
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 6 Issue 2 Feb. 2017, Page No. 20196-20201

Index Copernicus Value (2015): 58.10, DOI: 10.18535/ijecs/v6i2.05

Mrs. R.Hemalatha, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20196-20201 Page 20196

A Unified Framework for Both Graph and Pattern Matching Using IPaM-

WAG

Mrs. R.Hemalatha
1
, Ms.M.Aarthi

2

Associate professor & Head, Department of Computer Science,

Tiruppur Kumaran College for Women, Tiruppur, Tamil Nadu.

Research Scholar, Department of Computer Science,

Tiruppur Kumaran College for Women, Tiruppur, Tamil Nadu.

Abstract: In general the matter of finding sub graphs that best match a user’s query on weighted Attributed Graphs (wags) is an

open research area. There is a tendency to outline a WAG as a graph where every nodes exhibit multiple attributes with varied,

non-negative weights. An example of a WAG could be a coauthor ship network, wherever every author has multiple attributes,

every such as a specific topic (e.g., databases, data processing, and machine learning), and therefore the quantity of experience in

a very specific topic is delineate by a non-negative weight on it attribute. A typical user query during this setting specifies each

property patterns between query nodes and constraints on attribute weights of the query nodes. A ranking perform that unifies the

matching on attribute weights over the nodes and on the graph structure is proposed. To prove that the matter of retrieving the best

match for such queries is complete. Moreover, there is a tendency to propose a quick and effective top-k pattern matching

algorithm and top-k graph search algorithm for weighted attributed graphs. In an intensive experimental study with multiple real-

world datasets, the projected algorithm exhibits important speed-up over competitive approaches. On average, projected technique

is quicker in query process than the strongest competitive technique.

Keywords: Weighted Attribute Graph, Graph Search, Top-K

Algorithms, Index based Pattern Matching (IPaM)

1. INTRODUCTION

 Graphs offer a natural method for representing entities that

are ―connected‖—e.g., individuals connected by their co-

authorship relationships. A graph is commonly denoted by G =

(V, E), where every V is a set of nodes or vertices and E is a

set of links or edges.

 Given a graph G, a long-standing downside of interest

has been to search out patterns that match user queries—e.g.,

notice all triangles in an exceedingly graph. An extension of

the first pattern-matching downside is to seem at graphs

wherever nodes have one attribute [1, 2]. For instance, given a

co-authorship graph wherever every node contains the first

experience of an author, notice matches to a triangle question

wherever the three nodes (in the triangle) square measure

specialists in databases, data processing, and machine learning,

severally. To have an interest within the additional general

downside of pattern-matching on graphs wherever (1) nodes

have multiple attributes (for example. An author having

multiple expertise) and (2) the node attributes have non-

negative weights related to them (e.g., an author has varied

degrees of experience across totally different topics).

 IPaM-WAG will simply be extended to alternative

cases, e.g., per-attribute standardization wherever the total of

the weights for every attribute is one across all nodes. Figure

one depicts an example WAG and pattern-query. A good style

of world applications are naturally modeled as wags, multiple

experience with varied degrees specified from co-authorship

networks with author-nodes, to IP communication networks

with IP-nodes having multiple functionalities (such as DNS

server, Web server, and P2P client) with varied degrees. Vary

queries are versatile, where a weighted-attribute will be in an

exceedingly vary of values (see top of Figure 1b).

(a) A Part Made DBLP Co-Authorship Network

WAG Query

(b) A Question Over The DBLP Co-Authorship Network

And Top-3 Results Came Back By IPam

DOI: 10.18535/ijecs/v6i2.05

Mrs. R.Hemalatha, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20196-20201 Page 20197

Figure 1: Example: The DBLP Co-Authorship Network

May Be A WAG. Every Node Is An Author With Three

Attributes: Expertise In Databases (DB), Data Mining

(DM), And Machine Learning (ML).

 A pattern question on the sound until co-authorship

network might need to find a path of four authors such two of

them have virtually equal experience in databases (DB) and

data processing (DM) with a lot of less experience in machine

learning (ML); and therefore the remaining authors square

measure primarily DB specialists. Such a pattern question with

path structure and vary constraints on attribute-weights is

represented on the top-half of Figure 1(b). The bottom half

Figure 1(b) describes the 3-best answers came back by IPaM.

Note that for all three answers, author Christos Faloutsos acts

as ―bridge‖ connecting authors whose primary experience is in

sound unit to authors whose experience is additional uniformly

unfold between sound unit and DM.

 To summarize, unified framework for both graph and

pattern matching measures are as follows:

• To introduce the notion of wags, and investigate the

matter of pattern matching on wags.

• To prove that finding the optimum match for a given

pattern question on a WAG is NP-complete.

• To propose a versatile querying mechanism on wags and

a completely unique ranking technique that unifies each

structural pattern and attribute weights into one live.

• To propose IPaM-WAG for graph search and pattern

matching on wags. IPaM-WAG encompasses a novel

hybrid indexing scheme that unifies attribute weights and

structural properties of a WAG. IPaM-WAG uses a

completely unique rule to expeditiously come back the

simplest solutions.

• To demonstrate IPaM’s effectiveness through intensive

experiments on real-world data and comparisons with the

closest competitor.

2. RELATED WORK

 Tong et al. [1] proposed a pattern matching downside

over an oversized directed graph (based on reachability

constraints) and a corresponding approximate matching

algorithm to pick out the simplest set of patterns once an

explicit match isn't potential, considering one attribute per

node. Afterward, Zou et al. [3] extend the drawback by

planning constraints on distance rather than reach ability and

style algorithms for that problem.

 The drawback is tangentially totally different owing

to the existence of weights over vertex attributes. Additionally

pattern matching, is made downside tangentially is totally

different owing to the existence of weights over node

attributes. A comprehensive survey describing variations

among totally different graph matching issues, general and

specific resolution approaches, and analysis techniques is

found in [4]. The information literature has extensively studied

the matter of keyword search over relative databases [5].

Graph Indexing: Given a graph database, graph indexing

literature aims at indexing the graphs supported the frequent

substructures gift in them [6]. To it finish, graphgrep [7] could

be a renowned representative of path-based indexing approach.

Graphgrep enumerates all existing ways up to an exact length l

in an exceedingly graph database G and selects them as

indexing options. Compared to the path-based indexing

approach, in [8] uses graphs as basic indexing options that is

commonly remarked as graph-based indexing approach.

Inference Queries in Graphical Models: Efficiently

evaluating illation queries [10] has been a serious analysis

space within the probabilistic reasoning community. Observe

that, downside is totally different in nature. Not like the

previous body of labor, the existence of a footing in weighted

attributed graph isn't probabilistic. Moreover, not like this

shaped body of labor, the nodes of a WAG contain multiple

weighted attributes. Search in graphs, notably social networks,

is a vigorous space of analysis (e.g., [11], [12]), since vertices

with weighted attributes arise naturally. Aim to know graphs

with vertex attributes [13], [14]; or work that leverages such

graphs for a few explicit purposes [15]. Of explicit connation

here square measure recommendations supported social

network graphs [16].

3. IPaM-RANKING

 Given a query (point or range), the task is to come its

top-k best matches. To do so, IPaM has to rank the results

considering divergence on the graph structure and on the

weighted attributes. The selection of divergence measures is

orthogonal. Cha provides a comprehensive survey on varied

similarity and distance measures. Whereas divergence on graph

weighted attributes is basically different from the divergence

on the graph structure, projected ranking function unifies these

into one single function. Suppose Is a candidate subgraph in

response to the pattern query , then IPaM-WAG’s ranking

for With respect to Is defined as follows:

 () ∑ (
)

| |

Where And
 . Then, the divergence function

 (
) Is defined as follows:

 (
)

{

 (
)

 Kullback-Leibler difference is normalized so that a

0 value means a perfect match and 1 value means a perfect

non-match. The Kullback-Leibler difference for divergence

function gives a good information-theoretic formulation. As

mentioned before, IPaM-WAG can use any divergence

function. The definition of the Kullback-Leibler difference is

as follows:

 (
) ∑ [

 () ()

 (

)]

DOI: 10.18535/ijecs/v6i2.05

Mrs. R.Hemalatha, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20196-20201 Page 20198

 Where Denotes the weight of i-th node for the m-

th attribute; and l is the number of weighted attributes. An

unmatched node as a extra node is needed to add to the

solution for satisfying the pattern query’s connectivity

requirements. Such a node will have maximal divergence (i.e.,

1).

3.2. Hybrid Indexing and Matching With IPaM-WAG

 In this section, to enable pattern matching on wags, a

novel hybrid index structure, called IPaM-WAG, is proposed

and.how it lends itself to efficient pattern matching and for

graph searching is demonstrated. Hybrid indexing and

matching depicts how IPaM-WAG works overall, and also it

highlights the key components and processes.

The indexing technique is presented next in more detail, while

defining the matching algorithm (IPaM-Match). Given a

WAG, IPaM-WAG builds and maintains an index structure

offline, which is used to speed-up pattern matching and graph

search during query time and facilitates the matching over both

the weighted attributes and the structure of the WAG. First, a

balanced tree index is constructed for the matrix . Consider

that consists of the weight matrix concatenated with the

node-degree vector (i.e. [W, degrees]). IPaM-WAG has the

following properties:

• The root of IPaM-WAG is between 1 and M entries

(unless it is a leaf node). M is the degree of the tree.

All intermediate nodes have between M/2 and M

entries. Each leaf node is between M and 2M entries.

• A leaf node in an IPaM-WAG is a WAG vertex with

attribute weights R.

• Each intermediate node is a minimum bounding

rectangle (MBR) of dimensionality l +1(recall l is the

number of weighted attributes). An intermediate node

with j entries has j children, and the bounding rectangle

indexes the space of its children.

 Next, at each leaf node (where a leaf node could be a

vertex in G), an inverted-list index of immediate neighbors of

every graph vertex is maintained. This index allows

economical structural match. The IPaM-WAG on T to be a

balanced tree is devised. This tree is constructed by remodeling

every row in T to a multi-dimensional purpose, where the

amount of dimensions corresponds to the amount of attributes

and a dimension for categorization the degree. Later, this house

is indexed. Whereas the core plan is borrowed from the Rtree

family, that facilitates multi-dimensional spatial looking out

and therefore the integration into object-relational management

systems.

 This includes: (1) indexing over T that features

structural and weighted attribute properties; (2) integrating this

tree with an inverted-list index to change quick structural

match; and (3) planning a getnext() interface over T , that

returns consecutive best candidate vertex of G that has the

smallest amount divergence with reference to a WAG query

node. Every leaf node of the IPaM-WAG corresponds to a

vertex within the input WAG. Every leaf of the IPaM-WAG

contains AN inverted-list that represents the set of nodes that

are its immediate neighbors.

Getnext(): Given any pattern query (
) , for each

vertex
 ,agetnext() call is issued to the IPaM-WAG to

return the node in G that has the closest divergence with v (i.e.,

nearest neighbor to
). The inverted-list of the IPaM-WAG is

subsequently used for the purpose of structural match, after the

candidate node for each query node is returned.

Range Query: Given a range query vertex
 , its weight

distributions over the specified attributes and degree are used

to transform
 To a query rectangle in the +1-dimensional

attribute-space. As an example, a query node with range

specification such as <.2 on DB and >.5 on DM, and degree 3

can be translated as ranges [0 -.2], [.5-1.0], and [3 -maxdegree]

respectively, and a query rectangle can be formed. For the

attributes whose weights are not specified in the query

explicitly, their respective ranges are considered as [0 - 1]. To

enable searching, IPaM-Match starts from the root of the

IPaM-WAG tree and traverses down the tree. If a current node

is non-leaf and overlaps with the query rectangle, it continues

to search further down in that subtree. If the current node is a

leaf, and the leaf is contained in the query rectangle that leaf is

returned as an answer.

Point Query: Given a point query node , it is first

transformed to a point in l +1-dimensional space. Like range

query, searching for the best matching node of v 0 begins at the

root of the IPaM-WAG and traverses down. It tries to prune

some of the intermediate branches, and keeps a list of active

branches to be expanded further. The algorithm terminates

once the active branch list is empty. Pruning: using the

bounding rectangles of the IPaM-WAG to decide whether or

not to search inside the subtree that it indexes. These rectangles

can be searched efficiently using MINDIST and

MINMAXDIST. MINDIST is the optimistic distance between

the point and any object indexed by MBR. Specifically, if v is

inside the MBR, MINDIST(MBR,v 0 i)=0. Otherwise,

MINDIST(MBR,
) is the minimal possible divergence from

the query point v 0 i to any node inside or on the perimeter of

the rectangle.

4. GRAPH SEACHING AND PATTERN MATCHING

USING IPaM-WAG

 In this section, an efficient, optimal algorithm

(referred to as IPaM in the experiments) for top-k pattern

matching and graph search problem, building upon IPaM-

WAG is discussed. ―Optimality‖ here is with respect to answer

quality, and not necessarily with respect to query processing

time. A naive algorithm will enumerate over all possible

candidate results before it determines the final top-k results.

This naive algorithm is prohibitive for even moderately large

graphs.

 Given any pattern and graph query, the algorithm

executes the following tasks:

(1) It uses the getnext() interface of IPaM-WAG and retrieves

the next best candidate node and vertex for every query node

and vertex.

(2) It tries to establish all query edges by joining vertices of the

WAG that represent the endpoints of a query edge. The

inverted-list of the IPaM-WAG is used for this purpose.

DOI: 10.18535/ijecs/v6i2.05

Mrs. R.Hemalatha, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20196-20201 Page 20199

(3) When k answers are not fully computed, the algorithm also

judiciously determines whether to expand structurally (i.e.,

introduce additional nodes to connect the candidate nodes that

represent the endpoints of a query edge), or to issue getnext()

calls to retrieve the next best candidate node from IPaM-WAG.

(4) It returns the top-k matches ranked by the increasing order

of the overall divergence score.

 In order to perform this last step efficiently, the

algorithm maintains a threshold value that captures the

minimum divergence that an unseen or partially computed

candidate-answer may have. The algorithm achieves early-

termination when the threshold is not smaller than the score of

the k-th best result thus far. In order to accomplish tasks (3)

and (4) described above, IPaM-WAG exploits the overall

divergence score as a threshold and treats it as monotonic.

Keen readers may observe that the high-level intuition of

leveraging the threshold bears resemblance to the top-k family

of algorithms in [6]. However, proposed technique requires

non-trivial extensions to make such schemes applicable to

graphs, and considers divergence measures in the place of

scoring functions.

Range Query: Algorithm 1 describes the pseudocode of IPaM.

Algorithm 1: IPaM -WAG Optimal Algorithm for Top-k

range query

Require: IPaM-WAG, Query (
), k

1: Issue getnext() in round robin fashion to get the next

best matching node and candidate vertex for each query

node
 Or query vertex

2: Form candidate edges and add to candidateedgeset C

3: Update resultset with top-k answers based on

divergence

4: Compute threshold

5: while the C is not empty do

6: if (threshold<resultset.k-th Score) then

7: Issue getnext() in round robin fashion

8: Update resultset with top-k candidate outputs

9: else

10: Output resultset as the best k-results

11: break

12: end if

13: end while

14: return resultset

 Given the query nodes, the task is to step by step

retrieve the candidate vertices during a round-robin manner by

provision getnext() calls to the index, and ―stitch‖ the nodes

along to recover the graph structure within the query. The

concept of candidate edge to it end is defined as: a candidate

edge could be a path (or merely an edge) that could be a

representative of a query edge in the WAG. A candidate edge

corresponds to a candidate vertex at a minimum of one end

point. The candidate edge is complete if each endpoint

corresponds to candidate nodes, as an alternative the candidate

edge is partially complete. An entire candidate edge doesn't

have to be compelled to be swollen any, whereas, the partially

complete ones might required to be swollen. For each

candidate edge (complete or partially complete), the

algorithmic rule keeps track of its current structural

divergence. Note that for the vary queries; all candidate nodes

that satisfy the specified vary constraints of the corresponding

query node are equally fascinating.

 Therefore, the divergence score primarily counts the

extra nodes (corresponding to writer distinction of 1) that are to

connect the candidate vertices so as to match the query

structure for the aim of ranking. At a given purpose throughout

query process, once the k-results don't seem to be totally

computed, IPaM (Algorithm 1) problems further calls (in a

spherical robin manner) to the index to retrieve successive best

candidate node which will be a kind of query pattern. If the

IPaM-WAG now returns a replacement candidate node with

the getnext() decision, the algorithm makes an attempt to

expand the retrieved candidate nodes structurally, one by one,

till k-results are computed.

 This step is valid by considering the worth of the

edge. The worth of the edge is that the minimum ranking

(divergence) score that any unseen candidate answer might

have. So as to cypher the edge efficiently, for each query edge

e', the algorithm keeps track of further quantities considering

its candidate edges: (1) the tiniest divergence score considering

its candidate edges, and (2) the most recent divergence score of

its last partly complete candidate edge. Given the query

With |E'| edges, the edge at that step is computed by

aggregating the various divergences of the query edges that

cause the tiniest total. The algorithm terminates once the

divergence score of the k-th best result doesn't exceed the edge.

Note that, as presently because the algorithmic rule retrieves a

replacement node from the IPaM-WAG or expands the partly

computed answers structurally by a footing, it updates the edge

price.

Point Query: The optimum algorithm for purpose query

matching is comparable in essence to it for varies queries. The

most variations here are that (1) ranking of some extent

question needs stricter matches on the weighted attributes; and

(2) throughout query process, if topk answers don't seem to be

totally computed, then the algorithm must judiciously decide

whether or not to issue another getnext() decision, or to expand

structurally. This call is taken by analyzing the various

threshold values and selecting the one those leads to a smaller

threshold. Recall that with each new getnext() decision, or

structural enlargement, have a tendency to update the edge, and

note that a smaller threshold is healthier, since it implies that

the unseen results can have smaller divergence.

5. EXPERIMENTAL EVALUATION

 The efficiency of IPaM-WAG against WAG-ray is

reported. First, report average query interval (Avg QPT) by

variable result size (i.e., k). Next, report Avg QPT by variable

the quantity of nodes within the query. (Note that since the

queries have specific patterns, the quantity of edges is

additionally identified consequently.) For these runtime

experiments, differing kinds of pattern queries is used.The

query work consists of eighty queries (20 queries of a specific

pattern), and that report the common query interval. For

brevity, report the results on one little graph (DBLPDB), and 2

massive graphs (Amazon and Yahoo!). The omitted results on

the tiny graphs are kind of like those delineate.

DOI: 10.18535/ijecs/v6i2.05

Mrs. R.Hemalatha, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20196-20201 Page 20200

Query-processing time as a function of result-size: Compare

query-processing time of IPaM-WAG and WAG-ray by

variable k (result size). IPaM-WAG outperforms WAG-ray

each for little and enormous graphs. The results are listed in

Figure 2. Clearly, IPaM-WAG significantly outperforms

WAG-ray altogether the cases; Among the three Recall low

sparsity signifies little no of 0’s within the W matrix. Three

massive graphs, the distinction in query interval is additional

significant in Amazon than in Yahoo!. The terribly low sparsity

of the weighted attribute matrix (W) of Amazon graph makes

the computation favorable to IPaM-WAG, whereas WAG-ray

was primarily designed for graphs that contain one attribute per

node (i.e., terribly high sparsity of the weighted attribute

matrix). Naturally, the efficiency of IPaM-WAG is determined

to be most for Amazon graph.

Figure 2: Comparison Of Query Processing Time Between

Ipam-WAG And WAG-Ray When Varying Result-Size K

Query-processing time as a function of range of nodes:

Compare query-processing time of IPaM-WAG and WAG-ray

by variable range of nodes within the query. IPaM-WAG

outperforms WAG-ray each for little and enormous graphs.

The results are listed in Figure 3. Each IPaM-WAG and WAG-

ray scale well with the increasing range of nodes. Amazon

exhibits the simplest performance with increasing range of

nodes. This observation is because of the terribly low poorness

price of the weighted attribute matrix (W) of Amazon that

helps it scale very well with the increasing range of nodes

within the query.

Figure 3: Comparison Of Query Processing Time Between

Ipam-WAG And WAG-Ray When Varying Number Of

Nodes

Query-processing time as a function of weighted-attribute

matrix sparsity: In these experiments, the sparsity of the

matrix W is varied, and report the common query interval of

IPaM-WAG and WAG-ray. For every node, cypher the entropy

of its weight distribution, and type supported their entropy.

That is, the nodes at the highest are those whose distributions

are nighest to uniform. To satisfy bound poorness share larger

than its original poorness, scan this sorted list from very cheap,

and rework the membership of a node to one attributes

(attribute that has the most important weight gets one, rest gets

0) till the required poorness is satisfied. K is ready to five, and

range of nodes within the question is ready of five.

 Figure 4 depicts results for this experiment. Observe

that the query interval will increase with increasing poorness

for IPaM-WAG, however decreases for WAG-ray, and also the

impact is additional in massive graph compared to little graph.

Note that with increasing poorness, WAG-ray for WAG

becomes the quality G-ray [1] that completely impacts its

query interval. Conversely, IPaM- WAG takes larger time with

increasing poorness (more zeros in W), since it needs

generating additional candidate nodes and playacting structural

match over them.

Figure 4: Comparison Of Query Processing Time Between

Ipam-WAG And WAG-Ray When Varying Sparsity.

6. CONCLUSION

 In this research described weighted Attribute Graphs

(wags), which may model a large vary of information arising in

various applications. Investigate the matter of pattern matching

on wags. Although, prove, finding the optimum match for a

given pattern query on a WAG is NP-complete, introduce

IPaM-WAG that may perform efficient and effective pattern

matching on wags. IPaM-WAG includes a novel hybrid

assortment theme that comes with each the weighted attributes

and also the graph structure. IPaM-WAG uses a unique

algorithm to efficiently come back the simplest answers to a

pattern query. Demonstrate the effectiveness and measurability

of IPaM-WAG supported intensive experiments on real-world

knowledge, exhibiting higher question response times. Future

work includes the extension of IPaM-WAG for time-evolving

graphs.

REFERENCES

1. H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-

Rad, ―Fast besteffort pattern matching in large

attributed graphs,‖ in Proc. 13
th

 ACM SIGKDD Int.

Conf. Knowl. Discovery Data Mining, 2007, pp. 737–

746.

2. L. Zhu, W. K. Ng, and J. Cheng. Structure and

attribute index for approximate graph matching in

large graphs. Inf. Syst., 36(6):958–972, 2011

3. L. Zou, L. Chen, and M. T.Ozsu, ―Distance-join:

Pattern match query in a large graph database,‖ Proc.

VLDB Endowment, vol. 2, no. 1, pp. 886–897, 2009.

0

1

2

3

4

5

5 10 15 20 25A
V

G
-Q

P
T

(s
ec

)

Result Size for Amazon

AVG-QPT (iPAM-WAG)

AVG-QPT (WAG-ray)

0

10

20

30

40

5 10 15 20 25A
V

G
-Q

P
T

(s
ec

)

Number of Nodes for Amazon

AVG-QPT (iPAM-WAG)

AVG-QPT (WAG-ray)

0
2
4
6
8

10
12

5 10 15 20 25A
V

G
-Q

P
T

(s
ec

)

Sparsity for Amazon

AVG-QPT (iPAM-WAG)

AVG-QPT (WAG-ray)

DOI: 10.18535/ijecs/v6i2.05

Mrs. R.Hemalatha, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20196-20201 Page 20201

4. B. Gallagher. Matching structure and semantics: A

survey on graph-based pattern matching. In AAAI

Fall Symposia, pages 45–53, 2006.

5. V. Hristidis and Y. Papakonstantinou. Discover:

Keyword search in relational databases. In VLDB,

pages 670–681, 2002.

6. Y. Xie and P. S. Yu. In CP-Index: On The Efficient

Indexing of Large Graphs, 2011.

7. D. Shasha, J. T. L. Wang, and R. Giugno.

Algorithmics and applications of tree and graph

searching. In Symposium on Principles of Database

Systems, pages 39–52, 2002.

8. X. Yan, P. S. Yu, and J. Han. Graph indexing: A

frequent structure-based approach. In SIGMOD,

pages 335–346, 2004.

9. P. Zhao, J. X. Yu, and P. S. Yu. Graph indexing: Tree

+ delta >= graph. In VLDB, pages 938–949, 2007.

10. R. G. Cowell, A. P. David, S. L. Lauritzen, and D. J.

Spiegelhalter. Probabilistic networks and expert

systems. ACM Trans. On Speech and Language

Processing, 1999.

11. J. Tang, S. Wu, B. Gao, and Y. Wan, ―Topic-level

social network search,‖ in Proc. 17th ACM SIGKDD

Int. Conf. Knowl. Discovery Data Mining, 2011, pp.

769–772.

12. J. Tang, J. Zhang, R. Jin, Z. Yang, K. Cai, L. Zhang,

and Z. Su, ―Topic level expertise search over

heterogeneous networks,‖ Mach. Learn. J., vol. 82,

no. 2, pp. 211–237, 2011.

13. D. Quercia, L. Capra, and J. Crowcroft, ―The social

world of Twitter: Topics, geography, and emotions,‖

in Proc. Int. Conf. Weblogs Social Media, 2012, pp.

298–305.

14. D. Quercia, R. Lambiotte, D. Stillwell, M. Kosinski,

and J. Crowcroft, ―The personality of popular

Facebook users,‖ in Proc.ACM Conf. Comput.

Supported Cooperative Work, 2012, pp. 955–964.

15. S. Ghosh, N. K. Sharma, F. Benevenuto, N. Ganguly,

and P. K. Gummadi, ―Cognos: Crowdsourcing search

for topic experts in microblogs,‖ in Proc. 35th Int.

ACM SIGIR Conf. Res. Develop. Inf.Retrieval, 2012,

pp. 575–590.

16. S. Wu, J. Sun, and J. Tang, ―Patent partner

recommendation in enterprise social networks,‖ in

Proc. 6th ACM Int. Conf. Web Search Data Mining,

2013, pp. 43–52.

17. Y. Sun and J. Han, Mining Heterogeneous

Information Networks: Principles and Methodologies.

San Rafael, CA, USA: Morgan & Claypool, 2012.

