
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 6 Issue 2 Feb. 2017, Page No. 20183-20191

Index Copernicus Value (2015): 58.10, DOI: 10.18535/ijecs/v6i2.03

Dina Darwis, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20183-20191 Page 20183

Analysis and Evaluation of Techniques for Managing Unstructured and

Semi-Structured Data in a MapReduce Platform
Dina Darwish

International Academy for Engineering and Media Science, Multimedia and Internet Department, Egypt

dina.g.darwish@gmail.com

Abstract: The increasing demand for large-size data mining and data analysis applications drives both industry and academia to create new

types of highly scalable data-intensive computing platforms. MapReduce is one of the most popular platforms in which the dataflow is in the

form of a directed acyclic graph of operators. This paper presents a modified version of the MapReduce framework that is developed to

manage unstructured and semi-structured data. Since, almost most kinds of database systems are designed to manage well-structured data

requiring users to design a schema before storing and querying data. However, there are significant amount of unstructured data and semi-

structured data that cannot be effectively managed this way. In this paper, we develop the engineering principles and practices to manage

unstructured and semi-structured data in a MapReduce platform. Having a single data platform for managing both well-structured data,

unstructured and semi-structured data is beneficial to users; this approach reduces significantly integration, migration, development,

maintenance, and operational issues. The Hadoop environment is used to write SQL/XML schemas first, then, all commands are translated

to Hadoop as MapReduce jobs. The efficiency of using this method in MapReduce software is discussed and evaluated.

Keywords: unstructured and semi-structured data, SQL/JSON schema, SQL/XML schema, Hadoop MapReduce framework.

1. Introduction

Having a huge role over the last 20 years in digital world, the

software will remain a driving force for its continued

enhancements and updates. The innovation is based on

software as a key component [1]. It allows presenting different

features and services with short turnaround times and high

speed to market. As a result, software has become an essential

factor in industry and a basis for innovation [2]. Designing a

software is not a simple work, because it needs to be developed

in close cooperation with R&D units and domains built in

universities, companies, factories and others.

Software engineering research and innovation presents new

ways, techniques, mechanisms, languages and tools which

enhance software production and engineering in itself. Industry

will remain skilled, capable and competitive in delivering

software and software-based products to their customers and

markets through continued software engineering research and

innovation.

One important aspect of software engineering when speaking

about Big Data is how to design the software systems.

Implementing Big Data technologies to develop and create

large scalable data systems makes a significant software

architecture challenge for software architects. The challenge

comes from the scale factor where software architects must

deal with issues related to distributed systems. Problems like

data replication, data consistency, temporary failures,

communications latencies and concurrent processing require to

be solved in the system design. These problems are amplified

in Big Data systems, where these systems need to dynamically

extend to make use of data distributed geographically.

Parallel database systems, which all share a common

architectural design, have been commercially used for nearly

two decades, and there are a lot of these systems in the

marketplace, such as; Teradata, Microsoft SQL Server,

Vertica, DB2 with the database partitioning feature, and

Oracle. These systems are robust, as they use high performance

computing platforms.

The increased focus on the „schema first, data later‟

technique has prevented relational database systems

(RDBMSs) from being the ideal platform for dealing with

unstructured or semi-structured data. Instead, unstructured or

semi-structured data support has been adopted in specialized

database systems, but, some found that it is inadequate to

support schema evolution [3] to manage data whose structure

varies a lot over time.

For managing unstructured documents in database

management systems (DBMSs), content management systems

are frequently used to store documents such as files with text

index providing keyword search [4, 5]. MarkLogic NoSQL

system [6] is known for implementing XQuery as query

language for managing document-oriented semi-structured data

like XML. MongoDB [7] based NoSQL systems with JSON

specific query language became a popular choice for managing

JSON data as JSON became the data-centric semi-structured

data format. Polygolt storage with NoSQL [8] and some other

specialized NoSQL based database systems [9] are becoming

known. In [10], a new technique that depends on the paradigm

(data first, schema later/never) for managing unstructured and

semi-structured data in relational database systems, has been

explained in details to treat the problems that appeared during

handling these kinds of data. Due to an explosion in the

number of massive-scale data intensive applications both in

industry and in the sciences, the need for highly parallel data

processing platforms have appeared.

mailto:dina.g.darwish@gmail.com

DOI: 10.18535/ijecs/v6i2.03

Dina Darwis, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20183-20191 Page 20184

Today, NoSQL and MapReduce are used frequently

compared to parallel data processing platforms, because they

provide efficient storage, representation and query of Big Data.

However, apart from large, long-standing batch jobs, many Big

Data queries require only small, short and increasingly

interactive jobs. MapReduce [11] is a famous framework used

in programming commodity computer clusters to implement

large-scale data processing in a single pass. A MapReduce

cluster can expand to thousands of nodes in a fault-tolerant

manner. Although parallel database systems [12] may provide

these data analysis applications, they are expensive, difficult to

administer, and lack fault-tolerance for long-running queries

[13]. Hadoop [14], an open-source MapReduce

implementation, has been used by Yahoo, Facebook, and other

companies for large-scale data analysis. Programmers can

realize their applications simply by using a map function and a

reduce function inside the MapReduce framework to transform

and aggregate their data, respectively. Many algorithms can be

implemented using the MapReduce model, such as word

counting, equi-join queries, and inverted list building [11].

MapReduce constitutes an attractive environment for

developers to create new techniques for handling it due to

previous advantages.

In this paper, the goal is to enable MapReduce to manage

unstructured and semi-structured data along with the structured

data and, thereby providing all the advanced data management

services that have been designed over many years for dealing

with it. The main contribution of this paper is a detailed

analysis and evaluation of the techniques used to manage

unstructured and semi-structured data, the issues of importance

when applying these techniques, and the potential of handling

unstructured, semi-structured data and structured data in a

MapReduce platform are thoroughly analyzed and evaluated.

The Outline of the Paper is as follows: Section 2 presents a

description for Hadoop and MapReduce platforms. Section 3

provides detailed analysis and evaluation of techniques for

managing unstructured and semi-structured data in MapReduce

platform. Section 4 presents and discusses the experimental

results. Section 5 presents the conclusions and future work.

2. Description of Hadoop and MapReduce

Platforms

2.1. HadoopDB architecture

2.1.1. HadoopDB‟s Components

HadoopDB, whose architecture is shown in Figure 1, expands

the Hadoop framework and consists of the following four

components [21]:

(a) Database Connector

The interface that connects between independent database

systems residing on nodes in the cluster and Task Trackers is

called the Database Connector. It expands Hadoop‟s Input

Format class and constitutes a part of the Input Format

Implementations library. Each MapReduce job feeds the

connector with the SQL query and connection parameters, such

as: which JDBC driver to use, query fetch size and other query

tuning parameters. The Database Connector has been assigned

the role of connecting to the database, processing the SQL

query and providing results as key-value pairs. The Database

Connector can create connection to any JDBC-compliant

database that exists in the cluster. However, different databases

need different read query optimizations.

(b) Catalog

The catalog keeps meta information about the databases. The

meta information can be as follows: (a) connection parameters

such as database location, driver class and credentials, (b)

metadata such as data sets included in the cluster, copies

locations, and data partitioning properties. The current

implementation of the HadoopDB catalog enables saving its

meta information in the form of an XML file in HDFS. This

file can be reached by the Job Tracker and Task Trackers to

acquire information needed to schedule tasks and execute data

required by a query.

(c) Data Loader

The Data Loader is assigned the following tasks for (a)

repartitioning data on a given partition key upon loading, (b)

breaking single node data into multiple smaller partitions

called chunks and (c) then loading the single-node databases

with the chunks. The Data Loader has two main components:

Global Hasher and Local Hasher. The Global Hasher processes

a custom made MapReduce job over Hadoop that reads raw

data files stored in HDFS and creates new partitions from them

as many as the number of nodes in the cluster. The

repartitioning job does not include the overhead of organizing

in order typical MapReduce jobs. The Local Hasher role is to

copy a partition from HDFS into the local file system of each

node, and secondarily, to partition the file into smaller sized

chunks depending on the maximum chunk size setting.

(d) SQL to MapReduce to SQL (SMS) Planner

HadoopDB presents a parallel database front-end to data

analysts making them able to execute SQL queries. The SMS

planner expands Hive [15]. Hive converts HiveQL, a variant of

SQL, into MapReduce jobs that can be linked to tables stored

as files in HDFS. The MapReduce jobs constitutes of lots of

relational operators (such as filter, select (project), join,

aggregation) that work as iterators: each operator sends a data

tuple to the next operator after executing it. Since each table is

saved as a separate file in HDFS.

2.1.2. Hadoop Implementation

In the middle of HadoopDB exists the Hadoop framework.

Hadoop is composed of two layers [21]: (a) a data storage layer

named the Hadoop Distributed File System (HDFS) and (b) a

data processing layer named the MapReduce Framework.

HDFS is a block-structured file system controlled by a central

Name Node. Individual files are divided into blocks of the

same size and distributed across multiple Data Nodes in the

cluster. The Name Node work includes keeping metadata about

the size and location of blocks and their copies. The

MapReduce Framework has a simple master-slave architecture.

The master works as a single Job Tracker and the slaves or

worker nodes work as Task Trackers. The Job Tracker

manages the runtime scheduling of MapReduce jobs and keeps

information on each Task Tracker‟s load and available

resources. Each job is divided into Map tasks depending on the

number of data blocks that need processing, and Reduce tasks.

DOI: 10.18535/ijecs/v6i2.03

Dina Darwis, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20183-20191 Page 20185

The Job Tracker assigns tasks to Task Trackers depending on

their locations and load balancing. It reaches locality by

matching a Task Tracker to Map tasks that execute data inside

it. It performs load balancing by ensuring all available Task

Trackers are assigned tasks. Task Trackers regularly inform the

Job Tracker with their status through heartbeat messages. The

Input Format library constitutes the interface between the

storage and processing layers. Input Format implementations

scan text/binary files or make connections to arbitrary data

sources, and convert the data into key-value pairs that Map

tasks can execute.

Figure 1: The architecture of HadoopDB

2.2. MapReduce framework

MapReduce was introduced by Dean et. al. in 2004 [11].

Shortly, MapReduce executes data distributed across many

nodes in a shared-nothing cluster via three basic processes.

First, a set of Map tasks are executed in a parallel way by each

node in the cluster without having to communicate with other

nodes. Next, data is divided into new partitions across all nodes

of the cluster. Finally, a set of Reduce tasks are processed in a

parallel way by each node on the partition receving it. This can

be followed by a certain number of additional Map-repartition-

Reduce cycles as needed. MapReduce does not provide a query

execution plan that determines which nodes will execute which

tasks in advance; instead, this can be determined during

runtime. This gives MapReduce the ability to adjust to node

failures and slow nodes by giving more tasks to faster nodes

and redistributing tasks from failed nodes. MapReduce also

examines the output of each Map task inside the local disk to

decrease the quantityt of work that has to be redone after a

failure. MapReduce best achieves the fault tolerance and

ability to work in heterogeneous environment characteristics. It

reaches fault tolerance by finding and redistributing Map tasks

of failed nodes to other nodes in the cluster, specially nodes

with copies of the input Map data. It has the ability to operate

in a heterogeneous environment via redundant task execution.

Tasks that takes a long time to finish compared to slow nodes

has to be processed inside other nodes that have finished their

assigned tasks. MapReduce contains a flexible query interface;

Map and Reduce functions are considered arbitrary

computations written in a general-purpose language. Therefore,

each task can do anything on its input, just as long as its output

follows the conventions determined by the model. In general,

most MapReduce-based systems, such as Hadoop, which

provides the systems-level details of the MapReduce platform,

do not allow declarative SQL. Many of the performance

enhancing tools that are implemented by database systems can

not be realized if not obligating the user to first design and load

data before execution. The fault tolerance and ability to operate

in different environment characteristics of MapReduce could

be integrated with the performance of parallel databases

systems. Figure 2 [11] shows the MapReduce programming

model, where a Hadoop application can handle Hadoop

distributed file system (HDFS) in a cluster.

Figure 2: The MapReduce programming model

3. Approach for Managing Unstructured and

Semi-Structured Data Using MapReduce

3.1 Managing unstructured and semi-structured data in a

MapReduce platform

There is a huge need to reengineering Hadoop platform to

handle new challenging data management requirements, such

as unstructured or semi-structured data, that were not

addressed in the original Hadoop MapReduce data

management paradigm. It is better to create a single system

which avoids the complexity of multiple architectures instead

of having users to manage multiple systems. Management of

unstructured and semi-structured data has challenged the

fundamental assumption that a schema must exist to store,

DOI: 10.18535/ijecs/v6i2.03

Dina Darwis, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20183-20191 Page 20186

index and query data first. then, there is a need to think out-of-

the schema. Indeed, management of unstructured and semi-

structured data requires thinking how to store, query and index

data without making schema definition first. To achieve this

goal, there is a work done to extend technology for managing

user defined object types, functions and indexes. Implementing

extensibility ideas leads us to the current engineering principles

and practices for managing unstructured and semi-structured

data in MapReduce. The idea in this paper is inspired by the

research done on RDBMS [10]. In the following sections, a

detailed analysis and description of storage, query, and update

and index principles in a MapReduce platform is going to be

explained. And, experimental results using different simulation

methods such as HiveQL, JSON and XQuery were analyzed to

discuss the efficiency of applying this idea.

3.1.1. Storage technique for management of unstructured and

semi-structured data in a MapReduce environment

The design of most of the database platforms including

MapReduce provides a clean separation between structure and

data. In most database platforms, a schema has to be

determined before data can be loaded. A collection of

unstructured and semi-structured data, has a small number of

common attributes accompanied by a large variety of non-

common attributes, that are managed using JSON and XML

documents, then, they are transformed into MapReduce jobs in

a MapReduce platform. The structure cannot be separated

easily from data content because the structure changes a lot

from instance to instance. The instance schema is included in

each unstructured or semi-structured data (UNSED) instance

so that each UNSED instance is self-contained, and can be

distributed to different layers. Schema based on data of a

UNSED collection are not treated as central dictionary data but

can be computed dynamically from all unstructured or semi-

structured data (UNSED) instances saved in a UNSED

collection.

Unlike the schema based on structured data, inside the

schema based on UNSED data, there does not exit a set of

finite size of dimension D such that every element of a set of

data S can be expressed as a linear combination of elements

from set D. The schema based on structured data may have

bounded dimensions with unlimited number of elements as

formal schema definition, while, schema based on unstructured

and semi-structured data has unlimited dimensions.

All the dimensions are called schemas. Managing UNSED

data cannot be done by separating the data from its schema.

Each element in this case has to keep track of its dimensions

and the corresponding value. Each element is represented by a

vector of dimension and value (name value pair). Then,

management of unstructured or semi-structured data requires

store, query and index both schema and data together. Then,

after implementing the storage technique using XML

documents or JSON objects, these queries were transformed

into Map and Reduce jobs in a MapReduce environment.

UNSED instances are stored in a UNSED collection using

document-object-store model, where both structure and data

are saved together for each UNSED instance, so each UNSED

instance is self-descriptive and does not rely on a central

schema. New structures can be added on a per-record basis

without dealing with schema architecture. Adding a new

domain UNSED is done by storing into existing SQL datatype,

without the need to add a new SQL type and this enables the

new UNSED domain to acquire full operational data capability

support.

A data-guide can be derived from UNSED collections in the

form of virtual tables, to know the complete structures of the

data which helps to create queries over UNSED collection.

UNSED management with data-guide supports the paradigm of

“storage without schema but query with schema”. For master-

detail hierarchical structures existing in UNSED instances, a

table architecture must be created. They can be built as

secondary structures on top of the primary hierarchical

UNSED storage.

Storage technique in the MapReduce depends on the

following steps. UNSED instances containing both schema and

data are stored in the UNSED collections in the data loader

inside the MapReduce environment. Also, schemas created

inside UNSED instances are saved in schema collections in the

catalog inside the MapReduce environment. Then, all saved

schemas are transformed using SMS planner into MapReduce

jobs, that are executed inside the MapReduce platform.

Figure 3 shows the storage technique for management of

unstructured and semi-structured data in a MapReduce

environment.

Figure 3: Storage technique for management of UNSED

in a MapReduce environment

3.1.2. Query and Update technique for management of

unstructured and semi-structured data in a MapReduce

environment

A UNSED collection is saved as a table of UNSED instances.

A UNSED instance itself is domain specific and typically owns

its domain-specific query language. The domain-specific query

language is XQuery for UNSED of XML documents. The

domain-specific query language is the SQL/JSON path

language for UNSED of JSON objects.

In the domain-specific query language, querying or updating

UNSED can be performed by surfing through document-object

structures, A UNSED instance is not distributed into tables

since hierarchies in a UNSED are dynamic. Then, it is obvious

to express hierarchical traversal of UNSED as path navigation

with value predicate constructs in the UNSED domain

language. There must exist ability of performing full context

aware text search, UNSED instances may be document centric

with mixture of textual content and structures. There is a

DOI: 10.18535/ijecs/v6i2.03

Dina Darwis, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20183-20191 Page 20187

considerable quantity of full text content in UNSED that can be

subject to full text query. Full text search can be embedded

within a context identified by path navigation into the UNSED

instance. Also, querying or updating can be done by projecting,

transforming object component and developing new document

or object, results of path navigational queries can be partitions

or called fragments of UNSED. The new UNSED fragments

can be created by extracting components of existing UNSED

and combining them through creation and transformation.

While a UNSED domain-specific query and update language

constitutes as an intra-document query language, SQL can be

implemented as an inter-document query language. The query

of UNSED depends on positioning SQL as a set-oriented

language to present access to a set of UNSED instances by

integrating the set based algebra supported by SQL. By

positioning SQL as a Set Query Language, SQL achieves the

needed constructs to express set algebra operators, such as

selection, projection, join, group by, aggregation, union,

intersection and difference among UNSED instances. Query

and update techniques in the MapReduce is performed as

follows.

Some UNSED instances saved in the UNSED collections in

the data loader inside the MapReduce environment are

retrieved according to the required query or update commands.

The retrieved UNSED instances are gathered in a fragment of

UNSED collection created after the query or update command

is executed. After that, schemas contained in the extracted

fragment of UNSED collection are saved in schema collections

in the catalog inside the MapReduce environment as virtual

schemas. Then, all virtual schemas saved inside the schema

collections are converted using SMS planner into MapReduce

jobs, that are executed inside the MapReduce platform.

Figure 4 shows query and update techniques for

management of unstructured and semi-structured data in a

MapReduce environment.

Figure 4: Query and update techniques for management of

UNSED in a MapReduce environment

3.1.3. Indexing technique for management of unstructured and

semi-structured data in a MapReduce environment

UNSED indexing must be able to achieve performance for

both predefined query access pattern and ad-hoc query access

pattern. In a pre-defined query access pattern in the context of

UNSED, a projection out of UNSED in the form of a set of

scalar value projections or in the form of UNSED table for a

set of views can be determined, because users are aware of the

partial schema within UNSED derived from data-guide. This is

known as „data first, schema later as index‟ indexing approach.

Meanwhile, in the ad-hoc query access pattern in the context

of UNSED, users do not own any prior knowledge of the

UNSED, then a UNSED search index is required to make

efficient evaluation of the existence of UNSED using ad-hoc

query search. This is known as „data first, schema never‟

search index approach, which is similar to full text index

search index.

The columnar index embeds efficient range queries over the

columnar projection of UNSED values and returns a set of

DOCIDs, each of which is an ordinal number that defines a

row of the base document-object-store table including UNSED

that satisfy the range query. The original UNSED can be

provided from the primary document-object-store table using

the DOCID returned by the columnar index. To support range

queries over multiple scalar values extended from UNSED via

multiple UNSED values, multiple columnar indexes, each of

which links to a UNSED value, can be implemented.

The idea of table index [16] is used, to efficiently execute

UNSED table queries. Table index can be presented in two

physical forms in dealing with UNSED. In a classical row

store, table index can internally keep master-detail relational

tables to carry the results calculated by evaluation of UNSED

tables. The master-detail table is connected by internally

generated primary foreign key so that the column values in the

master table are not repeatedly saved in detail tables. Besides,

the tuple-store model can be used to determine columnar index

in the form of UNSED values and UNSED tables to index

UNSED.

To manage an ad-hoc query, a search index over a UNSED

table without having users to determine what path structures or

values require to be indexed is created. A search index indexes

everything in a UNSED collection. Search indices can be

created depending on classical inverted index that indexes all

keywords in a document to present ad-hoc keyword search

capability [17]. This achieves the basic full text search

capability over document centric XML documents or JSON

objects. Unlike classical inverted indices that index only

keywords in a document, a generalized inverted index is

expanded to index hierarchical path structures inside UNSED

to provide path-aware full text search scalar range value search

workload queries.

Each UNSED document in a UNSED collection indexed by

the search index is determined by an ordinal number as a

DOCID. The DOCIDs of all documents containing the

keyword are saved in an organized way using delta-

compression inside a posting list, so that efficient pre-sorted

merge join is accomplished on the posting lists to efficiently

manage multi-keywords searches and phrase searches linked

by AND, OR and NOT Boolean predicates [18]. Classical

inverted indices can be expanded to support efficient

processing of path query and path aware full text search [19]

that is a common query for XML full text search.

DOI: 10.18535/ijecs/v6i2.03

Dina Darwis, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20183-20191 Page 20188

Each distinct XML tag is indexed and saved as an entry in

inverted index with the posting list saving not only the

DOCIDs of documents including the XML tags, but also the

range of tag open and close positions inside the document. In

the same method, an inverted index can be expanded to index

JSON objects saved in JSON collection table [20]. Like XML

tree nodes, JSON objects and arrays create nested hierarchical

relationship that can be indexed using their positions inside the

JSON object.

Indexing technique in the MapReduce can be accomplished

according to the following steps. Each UNSED instance

containing both schema and data has a DOCID, as mentioned

before, these UNSED instances are stored in the UNSED

collections in the data loader inside the MapReduce

environment. A fragment of UNSED collection is created

according to the indexing required. This fragment contains the

UNSED instances in need. Then, schemas residing inside

UNSED instances are stored with their DOCIDs in schema

collections in the catalog inside the MapReduce environment.

Then, all saved schemas in the catalog are transformed using

SMS planner into MapReduce jobs, that are executed inside the

MapReduce platform. Figure 5 shows indexing technique for

management of unstructured and semi-structured data in a

MapReduce environment.

Figure 5: Indexing technique for management of UNSED in a

MapReduce environment

4. Experimental Results

In this section, the execution times of these three methods were

analyzed and evaluated. The TCP-H benchmark dataset was

used to compute the results using HiveQL, JSON, XQuery.

The following table (table 1) shows the total execution times

of running TCP-H dataset using five proposed queries with

HiveQL, JSON, XQuery to compare, analyze and evaluate the

fastest execution method, and the differences of execution

times between the three methods. Let‟s consider the following

queries:

Query 1:

Using HiveQL:
Select n_nationkey, n_name, n_regionkey, n_comment from

nation;

Using JSON:
CREATE TABLE json_nation (json string);

LOAD DATA INPATH '/user/datafiles/nation.json' OVERWRITE

INTO TABLE json_nation;

CREATE TABLE jt_nation AS

select

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valueregnat from json_nation;

SELECT get_json_object(jt_nation.valueregnat,'$.id') AS id,

get_json_object(jt_nation.valueregnat,'$.N_NATIONKEY') AS

n_nationkey,

get_json_object(jt_nation.valueregnat,'$.N_NAME') AS n_name,

get_json_object(jt_nation.valueregnat,'$.N_REGIONKEY') AS

n_regionkey,

get_json_object(jt_nation.valueregnat,'$.N_COMMENT') AS

n_comment FROM jt_nation;

Using XQuery:
xquery version "1.0";

for $i in 0 to 25

 let $y := doc(“nation.xml”)/nations/id[$i]

 return $y/(n_nationkey,n_name,n_regionkey,n_comment)

Query 2:

Using HiveQL:
select n.n_nationkey, n.n_name, r.r_regionkey , r.r_name

from region r join nation n on

n.n_regionkey = r.r_regionkey;

Using JSON:
CREATE TABLE json_region (json string);

LOAD DATA INPATH '/user/datafiles/region.json' OVERWRITE

INTO TABLE json_region;

CREATE TABLE jt_region AS

select

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valueregreg from json_region;

SELECT

get_json_object(jt_nation.valueregnat,'$.N_NATIONKEY') AS

n_nationkey,

get_json_object(jt_nation.valueregnat,'$.N_NAME') AS n_name,

get_json_object(jt_region.valueregreg,'$.R_REGIONKEY') AS

r_regionkey,

get_json_object(jt_region.valueregreg,'$.R_NAME') AS r_name

FROM jt_region join jt_nation on

get_json_object(jt_nation.valueregnat, '$.N_REGIONKEY') =

get_json_object(jt_region.valueregreg, '$.R_REGIONKEY');

Using XQuery:
xquery version "1.0";

let $regions := doc('region.xml')

 let $y := doc('nation.xml')

 for $i in 0 to 25

 for $j in 0 to 5

 where $y/nations/id[$i]/n_regionkey =

$regions/regions/id[$j]/r_regionkey

 return <result>{$y/nations/id[$i]/n_nationkey}

and {$y/nations/id[$i]/n_name} and

{$regions/regions/id[$j]/r_regionkey} and

{$regions/regions/id[$j]/r_name}</result>

Query 3:

Using HiveQL:
select

 s_suppkey, s_name, s_address, s_acctbal, s_comment

from nation n join supplier s on

 s.s_nationkey = n.n_nationkey and n.n_name = 'GERMANY';

Using JSON:
CREATE TABLE json_nation (json string);

CREATE TABLE json_supplier (json string);

LOAD DATA INPATH '/user/datafiles/nation.json' OVERWRITE

INTO TABLE json_nation;

LOAD DATA INPATH '/user/datafiles/supplier_v.json'

OVERWRITE INTO TABLE json_supplier;

CREATE TABLE jt_nation AS

select

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valueregnat from json_nation;

CREATE TABLE jt_supplier AS

select

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valuesupp from json_supplier;

SELECT get_json_object(jt_supplier.valuesupp,'$.S_SUPPKEY'),

get_json_object(jt_supplier.valuesupp,'$.S_NAME'),

get_json_object(jt_supplier.valuesupp,'$.S_ADDRESS'),

get_json_object(jt_supplier.valuesupp,'$.S_ACCTBAL'),

get_json_object(jt_supplier.valuesupp,'$.S_COMMENT')

FROM jt_nation join jt_supplier on

get_json_object(jt_nation.valueregnat, '$.N_NATIONKEY') =

get_json_object(jt_supplier.valuesupp, '$.S_NATIONKEY') and

DOI: 10.18535/ijecs/v6i2.03

Dina Darwis, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20183-20191 Page 20189

get_json_object(jt_nation.valueregnat, '$.N_NAME') =

'GERMANY';

Using XQUERY:
xquery version "1.0";

let $suppliers := doc('supplier.xml')

 let $y := doc('nation.xml')

 for $i in $suppliers/suppliers

 for $j in $y/nations
 where $y/nations/id[$j]/n_nationkey =
$suppliers/suppliers/id[$i]/s_nationkey and

 $y/nations/id[$j]/n_name = „GERMANY‟

 return

<result>{$suppliers/suppliers/id[$i]/s_suppkey} and

{$suppliers/suppliers/id[$i]/s_name} and

{$suppliers/suppliers/id[$i]/s_address} and

{$suppliers/suppliers/id[$i]/s_acctbal} and

{$suppliers/suppliers/id[$i]/s_comment}</result>

Query 4:

Using HiveQL:
select s_suppkey from supplier

where not s_comment like '%Customer%Complaints%';

Using JSON:
CREATE TABLE json_supplier (json string);

LOAD DATA INPATH '/user/datafiles/supplier_v.json'

OVERWRITE INTO TABLE json_supplier;

CREATE TABLE jt_supplier AS

select

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valuesupp from json_supplier;

SELECT get_json_object(jt_nation.valuesupp,'$.S_SUPPKEY') AS

ps_suppkey FROM jt_supplier

where not get_json_object(jt_supplier.valuesupp,

'$.S_COMMENT') like '%Customer%Complaints%';

Using XQUERY:
xquery version "1.0";

let $suppliers := doc('supplier.xml')

 for $i in $suppliers/suppliers

 where not $suppliers/suppliers/id[$i]/s_comment like

„%Customer%Complaints%‟

 return

<result>{$suppliers/suppliers/id[$i]/s_suppkey}</result>

Query 5:

Using HiveQL:
select s_suppkey, s_acctbal, s_name, n_name, s_address,

s_phone, s_comment

from nation n join region r on

 n.n_regionkey = r.r_regionkey and r.r_name = 'EUROPE'

 join supplier s on s.s_nationkey = n.n_nationkey

 where s_acctbal > 50.0;

Using JSON:
CREATE TABLE json_nation (json string);

CREATE TABLE json_region (json string);

CREATE TABLE json_supplier (json string);

LOAD DATA INPATH '/user/datafiles/nation.json' OVERWRITE

INTO TABLE json_nation;

LOAD DATA INPATH '/user/datafiles/region_v.json' OVERWRITE

INTO TABLE json_region;

LOAD DATA INPATH '/user/datafiles/supplier_v.json'

OVERWRITE INTO TABLE json_supplier;

CREATE TABLE jt_nation AS

select

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valueregnat from json_nation;

CREATE TABLE jt_region AS

select

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valueregreg from json_region;

CREATE TABLE jt_supplier AS

select

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valuesupp from json_supplier;

SELECT get_json_object(jt_supplier.valuesupp,'$.S_SUPPKEY'),

get_json_object(jt_supplier.valuesupp,'$.S_ACCTBAL'),

get_json_object(jt_supplier.valuesupp,'$.S_NAME'),

get_json_object(jt_nation.valueregnat,'$.N_NAME'),

get_json_object(jt_supplier.valuesupp,'$.S_ADDRESS'),

get_json_object(jt_supplier.valuesupp,'$.S_PHONE'),

get_json_object(jt_supplier.valuesupp,'$.S_COMMENT')

FROM jt_nation join jt_region on

get_json_object(jt_nation.valueregnat, '$.N_REGIONKEY') =

get_json_object(jt_region.valueregreg, '$.R_REGIONKEY')

and get_json_object(jt_region.valueregreg, '$.R_NAME') =

'EUROPE'

join jt_supplier on

get_json_object(jt_nation.valueregnat, '$.N_NATIONKEY') =

get_json_object(jt_supplier.valuesupp, '$.S_NATIONKEY')

where get_json_object(jt_supplier.valuesupp,'$.S_ACCTBAL') >

50.0;

Using XQUERY:
xquery version "1.0";

let $suppliers := doc('supplier.xml')

 let $y := doc('nation.xml')

 let $z = doc(„region.xml‟)

 for $i in $suppliers/suppliers

 for $j in $y/nations

 for $m in $z/regions

 where $y/nations/id[$j]/n_nationkey =

$suppliers/suppliers/id[$i]/s_nationkey and

 $y/nations/id[$j]/n_regionkey =

$z/regions/id[$m]/r_regionkey and

$suppliers/suppliers/id[$i]/s_acctbal > 50.0

 return

<result>{$suppliers/suppliers/id[$i]/s_suppkey} and

{$suppliers/suppliers/id[$i]/s_acctbal} and

{$suppliers/suppliers/id[$i]/s_name} and

{$y/nations/id[$j]/n_name} and

{$suppliers/suppliers/id[$i]/s_address} and

{$suppliers/suppliers/id[$i]/s_phone} and

{$suppliers/suppliers/id[$i]/s_comment}</result>

Using the three techniques, execution times are computed for

the five proposed queries. For query 1, HiveQL was executed

in 4 seconds and 530 milliseconds, JSON was executed in 7

seconds 880 milliseconds, which is a little bit longer than

HiveQL, and XQuery was executed in 1 seconds and 500

milliseconds, which is the shortest time. In query 2, HiveQL

took 15 seconds and 350 milliseconds to finish, JSON took a

very close time from HiveQL with fractions in milliseconds,

which is 15 seconds and 490 milliseconds, then XQuery took

the shortest time with 2 seconds 400 milliseconds. For query

3, JSON took a little bit longer with 34 seconds and 640

milliseconds, followed by, HiveQL with 8 seconds and 320

milliseconds, and XQuery took the shortest time of 3 seconds

and 60 milliseconds. For query 4, JSON took the longer time

with 15 seconds and 590 milliseconds, HiveQL took a little bit

shorter time of 12 seconds and 750 milliseconds, then, XQuery

took the shortest time at 2 seconds and 980 milliseconds. For

query 5, JSON took a very close time from HiveQL, with 7

seconds and 980 milliseconds, and 7 seconds and 330

milliseconds respectively, then, XQuery took a shorter time

with 2 seconds and 560 milliseconds. After analyzing the

results obtained in table 1 for all the five queries, XQuery

showed the better execution time, followed by HiveQL, then,

finally, JSON query. But, in general, the difference in

execution times between HiveQL and JSON is small. And, this

showed that JSON and XQuery are preferred to be used in

managing unstructured, semi-structured, as well as structured

data, due to their good execution times reasonably compared to

HiveQL.

Table 1: Execution times using different methods

 HiveQL JSON XQuery

Query 1 4 sec 530 msec 7 sec 880 msec 1 sec 500 msec

 Query 2 15 sec 350 msec 15 sec 490 msec 2 sec 400 msec

 Query 3 8 sec 320 msec 34 sec 640 msec 3 sec 60 msec

Query 4 12 sec 750 msec 15 sec 590 msec 2 sec 980 msec

Query 5 7 sec 330 msec 7 sec 980 msec 2 sec 560 msec

Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10 show

execution times of queries 1, 2, 3, 4 and 5. These figures are

derived from table 1. The execution times of the three methods

are represented in seconds. In each figure, the execution time is

DOI: 10.18535/ijecs/v6i2.03

Dina Darwis, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20183-20191 Page 20190

represented by the x-axis, and the HiveQL, JSON and XQuery

methods used in execution are represented by the y-axis. These

figures compare the execution times of the three methods.

Figure 6: Execution times of query 1

Figure 7: Execution times of query 2

Figure 8: Execution times of query 3

Figure 9: Execution times of query 4

Figure 10: Execution times of query 5

5. Conclusions and Future Work

A model for managing unstructured and semi-structure is

proposed in this paper using JSON and XQuery. It was

concluded from simulation that JSON and XQuery provided

good execution times compared to HiveQL. It is better to

create a single interface to manage structured, unstructured and

semi-structured data. In the future work, there is a need to

make a unified model that all kinds of environments and

platforms and that can be used to manage all types of data;

such as structured, unstructured and semi-structured data.

References

[1] A. Arora, L. G. Branstetter, M. Drev, “Going Soft: How the Rise

 of Software-Based Innovation Led to the Decline of Japan's IT

Industry and the Resurgence of Silicon Valley,” MIT Press

Journals, July 2013.

[2] ISTAG, “Software Technologies: The Missing Key Enabling

Technology - Toward a Strategic Agenda for Software

Technologies in Europe,” July 2012. [Online]. Available:

http://cordis.europa.eu/fp7/ict/docs/istag-soft-tech-

wgreport2012.pdf.

[3] Mohan C., “History repeats itself: sensible and Nonsense SQL

aspects of the NoSQL hoopla,” EDBT, 2013.

[4] G. Salton, M. McGill., “Introduction to Modern Information

Retrieval,” McGraw-Hill, New York, 1983.

[5] J. Zobel, A. Moffat, “Inverted files for text search engines. ACM

Computing,” Surveys, Volume 38 Issue 2, 2006.

[6] MarkLogic. [Online]. Available: http://www.marklogic.com/

[7] MongoDB. [Online]. Available: http://www.mongodb.org/

[8] P. J. Sadalage, M. Fowler, “NoSQL Distilled: A Brief Guide to

the Emerging World of Polyglot Persistence,” August 18, 2012.

[9] R. Cattell, “Scalable SQL and NoSQL data stores,” SIGMOD

Record, Volume 39 Issue 4, pp. 12-27, 2010.

[10] Zhen Hua Liu, Dieter Gawlick, “Management of Flexible

Schema Data in RDBMSs - Opportunities and Limitations for

NoSQL,” Oracle Corporation, USA.

[11] Jeffrey Dean, Sanjay Ghemawat, “MapReduce: Simplified data

processing on large clusters,” in OSDI, pp. 137–150, 2004.

[12] David J. DeWitt, Jim Gray, “Parallel database systems: The

future of high performance database systems,” Commun. ACM,

Volume 35 Issue 6, pp. 85–98, 1992.

[13] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi,

David J. DeWitt, Samuel Madden, Michael Stonebraker, “A

comparison of approaches to large-scale data analysis,” in

SIGMOD Conference, pp. 165–178, 2009.

[14] Hadoop. [Online]. Available: http://hadoop.apache.org/.

[Accessed: July 7, 2010.]

http://www.marklogic.com/
http://www.mongodb.org/

DOI: 10.18535/ijecs/v6i2.03

Dina Darwis, IJECS Volume 6 Issue 2 Feb., 2017 Page No.20183-20191 Page 20191

[15] Facebook, “Hive.” [Online]. Available: http://

issues.apache.org/jira/browse/HADOOP-3601.

[16] Z. H. Liu, M. Krishnaprasad, H. J. Chang, V. Arora,

“XMLTABLE Index - An Efficient Way of Indexing and

Querying XML Property Data,” ICDE, 2007.

[17] J. Zobel, A. Moffat, “Inverted files for text search engines,”

ACM Computing Surveys, Volume 38 Issue 2, 2006.

[18] I. Rae, A. Halverson, J. Naughton, “In-RDBMS Inverted Indexes

revisited,” ICDE, pp. 352-363, 2014.

[19] Z.H. Liu, Y. Lu, H. Chang, “Efficient Support of XQuery Full

Text in SQL/XML Enabled RDBMS,” ICDE, 2014.

[20] Z. H. Liu, B. Christoph Hammerschmidt, D. McMahon, “JSON

data management: supporting schema-less development in

RDBMS,” SIGMOD Conference, pp. 1247-1258, 2014.

[21] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi

Silberschatz, Alexander Rasin, “HadoopDB: An Architectural

Hybrid of MapReduce and DBMS Technologies for Analytical

Workloads,” VLDB 2009, August 24-28 2009.

Author Profile
Dina Darwish received the B.Sc. in 2004 and the M.Sc. in 2006 with

honors degrees from Arab Academy for Science and Technology,

Computer Engineering Department, Egypt. She received the Ph.D.

degree from Cairo University, Egypt, in 2009. Her main interests

include communications systems, wireless and computer networks,

internet-of-things technology, database, software engineering and

multimedia systems.

She became an Assistant Professor at Multimedia and Internet

department in 2009, International Academy of Engineering and Media

Science, Egypt. She is now an Associate Professor and chair of the

Multimedia and Internet department, International Academy of

Engineering and Media science, Egypt, since 2015.

