa.html#resources
http://www.javaworld.com/javaworld/jw-06-2005/jw-0613-soa.html#resources
http://www.javaworld.com/javaworld/jw-06-2005/jw-0613-soa.html#resources
http://en.wikipedia.org/wiki/Enterprise_architect

Maheep Sharma, IJECS Volume 3 Issue 11 November 2014,Page No.9223-9226 Page 9225

 Management of business functionality closer to the

business units

 Leverages existing investments in technology

 Reduces reliance on expensive custom

development

FUTURE SCOPE

Glenn Block, a Windows Communication Foundation

(WCF) Program Manager, said during an online webinar

entitled “WCF, Evolving for the Web” that Microsoft’s

framework for building service-oriented applications is

going to be refactored radically, the new architecture being

centered around HTTP.

Block started the online session by summarizing the current

trends in the industry:

 a move to cloud-based computing

 a migration away from SOAP

 a shift towards browsers running on all sorts of devices

 an increase in the adoption of REST

 emerging standards like OAuth, WebSockets

 He mentioned that the current architecture of WCF is

largely based on SOAP as shown in this slide:

One of the key features of WCF is support for multiple

transports (HTTP, TCP, named-pipes) under the same

programming model. Unfortunately when it comes to HTTP,

a lot of HTTP goodness (scale, content negotiation) is lost

because WCF treats it as a transport. So Block is looking

forward to see WCF supporting HTTP as a first class

application protocol with simple and flexible programming

model as depicted on the following slide:

HTTP was introduced in .NET 3.5, allowing the creation of

services accessed via HTTP, but “it does not give access to

everything HTTP has to offer, and it is a very flat model,

RPC oriented, whereas the Web is not. The Web is a very

rich set of resources,” according to Block. Instead of

retrofitting the current WCF to work over HTTP, Block

considers WCF should be re-architected with HTTP in mind

using a RESTful approach.

WCF will contain helper APIs for pre-processing HTTP

requests or responses, doing all the parsing and

manipulation of arguments, encapsulating the HTTP

information in objects that can be later transferred for

further processing. This will relieve the user from dealing

with HTTP internals directly if he wants to. This feature will

also present a plug-in capability for media-type formatters of

data formats like JSON, Atom, OData, etc. WCF will

support some of them out of the box, but the user will be

able to add his own formatters.

The new WCF is already being built, Block demoing sample

code using it, but he mentioned that the feature set and what

WCF is going to look like is not set in stone. They will

publish an initial version of the framework on CodePlex in

the near future for the community to be able to test and

react, shaping the future of WCF. More details are to come

during PDC 2010.

Update

Maheep Sharma, IJECS Volume 3 Issue 11 November 2014,Page No.9223-9226 Page 9226

CONCLUSION

We asked Glenn Block what it is going to happen to the

other protocols, especially SOAP. His answer was that WCF

is going to fully support the existing stack, and the current

development is meant to evolve WCF to fully support HTTP

without renouncing to anything WCF has so far.

A WCF Community website is now set up on CodePlex for

all those interested in the evolution of WCF.

Glenn Block presented a more detailed view on the future of

WCF and how it relates to current investments in

Microsoft's SOA technology at PDC 2010.

REFERENCES

[1] Andrew Troelsen, Pro C# 2008 and the .NET 3.5

Platform, 2006, vol 2, pp.802-803.

[2] Adjuncts,Web Services Description Language,2006, vol

3, pp 8

[3] Adjuncts ,Web Services Description Language (WSDL)

,2006, vol 2, pp.72

[4] Bell, Michael (2008). "Introduction to Service-Oriented

Modeling".Service-Oriented Modeling: Service Analysis,

Design, and Architecture, 2009, vol 2, pp. 3

[5] Brayan Zimmerli, Business Benefits of SOA, 2009, vol

3, pp.66

[6] Beaglehole R, Dal Poz MR: Public health workforce:

Challenges and policy issues.

 Human Resources for Health 2003, 1-4

[7] Bell_, Michael , SOA Modeling Patterns for Service-

Oriented Discovery and Analysis, 2010,vol 5, pp. 390

[8] Benslimane, Djamal; Schahram Dustdar, and Amit Sheth

, Services Mashups: The New Generation of Web

Applications, 2008, vol 4, pp.13-15

[9] Bowen crane,SOAP Version 1.2 Part 1: Messaging

Framework W3C, 2007, vol 1, pp.67

[9] Benoît Marchal, Uche Ogbuji, Tutorial: XML messaging

with SOAP,2008, vol 2,pp 5

[10] Chris Peiris and Dennis Mulder, Pro WCF: Practical

Microsoft SOA Implementation, 2010,vol 2, pp.4.

[11] Chris Peiris, Pro WCF:Microsoft SOA

Implementation, 2006, vol 1, pp.29.

[12] Channabasavaiah, Holley and Tuggle, Migrating to a

service-oriented architecture, 2008, vol 2, pp.125-127

[13] David Chappell, Chappell & Associates, Introducing

Windows Communication Foundation,2009. Vol 2, pp,105-

109

[14] Health practitioners' and health planners'

information needs and seeking behaviour for decision

making in Uganda. International Journal of Medical

Informatics 2005,714-721

[15] Jiang Jingnan, WCF Technical Analysis,2010, vol 2,

pp.482-504.

[16] John Sharp, Microsoft Windows Communication

Foundation Step by Step, Microsoft 2011,vol 1, pp.1-6.

[17] Justin Smith, Inside Microsoft Windows

Communication Foundation, Microsoft, 2007 , vol 1,pp.17.

[18] Microsoft, Microsoft2008, vol 5, pp 26-31, 72-77, 86,

222, 345.

[19] National Coalition on Health Care accessed in Oct.

2011.

[20] O'Reilly Media, Juval Löwy, Programming WCF

Services,2007, vol 2, pp.40-51.

[21] Olson, Mike, Ogbuji, Uche ,The Python Web services

developer: Messaging technologies compared ,2003, vol 1,

pp.333

[22] Pablo Cibraro, Kurt Claeys, Fabio Cozzolino, Johann

Grabner: Professional WCF 4: Windows Communication

Foundation with .NET 4, Wrox , 2010, vol 4, pp 56

[23] Radhakrishnan R ,Introduction to WCF

Programming,2008,vol 2, pp 45-48

[24] Scott Klein, Windows professional WCF , 2007, vol

1,pp.15.

[25] Steve Resnick, Richard Crane, Chris Bowen, Essential

Windows Communication Foundation (WCF): For .NET

Framework 3.5, 2008 , vol 2, pp.178

http://www-128.ibm.com/developerworks/library/ws-migratesoa/
http://www-128.ibm.com/developerworks/library/ws-migratesoa/

	B5

