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Abstract:The breast cancer censored data of 254 patients was considered for the survival rate estimates. The data [12, 18] was treated at the 

chemotherapy department, Bradford Royal Infirmary for ten years. Here in this paper Gamma probabilitydistribution model is used to obtain 

the survival rates of the patients (see [2], [6], [13]). Maximum likelihood method has been used through unconstrained BFGS optimization 

method [5, 8, 9, 10] (BFGS-Broyden Fletcher-Goldfarb and Shanno Method) to find the parameter estimates and variance-covariance 

matrix for the Gamma distribution model. Finally the survivor rate estimates for the parametric Gamma probability model has been 

compared with the non-parametric (Kaplan-Meier-[15]) method. 
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1. Introduction 

Breast cancer is a systemic disease (see [4], [12],[18])until proved 

otherwise. When the treatment is stopped the disease progresses 

with uniform ‘velocity’ v through a fixed ‘distance’d in the disease 

to recurrence point.  

In this paper, we find the parameter estimates, survival rate 

estimates, variance covariance matrixfor the Gamma probability 

distribution model using maximum likelihood function using breast 

cancer data [12].  

For the survival of the patient with the breast cancer, a statistical 

approach is considered; wihich is based on two parameters refered 

as scale and shape parameters respectively of the said distributions. 

Further work on probabilistic approach has been done by Khan, 

K.H. [16]. using Inverse Guassioan distribution model. The 

survivor rate estimates for the Gamma probability distribution has 

also been compared with the non-parametric model [15]. 

 

2. The Gamma Model and Estimation of 

Parameters 

The data regarding survival analysis generally falls in two classes: 

(i) the failure time of items, which actually fail during the 

experiment, (ii) the survival times of items which, actually survive 

with the experiment. 

These classes are generally separated statistically by the use of 

censoring, for detail see Cox, [8]. In parametric models the pdf of 

lifetime ‘T’ has form        with survival function       

      , where   is a vector of parameters. The contribution to 

the likelihood of an item that fails at time t is        and an item 

that survives beyond time is      . Thus, according to the Lawless 

[16], using the Gamma distribution models, the likelihood function 

when the time is divided into intervals is given as 
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whereNG, fi , N and F are the number of recurrence groups, 

number of failures (recurrences) in the ith year, sample size and 

total number of recurrences in 10 years respectively. 

The maximum likelihood estimates can be obtained by takingthe 

log-likelihood function. Since the probability of no failure until 

time t is defined by           , then the log-likelihood 

function      can be written as 
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To find the parameter estimates we used the unconstrained 

optimization method ‘(BFGS-Broyden Fletcher-Goldfarb and 

Shanno Method (see. [8], [9]). The BFGS - Quasi-Newton-Method 

is an iterative method, which minimizes the objective functionand 

requires only first partial derivatives in addition to the function 

values. So, the log-likelihood function to be maximized is 

equivalent to the minus times the log-likelihood function to be 

minimized. Therefore the required form for the estimation 

parameters is         . The variance-covariance matrix of 

estimates ba ˆ  andˆ  
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is calculated automatically and numerically as a part of these 

optimization procedures, and without any direct evaluation of the 

second derivatives of   which would be very complicated. 

The Gamma distribution is extensively used in engineering, 

reliability, and applied statistics. Gupta and Groll (1961) discussed 

the use of the gamma distribution in acceptance sampling based on 

life tests. Johnson and Kotz (1970) have given a good general 

review of the gamma distribution. The gamma distribution has also 

received considerable attention in the area of weather analysis. 

The two-parameter gamma distribution of a random variable T has 

a pdf of the form 
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where ,0  and   0 are the scale and shape parameters of 

the gamma density function respectively, and  
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From the above gamma density function, if we take   1 the 

gamma density function reduces to exponential death density 

function. If )1(1  , then the failure rate or hazard rate of the 

gamma density function increases (decreases) as a function of time. 

For ease of computation, we take 



1

  so the gamma death 

density function reduces to
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Now, the gamma survival distribution is given by 
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where
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is called incomplete gamma function. 

Now the hazard rate is
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Again the modified likelihood function for the failed and censored 

times is given by 
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where first sum is over failures and the second is over censored 

items. Hence 
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Now the partial derivatives are given by 
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d
 is called the Psi Function. 

To find the parameter estimates, we took benefit of the algorithm of 

Moor (1982) in which the incomplete gamma integral of eq. (2.7) 

was computed with its first derivatives w.r.t. and . The 
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algorithm of Moor (1982) itself uses the algorithm of Bhattacharjee 

(1970) for finding the incomplete gamma integral. 

Harter and Moor (1965) considered three-parameter gamma 

distribution and applied the maximum likelihood principle to find 

the parameter estimates. We have noted that exponential 

distribution is a special case of the gamma distribution for 1 . 

Several authors have considered the problem of estimating the 

parameters of the Gamma distribution (see [2, 6, 13]). 

The solutions of eq. (2.11) and eq. (2.12) yields the parameter 

estimates,  ˆ,ˆ using numerical optimization techniques. The 

subroutine was used the BFGS unconstrained optimization 

techniques to find the parameter estimates, the variance-covariance 

matrices, survivor rate estimates and maximum likelihood function 

for the Gamma distribution. 

3. APPLICATION 

 

We considered the data of 254 patients surviving with breast 

cancer. These patients were initially treated at the department of 

chemotherapy department, Bradford Royal Infirmary, [12], 

England, thirty five years ago. Each patient was treated for a period 

of ten years or until death. The patients surviving with breast 

cancer were between 23 and 82 years old (Hancock et al. [12]).The 

patients were classified into four diffrenet stages using TNM 

(Tumor Nodes Metastases) system and clinically staged 

accordingly. 

Out of 254 patients, 100 patients were premenopausal and 154 

were postmenopausal. A woman was considered to be 

postmenopausal when 2 years had elapsed since her last menstrual 

period. The two main categories are premenopausal and 

postmenopausal. Note that Stages I & II for premenopausal and 

postmenopausal were each combined together. 

Table-1. Age Distribution Related to Clinical Stage and 

Menopausal Status 

Patient  Stage I Stage II Stage III Stage IV 

Age Pre- Post- Pre- Post- Pre- Post- Pre- Post- 

21-30 - - - - 2 - 1 - 

31-40 6 - 1 - 12 - 11 - 

41-50 16 4 8 2 17 3 16 7 

51-60 1 13 - 3 5 29 4 16 

61-70 - 12 - 1 - 27 - 24 

71-80 - 3 - 1 - 4 - 4 

81-90 - - - 1 - - - - 

 

Table-2.  Survivalsand Failures Related to Clinical Stage and 

Menopausal Status 

Stag

e 

Menopau

sal Status 

Survivi

ng with 

Cancer 

Surviving 

with 

Recurren

ce 

Dying 

witho

ut 

Cance

r 

Dying   
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Recurren

ce 
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er 

Patien

ts in 
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Stage 

Stag

e I 

Pre- 

Post- 

16 

8 

4 

5 

1 

4 

0 

1 

2 

14 

23 

32 

Stag

e II 

Pre- 

Post- 

5 

1 

1 

0 

0 

1 

0 

1 

3 

5 

9 

8 

Stag

e III 

Pre- 

Post- 

6 

5 

2 

4 

1 

2 

1 

7 

26 

45 

36 

63 

Stag

e IV 

Pre- 

Post- 

0 

1 

0 

1 

0 

0 

0 

3 

32 

46 

32 

51 

 

Table-3. Data for Stages I to IVover the ten years 

Time 

(Year

s) 

Stage-I 

&II    

Pre-      

menopau

sal 

Stage-I 

& II      

Post-

menopau

sal 

Stage-III    

Pre-

menopau

sal 

Stage-III      

Post-

menopau

sal 
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0 32 0 40 0 36 0 63 0 32 0 51 0 

1 32 0 38 2 30 6 58 5 23 9 35 16 

2 31 1 35 3 24 6 53 5 13 10 22 13 

3 31 0 35 0 22 2 43 10 4 9 11 11 

4 30 1 32 3 18 4 36 7 2 2 7 4 

5 29 1 27 5 15 3 30 6 2 0 4 3 

6 29 0 25 2 14 1 22 8 1 1 4 0 

7 28 1 22 3 12 2 19 3 1 0 4 0 

8 27 1 20 2 12 0 17 2 1 0 2 2 

9 27 0 18 2 9 3 13 4 1 0 2 0 

10 26 1 14 4 8 1 9 4 0 1 2 0 

 

Table-4 Estimates of Parameters and ML-Function for 

GumbelDistribution Model 

Estima

tes 

Pre-menopausal Post-menopausal 

 
Satge-

I&II 

Satge

-III 

Stage

-IV 

Satge-

I&II 

Satge

-III 

Stag

e-IV 

â  0.354132 
0.373

43 

0.351

35 
0.36467 

0.214

083 

0.321

53 

b̂  
0.02105 

0.029

53 

0.015

36 
0.02435 

0.035

65 

0.094

536 

MLF 4.53565 
119.2

536 

115.8

9472 

9.25489

2 

125.2

5354 

112.5

691 

 

Table-5.Estimates of Variance-Covariance Matrix and 

Gradient vector for the Gamma Model 

Pre-Menopausal Stages 

Variance Stage-I & II Stage-III Stage-IV 
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Covarianc

e Matrix 

0.0053253      

-0.000558 

 -0.000558     

0.0000136 

 

0.002136     -

0.000254 

  -0.000254        

0.0001856 

 

 

   0.002587  -

0.000245 

  -0.000245   

0.000781 

 

 

Gradient 

Vector 

-0.2154E-07     

-0.5421E-06 

 

-0.53466E-07      

-0.2547E-06 

 

-0.8235E-09     

-0.954E-06 

 

Post-Menopausal Stages 

Variance 

Covarianc

e Matrix 

Stage-I&II Stage-III Stage-IV 

0.0012578     -

0.0005421 

-0.0005421   

0.0000124 

 

    0.0005755       

-0.000587 

  -0.000587        

0.0000245 

 

 

0.000851   -

0.000087 

-0.000087    

0.000439 

 

 

 

Gradient 

Vector 

0.24102E-06     

0.72365E-07 

 

-0.51022E-05      

-0.8213E-07 

0.73206E-06-

0.4216E-07 

 

TABLE-6.  Survival Proportion for Pre-menopausalStages 

Ti

me 

(Ye

ars) 

Stage I & II Stage III Stage - IV 

Kapla

n-Mier 

Gamm

a 

Kapla

n-Mier 

Gamm

a 

Kapla

n-Mier 

Gamm

a 

1 
1.0000

0 

0.9714

21 

0.8333

33 

.78254 
0.7187

5 

0.5525

6 

2 
0.9687

5 

0.9654

86 

0.6666

66 

.74569 
0.4062

5 

0.4156

5 

3 
0.9687

5 

0.9510

57 

0.6111

11 

.71356 
0.1250

0 

0.1985

1 

4 
0.9375

0 

0.9412

46 

0.4999

99 

.68456 
0.0625

0 

0.0985

6 

5 
0.9062

5 

0.9328

45 

0.4166

66 

.65349 
0.0625

0 

0.0156

8 

6 
0.9062

5 

0.9242

19 

0.3888

88 

.54635 
0.0312

5 

0.0065

4 

7 
0.8750

0 

0.8959

8 

0.3333

33 

.48359 
0.0312

5 

0.0032

1 

8 
0.8437

5 

0.8846

98 

0.3333

33 

.43569 
0.0312

5 

0.0012

3 

9 
0.8437

5 

0.8538

7 

0.2499

99 

.39564 
0.0312

5 

 

0.0003

5 

10 
0.8125

0 

0.8265

7 

0.2222

22 

.28654 
0.0000

0 

0.0000

13 
 

TABLE-7.  Survival Proportion for Post-menopausal Stages 

Ye

ar 

Stage I & II 

 

 

Stage III Stage - IV 

Kapla

n-Mier 

Gamm

a 

Kapla

n-Mier 

Gamm

a 

Kapla

n-Mier 

Gamm

a 

1 0.9500 
0.9243

5 
0.9206 

0.8564

2 
0.6862 

0.5265

4 

2 0.8750 
0.9012

5 
0.8412 

0.8120

5 
0.4313 

0.4105

2 

3 0.8750 
0.8865

9 
0.6825 

0.7569

8 
0.2156 

0.3841

2 

4 0.8000 
0.8231

0 
0.5714 

0.7126

5 
0.1372 

0.3105

8 

5 0.6750 
0.7995

1 
0.4761 

0.6752

4 
0.0784 

0.2154

6 

6 0.6250 
0.7352

8 
0.3492 

0.5865

4 
0.0784 

0.1654

2 

7 0.5500 
0.6125

6 
0.3015 

0.4689

5 
0.0784 

0.0546

5 

8 0.5000 
0.5621

3 
0.2698 

0.3152

5 
0.0391 

0.0241

3 

9 0.4500 
0.4668

4 
0.2063 

0.2541

3 
0.0391 

0.0087

94 

10 0.3500 
0.3360

41 
0.1428 

0.1935

6 
0.0391 

0.0024

69 

5. CONCLUSIONS 

Analysis shows that the Gamma distribution is a reasonable model 

to describe the progression of breast cancer and finding survivor 

rate estimates for the medical data. Using Maximum likelihood 

method through unconstrained optimization method (BFGS-

Broyden Fletcher-Goldfarb and Shanno Method [10]) the 

parameter estimates and variance-covariance matrix for the 

Gamma distribution modelpresented.However unlike a number of 

two-parameter distributions which are used in survivor studies it 

does have some beaming on the physical process being described.  
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