
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 11 November, 2014 Page No. 9201-9204

Ms. Madhuri A. Kavade
1
, IJECS Volume 3 Issue 11 November, 2014,Page No.9201-9204 Page 9201

A Literature Survey On Secure De-Duplication

Using Convergent Encryption Key Management

Ms. Madhuri A. Kavade
1
, Prof. A.C.Lomte

2

1 Computer Department

JSPM’s BSIOTR,Pune

madhuri.kavade@gmail.com

2 Computer Department

JSPM’s BSIOTR,Pune

archanalomte@gmail.com

ABSTRACT: One vital challenge of today’s cloud storage services is the management of the ever-increasing quantity of data. To make data

management scalable, de-duplication has been a well-known technique to condense storage space and upload bandwidth in cloud storage.

Instead of keeping multiple data copies with the same content, de-duplication eliminates redundant data by keeping only one physical copy

and referring other redundant data to that copy.

 Now a day the most arising challenge is to perform secure de-duplication in cloud storage. Although convergent encryption has been

extensively adopted for secure de-duplication, a critical issue of making convergent encryption practical is to efficiently and reliably manage

a huge number of convergent keys. We first introduce a baseline approach in which each user holds an independent master key for

encrypting the convergent keys and outsourcing them to the cloud. However, such a baseline key management scheme generates an

enormous number of keys with the increasing number of users and requires users to dedicatedly protect the master keys which is inefficient

an unreliable. For that purpose we are going to formally address the problem of achieving efficient and reliable key management in secure

de-duplication. We propose Dekey, a new construction in which users do not need to manage any keys on their own but instead securely

distribute the convergent key shares across multiple servers.

Keywords: De-duplication, Convergent Keys

1. Introduction
 Cloud computing is getting more and more popular

as it can provide low-cost and on demand use of vast

storage and processing resources. With the explosive

growth of online digital contents, cloud storage focuses on

effectively coalescing storage resources for better power

utilization and cost effectiveness. As the volume of data

grows, also increasing is the Total Cost of Ownership

(TCO), which includes storage infrastructure cost,

management cost and human administration cost.

Therefore in cloud storage systems, reducing the amount

of data that need to be transferred, stored, and managed

becomes a crucial, and it also benefits for application

performance, storage costs and administrative overheads.

As a result, Data De-duplication is an important and

popular cost-saving feature for cloud storage. The term

data de-duplication refers to techniques that store only a

single copy of redundant data, and provide links to that

copy instead of storing other actual copies of this data.

With the transition of services from tape to disk, data de-

duplication has become a key component in the backup

process. By storing and transmitting only a single copy of

duplicate data, de-duplication offers savings of both disk

space and network bandwidth.

 In today’s cloud storage services one of the

significant challenges is the management of the ever-

increasing amount of data. According to the analysis

report of IDC, the amount of data is expected to reach 40

trillion gigabytes in 2020 [5]. With the continuous

increase of the number of users and the size of their data,

data de-duplication becomes more and more a necessity

for cloud storage providers. The simple idea behind de-

duplication is to store duplicate data (either files or

blocks) only once. Therefore, if a user wants to upload a

file (block) which is already stored, the cloud provider

will add the user to the owner list of that file (block). De-

duplication has proved to accomplish high space and cost

savings and many cloud storage providers are currently

adopting it. De-duplication is a illustrious technique to

reduce storage space and upload bandwidth and has been

used to make data management scalable.

 As an alternative of keeping numerous data copies

with the identical content, de-duplication eliminates

surplus data by keeping only one physical copy and

referring other surplus data to that copy. There are two

types of de-duplication one is file-level de-duplication and

http://www.ijecs.in/

Ms. Madhuri A. Kavade
1
, IJECS Volume 3 Issue 11 November, 2014,Page No.9201-9204 Page 9202

another is block-level de-duplication. Among that file-

level de-duplication refers to the whole file whereas block-

level de-duplication refers to the fixed or variable size data

block.

To make de-duplication secure we have to apply certain

security mechanism like encryption. Traditional encryption

requires different users to encrypt their data with their own

keys, so identical data copies of different users will lead to

different ciphertext and for this reason de-duplication is

incompatible with traditional encryption.

 Convergent encryption [4] provides a possible option

to implement data confidentiality while realizing de-

duplication. Convergent encryption, a cryptosystem that

produces indistinguishable ciphertext files from the same

plaintext files, irrespective of their encryption keys.It

encrypts/decrypts a data with a convergent key, which is

derived by computing the cryptographic hash value of the

content of the data copy itself [4]. After key generation and

data encryption, users retain the keys and send the

ciphertext to the cloud. Since encryption is deterministic,

identical data copies will generate the same convergent key

and the same ciphertext. This allows the cloud to perform

de-duplication on the ciphertexts. The ciphertexts can only

be decrypted by the corresponding data owners with their

convergent keys.

 We have two approaches baseline approach and

Dekey approach. By using baseline approach we can

understand how convergent encryption realizes de-

duplication. The original data copy is first encrypted with a

convergent key derived by the data copy itself, and the

convergent key is then encrypted by a master key that will

be kept locally and securely by each user. The encrypted

convergent keys are then stored, along with the

corresponding encrypted data copies, in cloud storage. The

master key can be used to recover the encrypted keys and

hence the encrypted files. In this way, each user only needs

to keep the master key and the metadata about the

outsourced data.

 There are two problems with baseline approach.

First, it is inefficient, because it generates enormous

number of keys with the increasing number of users. In

particular, each user must correlate an encrypted

convergent key with each block of its outsourced

encrypted data copies, so as to later on re-establish the

data copies. Although different users may share the same

data copies, they must have their own set of convergent

keys so that no other users can access their files. As a

result, the number of convergent keys being introduced

linearly balance with the number of blocks being stored

and the number of users.[1]

 Second, it is unreliable, it requires each user to

dedicatedly protect his own master key and if master key is

accidently lost, then user data can’t be recovered. To

avoid these problems we propose Dekey approach where

efficient and reliable key management is the main

motivation behind proposing Dekey approach.

2. Motivation
 With the potentially infinite storage space offered by

cloud providers, users tend to use as much space as

they can.

 The vendors constantly look for techniques aimed to

minimize redundant data and maximize space savings.

 So the technique which can give both of these features

must have to implement. This motivates us to

introduce a technique called data de-duplication.

 The simple idea behind de-duplication is to store

duplicate data (either files or blocks) only once.

Therefore, if a user wants to upload a file (block)

which is already stored, the cloud provider will add

the user to the owner list of that file (block).

 De-duplication has proved to achieve high space and

cost savings and many cloud storage providers are

currently adopting it.

 On the other hand, de-duplication introduces new

security risks. So there is need of secure de-

duplication.

3. Literature Survey
 Literature review is the process of presenting the

summary of the journal articles, conference papers and

study resources. So in this section we have studied the

related topics an summarized it below.

 According to the data granularity, de-duplication

strategies can be categorized into two main categories:

file-level de-duplication and block-level de-

duplication , which is nowadays the most common

strategy. In block-based de-duplication, the block size

can either be fixed or variable. Another categorization

criteria is the location at which de-duplication is

performed if data are de-duplicated at the client, then

it is called source-based de-duplication, otherwise

target-based.

 In source-based de-duplication, the client first

hashes each data segment he wishes to upload and

sends these results to the storage provider to check

whether such data are already stored: thus only ”not

de-duplicated” data segments will be actually

uploaded by the user. While de-duplication at the

client side can achieve bandwidth savings, it

unfortunately can make the system vulnerable to side-

channel attacks whereby attackers can immediately

discover whether a certain data is stored or not. On the

other hand, by de-duplicating data at the storage

provider, the system is protected against side-channel

attacks but such solution does not decrease the

communication overhead.

 Many people now store huge amount of personal

and corporate data on laptops or home computers.

These often have poor connectivity, and are

susceptible to theft or hardware failure. Conventional

backup solutions are not well suited to this

environment. So client-end per-user encryption is

necessary for confidential personal data. [2]

 The Farsite distributed file system provides

availability by replicating each file onto multiple

desktop computers. In the view of the fact that this

replication consumes considerable storage space, it is

essential to reclaim used space where possible.

Measurement of over 500 desktop file systems shows

Ms. Madhuri A. Kavade
1
, IJECS Volume 3 Issue 11 November, 2014,Page No.9201-9204 Page 9203

that nearly half of all consumed space is occupied by

duplicate files. So there is need to present a

mechanism to reclaim space from this incidental

duplication to make it available for controlled file

replication. Our mechanism includes convergent

encryption, which enables duplicate files to combine

into the space of a single file, even if the files are

encrypted with different users.[4]

 Cloud storage services commonly use de-

duplication, which eliminates redundant data by

storing only a single copy of each file or block. De-

duplication reduces the space and bandwidth

requirements of data storage services, and is most

effective when applied across multiple users, a

common practice by cloud storage offerings. In this

context they have demonstrated how de-duplication

can be used as a side channel which reveals

information about the contents of files of other users.

In a different scenario, de-duplication can be used as a

covert channel by which malicious software can

communicate with its control center, regardless of any

firewall settings at the attacked machine. Due to the

high savings offered by cross-user de-

duplication,cloud storage providers are unlikely to

stop using this technology. So they propose simple

mechanisms that enable cross-user de-duplication

while greatly reducing the risk of data leakage. [7]

 Throughout the past few years, a enormous

number of online file storage services have been

introduced. At the same time as several of these

services provide basic functionality such as uploading

and retrieving files by a specific user, more advanced

services offer features such as shared folders, real-

time association, and minimization of data transfers or

unrestricted storage space. Overviews of existing file

storage services and examine Dropbox, an advanced

file storage solution, in depth. Based on the results

they show that Dropbox is used to store copyright-

protected files from a popular file sharing network [8]

 Message-Locked Encryption (MLE), where the

key under which encryption and decryption are

performed is itself derived from the message. MLE

provides a way to achieve secure de-duplication, a

goal currently targeted by numerous cloud-storage

providers. MLE is a primitive of both practical and

theoretical concern. [3]

 Cloud storage systems are becoming

increasingly popular. A technology that keeps their

cost down is de-duplication, which stores only a single

copy of redundant data. Client-side de-duplication

attempts to recognize de-duplication opportunities

already at the client and save the bandwidth of

uploading copies of existing files to the server.

Attacks that exploit client-side de-duplication,

allowing an attacker to gain access to arbitrary-size

files of other users based on a very small hash

signatures of these files. More specifically, an attacker

who knows the hash signature of a file can convince

the storage service that it owns that file, hence the

server lets the attacker download the entire file. [6]

4. Primitives
 In this section, we formally define the

cryptographic primitives used in our secure de-

duplication.

4.1 Symmetric Encryption

Symmetric encryption uses a common secret

key k to encrypt and decrypt information. A symmetric

encryption scheme consists of three primitive functions:

 KeyGen→ k is the key generation algorithm that

generates k using security parameter.

 Encrypt(k,M) → C is the symmetric encryption

algorithm that takes the secret k and message M and

then outputs the ciphertext C.

 Decrypt(k,C)→ M is the symmetric decryption

algorithm that takes the secret and ciphertext C and

then outputs the original message M.

4.2 Convergent Encryption

 Convergent encryption provides data confidentiality

in de-duplication. A user (or data owner) derives a

convergent key from each original data copy and encrypts

the data copy with the convergent key.

The basic idea of convergent encryption (CE) is to

derive the encryption key from the hash of the plaintext.

The simplest implementation of convergent encryption can

be defined as follows:

 Alice derives the encryption key from her

message M such that K = H(M), where H is a

cryptographic hash function; she can encrypt the message

with this key, hence:

 C = E(K;M) = E(H(M);M), where E is a block

cipher.

By applying this technique, two users with two

identical plaintexts will obtain two identical ciphertexts

since the encryption key is the same; hence the cloud

storage provider will be able to perform de-duplication on

such ciphertexts. Furthermore, encryption keys are

generated, retained and protected by users. As the

encryption key is deterministically generated from the

plaintext, users do not have to interact with each other for

establishing an agreement on the key to encrypt a given

plaintext. Therefore, convergent encryption seems to be a

good candidate for the adoption of encryption and de-

duplication in the cloud storage domain. In addition, the

user derives a tag for the data copy, such that the tag will

be used to detect duplicates. A convergent encryption

scheme can be defined with four primitive functions:

 KeyGen(M) → K is the key generation algorithm that

maps a data copy M to a convergent key K

 Encrypt(K,M) → C is the symmetric encryption

algorithm that takes both the convergent key K and the

data copy M as inputs and then outputs a cipher text C

 Decrypt(K,C)→ M is the decryption algorithm that

takes both the cipher text C and the convergent key K

as inputs and then outputs the original data copy M

 TagGen(M) →T(M) is the tag generation algorithm

that maps the original data copyM and outputs a tag

Ms. Madhuri A. Kavade
1
, IJECS Volume 3 Issue 11 November, 2014,Page No.9201-9204 Page 9204

T(M). We allow TagGen to generate a tag from the

corresponding cipher text by using

T(M)=TagGen(C), where C=Encrypt(K,M).

5. System Model
The architecture includes three entities viz. the user, the

storage cloud service provider (S-CSP), and the key

management cloud service provider (KM-CSP). The task of

each is as given below:

 User: A user is an individual that wants to outsource

data storage to the S-CSP and access the data later.

The user is allowed to upload unique data. And he/she

don’t have any right to upload any duplicate data,

which may be owned by the same or different users.

 S-CSP: The S-CSP provides the data outsourcing

service and stores data on behalf of the users. The S-

CSP eliminates the storage of redundant data via de-

duplication and keeps only unique data to reduce the

storage cost.

 KM-CSP: A KM-CSP maintains convergent keys for

users. Each convergent key is distributed across

multiple KM-CSP to provide additional security. It

provides service to handle the key management.

6. Conclusion

 Baseline key management scheme generates an

enormous number of keys with the increasing number

of users and requires users to dedicatedly protect the

master keys. So we propose Dekey, an efficient and

reliable convergent key management scheme for

secure de-duplication. Dekey applies de-duplication

among convergent keys and distributes convergent key

shares across multiple key servers, while preserving

semantic security of convergent keys and

confidentiality of outsourced data.

References

[1] “Secure De-duplication with Efficient and Reliable

Convergent Key Management” Jin Li, Xiaofeng

Chen, Mingqiang Li, Jingwei Li, Patrick P.C. Lee,

and Wenjing Lou in IEEE Transactions On

Parallel And Distributed Systems, Vol. 25, No. 6,

June 2014
[2] P. Anderson and L. Zhang, ‘‘Fast and Secure

Laptop Backups with Encrypted De-Duplication,’’

in Proc. USENIX LISA, 2010, pp. 1-8.

[3] M. Bellare, S. Keelveedhi, and T. Ristenpart,

‘‘Message-Locked Encryption and Secure De-

duplication,’’ in Proc. IACR Cryptology ePrint

Archive, 2012, pp. 296-3122012:631.

[4] J.R. Douceur, A. Adya, W.J. Bolosky, D. Simon,

and M. Theimer, ‘‘Reclaiming Space from

Duplicate Files in a Serverless Distributed File

System,’’ in Proc. ICDCS, 2002, pp. 617-624.

[5] J. Gantz and D. Reinsel, The Digital Universe in

2020: Big Data,Bigger Digital Shadows, Biggest

Growth in the Far East,

Dec.2012[Online]Available:

http://www.emc.com/collateral/analystreports/idc-

the-digital-universe-in-2020.pdf.
[6] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-

Peleg,‘‘Proofs of Ownership in Remote Storage

Systems,’’ in Proc. ACM Conf. Comput. Commun.

Security, Y. Chen, G. Danezis, and V. Shmatikov,

Eds., 2011, pp. 491-500.

[7] D. Harnik, B. Pinkas, and A. Shulman-Peleg,

‘‘Side Channels in Cloud Services: De-duplication

in Cloud Storage,’’ IEEE Security Privacy, vol. 8,

no. 6, pp. 40-47, Nov./Dec. 2010.

[8] M. Mulazzani, S. Schrittwieser, M. Leithner, M.

Huber, and E. Weippl, ‘‘Dark Clouds on the

Horizon: Using Cloud Storage as Attack Vector

and Online Slack Space,’’ in Proc. USENIX

Security, 2011, p. 5.

http://www.emc.com/collateral/analystreports/idc-the-digital-universe-in-2020.pdf
http://www.emc.com/collateral/analystreports/idc-the-digital-universe-in-2020.pdf

	PointTmp

