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Abstract: In general the matter of finding sub graphs that best match a user’s query on weighted Attributed Graphs (wags) is an 

open research area. There is a tendency to outline a WAG as a graph where every nodes exhibit multiple attributes with varied, 

non-negative weights. An example of a WAG could be a coauthor ship network, wherever every author has multiple attributes, 

every such as a specific topic (e.g., databases, data processing, and machine learning), and therefore the quantity of experience in 

a very specific topic is delineate by a non-negative weight on it attribute. A typical user query during this setting specifies each 

property patterns between query nodes and constraints on attribute weights of the query nodes. A ranking perform that unifies the 

matching on attribute weights over the nodes and on the graph structure is proposed. To prove that the matter of retrieving the best 

match for such queries is complete. Moreover, there is a tendency to propose a quick and effective top-k pattern matching 

algorithm and top-k graph search algorithm for weighted attributed graphs. In an intensive experimental study with multiple real-

world datasets, the projected algorithm exhibits important speed-up over competitive approaches. On average, projected technique 

is quicker in query process than the strongest competitive technique. 

Keywords: Weighted Attribute Graph, Graph Search, Top-K 

Algorithms, Index based Pattern Matching (IPaM) 

1. INTRODUCTION 

       Graphs offer a natural method for representing entities that 

are ―connected‖—e.g., individuals connected by their co-

authorship relationships. A graph is commonly denoted by G = 

(V, E), where every V is a set of nodes or vertices and E is a 

set of links or edges.            

               Given a graph G, a long-standing downside of interest 

has been to search out patterns that match user queries—e.g., 

notice all triangles in an exceedingly graph. An extension of 

the first pattern-matching downside is to seem at graphs 

wherever nodes have one attribute [1, 2]. For instance, given a 

co-authorship graph wherever every node contains the first 

experience of an author, notice matches to a triangle question 

wherever the three nodes (in the triangle) square measure 

specialists in databases, data processing, and machine learning, 

severally. To have an interest within the additional general 

downside of pattern-matching on graphs wherever (1) nodes 

have multiple attributes (for example. An author having 

multiple expertise) and (2) the node attributes have non-

negative weights related to them (e.g., an author has varied 

degrees of experience across totally different topics).  

             IPaM-WAG will simply be extended to alternative 

cases, e.g., per-attribute standardization wherever the total of 

the weights for every attribute is one across all nodes. Figure 

one depicts an example WAG and pattern-query. A good style 

of world applications are naturally modeled as wags, multiple 

experience with varied degrees specified from co-authorship 

networks with author-nodes, to IP communication networks 

with IP-nodes having multiple functionalities (such as DNS 

server, Web server, and P2P client) with varied degrees. Vary 

queries are versatile, where a weighted-attribute will be in an 

exceedingly vary of values (see top of Figure 1b).  

 

(a) A Part Made DBLP Co-Authorship Network 

 

WAG Query 

 

(b) A Question  Over The DBLP Co-Authorship Network 

And Top-3 Results Came Back By IPam 
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Figure 1: Example: The DBLP Co-Authorship Network 

May Be A WAG. Every Node Is An Author With Three 

Attributes: Expertise In Databases (DB), Data Mining 

(DM), And Machine Learning (ML). 

            A pattern question on the sound until co-authorship 

network might need to find a path of four authors such two of 

them have virtually equal experience in databases (DB) and 

data processing (DM) with a lot of less experience in machine 

learning (ML); and therefore the remaining authors square 

measure primarily DB specialists. Such a pattern question with 

path structure and vary constraints on attribute-weights is 

represented on the top-half of Figure 1(b). The bottom half 

Figure 1(b) describes the 3-best answers came back by IPaM. 

Note that for all three answers, author Christos Faloutsos acts 

as ―bridge‖ connecting authors whose primary experience is in 

sound unit to authors whose experience is additional uniformly 

unfold between sound unit and DM.  

             To summarize, unified framework for both graph and 

pattern matching measures are as follows: 

• To introduce the notion of wags, and investigate the 

matter of pattern matching on wags.  

• To prove that finding the optimum match for a given 

pattern question on a WAG is NP-complete.  

• To propose a versatile querying mechanism on wags and 

a completely unique ranking technique that unifies each 

structural pattern and attribute weights into one live.  

• To propose IPaM-WAG for graph search and pattern 

matching on wags. IPaM-WAG encompasses a novel 

hybrid indexing scheme that unifies attribute weights and 

structural properties of a WAG. IPaM-WAG uses a 

completely unique rule to expeditiously come back the 

simplest solutions.   

• To demonstrate IPaM’s effectiveness through intensive 

experiments on real-world data and comparisons with the 

closest competitor.  

2. RELATED WORK 

               Tong et al. [1] proposed a pattern matching downside 

over an oversized directed graph (based on reachability 

constraints) and a corresponding approximate matching 

algorithm to pick out the simplest set of patterns once an 

explicit match isn't potential, considering one attribute per 

node. Afterward, Zou et al. [3] extend the drawback by 

planning constraints on distance rather than reach ability and 

style algorithms for that problem.  

               The drawback is tangentially totally different owing 

to the existence of weights over vertex attributes. Additionally 

pattern matching, is made downside tangentially is totally 

different owing to the existence of weights over node 

attributes. A comprehensive survey describing variations 

among totally different graph matching issues, general and 

specific resolution approaches, and analysis techniques is 

found in [4]. The information literature has extensively studied 

the matter of keyword search over relative databases [5].  

Graph Indexing: Given a graph database, graph indexing 

literature aims at indexing the graphs supported the frequent 

substructures gift in them [6]. To it finish, graphgrep [7] could 

be a renowned representative of path-based indexing approach. 

Graphgrep enumerates all existing ways up to an exact length l 

in an exceedingly graph database G and selects them as 

indexing options. Compared to the path-based indexing 

approach, in [8] uses graphs as basic indexing options that is 

commonly remarked as graph-based indexing approach.  

Inference Queries in Graphical Models: Efficiently 

evaluating illation queries [10] has been a serious analysis 

space within the probabilistic reasoning community. Observe 

that, downside is totally different in nature. Not like the 

previous body of labor, the existence of a footing in weighted 

attributed graph isn't probabilistic. Moreover, not like this 

shaped body of labor, the nodes of a WAG contain multiple 

weighted attributes. Search in graphs, notably social networks, 

is a vigorous space of analysis (e.g., [11], [12]), since vertices 

with weighted attributes arise naturally. Aim to know graphs 

with vertex attributes [13], [14]; or work that leverages such 

graphs for a few explicit purposes [15]. Of explicit connation 

here square measure recommendations supported social 

network graphs [16].  

3. IPaM-RANKING 

               Given a query (point or range), the task is to come its 

top-k best matches. To do so, IPaM has to rank the results 

considering divergence on the graph structure and on the 

weighted attributes. The selection of divergence measures is 

orthogonal. Cha provides a comprehensive survey on varied 

similarity and distance measures. Whereas divergence on graph 

weighted attributes is basically different from the divergence 

on the graph structure, projected ranking function unifies these 

into one single function. Suppose    Is a candidate subgraph in 

response to the pattern query    , then IPaM-WAG’s ranking 

for    With respect to    Is defined as follows:  

 (     )  ∑ (     
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|  |

   

 

Where       And   
    . Then, the divergence function 

 (     
 ) Is defined as follows:  

 (     
 )  

{
                           

                (     
 )          

  

                  Kullback-Leibler difference is normalized so that a 

0 value means a perfect match and 1 value means a perfect 

non-match. The Kullback-Leibler difference for divergence 

function gives a good information-theoretic formulation. As 

mentioned before, IPaM-WAG can use any divergence 
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             Where     Denotes the weight of i-th node for the m-

th attribute; and l is the number of weighted attributes. An 

unmatched node as a extra node is needed to add to the 

solution for satisfying the pattern query’s connectivity 

requirements. Such a node will have maximal divergence (i.e., 

1). 

3.2. Hybrid Indexing and Matching With IPaM-WAG 

            In this section, to enable pattern matching on wags, a 

novel hybrid index structure, called IPaM-WAG, is proposed 

and.how it lends itself to efficient pattern matching and for 

graph searching is demonstrated. Hybrid indexing and 

matching depicts how IPaM-WAG works overall, and also it 

highlights the key components and processes. 

The indexing technique is presented next in more detail, while 

defining the matching algorithm (IPaM-Match). Given a 

WAG, IPaM-WAG builds and maintains an index structure 

offline, which is used to speed-up pattern matching and graph 

search during query time and facilitates the matching over both 

the weighted attributes and the structure of the WAG. First, a 

balanced tree index is constructed for the matrix  . Consider 

that   consists of the   weight matrix concatenated with the 

node-degree vector (i.e. [W, degrees]). IPaM-WAG has the 

following properties:  

• The root of IPaM-WAG is between 1 and M entries 

(unless it is a leaf node). M is the degree of the tree. 

All intermediate nodes have between M/2 and M 

entries. Each leaf node is between M and 2M entries.  

• A leaf node in an IPaM-WAG  is a WAG vertex with 

attribute weights R.  

• Each intermediate node is a minimum bounding 

rectangle (MBR) of dimensionality l +1(recall l is the 

number of weighted attributes). An intermediate node 

with j entries has j children, and the bounding rectangle 

indexes the space of its children. 

              Next, at each leaf node (where a leaf node could be a 

vertex in G), an inverted-list index of immediate neighbors of 

every graph vertex is maintained. This index allows 

economical structural match. The IPaM-WAG on T to be a 

balanced tree is devised. This tree is constructed by remodeling 

every row in T to a multi-dimensional purpose, where the 

amount of dimensions corresponds to the amount of attributes 

and a dimension for categorization the degree. Later, this house 

is indexed. Whereas the core plan is borrowed from the Rtree 

family, that facilitates multi-dimensional spatial looking out 

and therefore the integration into object-relational management 

systems. 

              This includes: (1) indexing over T that features 

structural and weighted attribute properties; (2) integrating this 

tree with an inverted-list index to change quick structural 

match; and (3) planning a getnext() interface over T , that 

returns consecutive best candidate vertex of G that has the 

smallest amount divergence with reference to a WAG query 

node. Every leaf node of the IPaM-WAG corresponds to a 

vertex within the input WAG. Every leaf of the IPaM-WAG 

contains AN inverted-list that represents the set of nodes that 

are its immediate neighbors.  

Getnext(): Given any pattern query    ( 
    ) , for each 

vertex   
    ,agetnext() call is issued to the IPaM-WAG to 

return the node in G that has the closest divergence with v (i.e., 

nearest neighbor to   
 ). The inverted-list of the IPaM-WAG is 

subsequently used for the purpose of structural match, after the 

candidate node for each query node is returned.  

Range Query: Given a range query vertex   
 , its weight 

distributions over the specified attributes and degree are used 

to transform   
  To a query rectangle in the  +1-dimensional 

attribute-space. As an example, a query node with range 

specification such as <.2 on DB and >.5 on DM, and degree 3 

can be translated as ranges [0 -.2], [.5-1.0], and [3 -maxdegree] 

respectively, and a query rectangle can be formed. For the 

attributes whose weights are not specified in the query 

explicitly, their respective ranges are considered as [0 - 1]. To 

enable searching, IPaM-Match starts from the root of the 

IPaM-WAG  tree and traverses down the tree. If a current node 

is non-leaf and overlaps with the query rectangle, it continues 

to search further down in that subtree. If the current node is a 

leaf, and the leaf is contained in the query rectangle that leaf is 

returned as an answer.  

Point Query: Given a point query node   , it is first 

transformed to a point in l +1-dimensional space. Like range 

query, searching for the best matching node of v 0 begins at the 

root of the IPaM-WAG and traverses down. It tries to prune 

some of the intermediate branches, and keeps a list of active 

branches to be expanded further. The algorithm terminates 

once the active branch list is empty. Pruning: using the 

bounding rectangles of the IPaM-WAG to decide whether or 

not to search inside the subtree that it indexes. These rectangles 

can be searched efficiently using MINDIST and 

MINMAXDIST. MINDIST is the optimistic distance between 

the point and any object indexed by MBR. Specifically, if v is 

inside the MBR, MINDIST(MBR,v 0 i )=0. Otherwise, 

MINDIST(MBR,   
 ) is the minimal possible divergence from 

the query point v 0 i to any node inside or on the perimeter of 

the rectangle.  

4. GRAPH SEACHING AND PATTERN MATCHING 

USING IPaM-WAG  

                In this section, an efficient, optimal algorithm 

(referred to as IPaM in the experiments) for top-k pattern 

matching and graph search problem, building upon  IPaM-

WAG is discussed. ―Optimality‖ here is with respect to answer 

quality, and not necessarily with respect to query processing 

time. A naive algorithm will enumerate over all possible 

candidate results before it determines the final top-k results. 

This naive algorithm is prohibitive for even moderately large 

graphs.  

              Given any pattern and graph query, the algorithm 

executes the following tasks:  

(1) It uses the getnext() interface of IPaM-WAG and retrieves 

the next best candidate node and vertex for every query node 

and vertex.  

(2) It tries to establish all query edges by joining vertices of the 

WAG that represent the endpoints of a query edge. The 

inverted-list of the IPaM-WAG is used for this purpose.  
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(3) When k answers are not fully computed, the algorithm also 

judiciously determines whether to expand structurally (i.e., 

introduce additional nodes to connect the candidate nodes that 

represent the endpoints of a query edge), or to issue getnext() 

calls to retrieve the next best candidate node from IPaM-WAG.  

(4) It returns the top-k matches ranked by the increasing order 

of the overall divergence score.  

                 In order to perform this last step efficiently, the 

algorithm maintains a threshold value that captures the 

minimum divergence that an unseen or partially computed 

candidate-answer may have. The algorithm achieves early-

termination when the threshold is not smaller than the score of 

the k-th best result thus far. In order to accomplish tasks (3) 

and (4) described above, IPaM-WAG exploits the overall 

divergence score as a threshold and treats it as monotonic. 

Keen readers may observe that the high-level intuition of 

leveraging the threshold bears resemblance to the top-k family 

of algorithms in [6]. However, proposed technique requires 

non-trivial extensions to make such schemes applicable to 

graphs, and considers divergence measures in the place of 

scoring functions.  

Range Query: Algorithm 1 describes the pseudocode of IPaM. 

Algorithm 1: IPaM -WAG Optimal Algorithm   for Top-k 

range query 

Require: IPaM-WAG, Query    ( 
    ), k 

1: Issue getnext() in round robin fashion to get the next 

best matching node and candidate vertex for each query 

node   
  Or query vertex   

  

2: Form candidate edges and add to candidateedgeset C 

3: Update resultset with top-k answers based on 

divergence 

4: Compute threshold 

5: while the C is not empty do 

6: if (threshold<resultset.k-th Score) then 

7: Issue getnext() in round robin fashion 

8: Update resultset with top-k candidate outputs 

9: else 

10: Output resultset as the best k-results 

11: break 

12: end if 

13: end while 

14: return resultset 

 

              Given the query nodes, the task is to step by step 

retrieve the candidate vertices during a round-robin manner by 

provision getnext() calls to the index, and ―stitch‖ the nodes 

along to recover the graph structure within the query. The 

concept of candidate edge to it end is defined as: a candidate 

edge could be a path (or merely an edge) that could be a 

representative of a query edge in the WAG. A candidate edge 

corresponds to a candidate vertex at a minimum of one end 

point. The candidate edge is complete if each endpoint 

corresponds to candidate nodes, as an alternative the candidate 

edge is partially complete. An entire candidate edge doesn't 

have to be compelled to be swollen any, whereas, the partially 

complete ones might required to be swollen. For each 

candidate edge (complete or partially complete), the 

algorithmic rule keeps track of its current structural 

divergence. Note that for the vary queries; all candidate nodes 

that satisfy the specified vary constraints of the corresponding 

query node are equally fascinating.  

                 Therefore, the divergence score primarily counts the 

extra nodes (corresponding to writer distinction of 1) that are to 

connect the candidate vertices so as to match the query 

structure for the aim of ranking. At a given purpose throughout 

query process, once the k-results don't seem to be totally 

computed, IPaM (Algorithm 1) problems further calls (in a 

spherical robin manner) to the index to retrieve successive best 

candidate node which will be a kind of query pattern. If the 

IPaM-WAG now returns a replacement candidate node with 

the getnext() decision, the algorithm makes an attempt to 

expand the retrieved candidate nodes structurally, one by one, 

till k-results are computed.  

              This step is valid by considering the worth of the 

edge. The worth of the edge is that the minimum ranking 

(divergence) score that any unseen candidate answer might 

have. So as to cypher the edge efficiently, for each query edge 

e', the algorithm keeps track of  further quantities considering 

its candidate edges: (1) the tiniest divergence score considering 

its candidate edges, and (2) the most recent divergence score of 

its last partly complete candidate edge. Given the query    

With |E'| edges, the edge at that step is computed by 

aggregating the various divergences of the query edges that 

cause the tiniest total. The algorithm terminates once the 

divergence score of the k-th best result doesn't exceed the edge. 

Note that, as presently because the algorithmic rule retrieves a 

replacement node from the IPaM-WAG or expands the partly 

computed answers structurally by a footing, it updates the edge 

price.  

Point Query: The optimum algorithm for purpose query 

matching is comparable in essence to it for varies queries. The 

most variations here are that (1) ranking of some extent 

question needs stricter matches on the weighted attributes; and 

(2) throughout query process, if topk answers don't seem to be 

totally computed, then the algorithm must judiciously decide 

whether or not to issue another getnext() decision, or to expand 

structurally. This call is taken by analyzing the various 

threshold values and selecting the one those leads to a smaller 

threshold. Recall that with each new getnext() decision, or 

structural enlargement, have a tendency to update the edge, and 

note that a smaller threshold is healthier, since it implies that 

the unseen results can have smaller divergence. 

5. EXPERIMENTAL EVALUATION 

             The efficiency of IPaM-WAG against WAG-ray is 

reported. First, report average query interval (Avg QPT) by 

variable result size (i.e., k). Next, report Avg QPT by variable 

the quantity of nodes within the query. (Note that since the 

queries have specific patterns, the quantity of edges is 

additionally identified consequently.) For these runtime 

experiments, differing kinds of pattern queries is used.The 

query work consists of eighty queries (20 queries of a specific 

pattern), and that report the common query interval. For 

brevity, report the results on one little graph (DBLPDB), and 2 

massive graphs (Amazon and Yahoo!). The omitted results on 

the tiny graphs are kind of like those delineate.  
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Query-processing time as a function of result-size: Compare 

query-processing time of IPaM-WAG and WAG-ray by 

variable k (result size). IPaM-WAG outperforms WAG-ray 

each for little and enormous graphs. The results are listed in 

Figure 2. Clearly, IPaM-WAG significantly outperforms 

WAG-ray altogether the cases; Among the  three Recall low 

sparsity signifies little no of 0’s within the W matrix. Three 

massive graphs, the distinction in query interval is additional 

significant in Amazon than in Yahoo!. The terribly low sparsity 

of the weighted attribute matrix (W) of Amazon graph makes 

the computation favorable to IPaM-WAG, whereas WAG-ray 

was primarily designed for graphs that contain one attribute per 

node (i.e., terribly high sparsity of the weighted attribute 

matrix). Naturally, the efficiency of IPaM-WAG is determined 

to be most for Amazon graph.  

 

Figure 2: Comparison Of Query Processing Time Between 

Ipam-WAG And WAG-Ray When Varying Result-Size K 

Query-processing time as a function of range of nodes: 

Compare query-processing time of IPaM-WAG and WAG-ray 

by variable range of nodes within the query. IPaM-WAG 

outperforms WAG-ray each for little and enormous graphs. 

The results are listed in Figure 3. Each IPaM-WAG and WAG-

ray scale well with the increasing range of nodes. Amazon 

exhibits the simplest performance with increasing range of 

nodes. This observation is because of the terribly low poorness 

price of the weighted attribute matrix (W) of Amazon that 

helps it scale very well with the increasing range of nodes 

within the query.  

 

Figure 3: Comparison Of Query Processing Time Between 

Ipam-WAG And WAG-Ray When Varying Number Of 

Nodes 

Query-processing time as a function of weighted-attribute 

matrix sparsity: In these experiments, the sparsity of the 

matrix W is varied, and report the common query interval of 

IPaM-WAG and WAG-ray. For every node, cypher the entropy 

of its weight distribution, and type supported their entropy. 

That is, the nodes at the highest are those whose distributions 

are nighest to uniform. To satisfy bound poorness share larger 

than its original poorness, scan this sorted list from very cheap, 

and rework the membership of a node to one attributes 

(attribute that has the most important weight gets one, rest gets 

0) till the required poorness is satisfied. K is ready to five, and 

range of nodes within the question is ready of five.  

             Figure 4 depicts results for this experiment. Observe 

that the query interval will increase with increasing poorness 

for IPaM-WAG, however decreases for WAG-ray, and also the 

impact is additional in massive graph compared to little graph. 

Note that with increasing poorness, WAG-ray for WAG 

becomes the quality G-ray [1] that completely impacts its 

query interval. Conversely, IPaM- WAG takes larger time with 

increasing poorness (more zeros in W), since it needs 

generating additional candidate nodes and playacting structural 

match over them.  

 

Figure 4: Comparison Of Query Processing Time Between 

Ipam-WAG And WAG-Ray When Varying Sparsity. 

6. CONCLUSION 

           In this research described weighted Attribute Graphs 

(wags), which may model a large vary of information arising in 

various applications. Investigate the matter of pattern matching 

on wags. Although, prove, finding the optimum match for a 

given pattern query on a WAG is NP-complete, introduce 

IPaM-WAG that may perform efficient and effective pattern 

matching on wags. IPaM-WAG includes a novel hybrid 

assortment theme that comes with each the weighted attributes 

and also the graph structure. IPaM-WAG uses a unique 

algorithm to efficiently come back the simplest answers to a 

pattern query. Demonstrate the effectiveness and measurability 

of IPaM-WAG supported intensive experiments on real-world 

knowledge, exhibiting higher question response times. Future 

work includes the extension of IPaM-WAG for time-evolving 

graphs. 
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