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Abstract: The increasing demand for large-size data mining and data analysis applications drives both industry and academia to create new 

types of highly scalable data-intensive computing platforms. MapReduce is one of the most popular platforms in which the dataflow is in the 

form of a directed acyclic graph of operators. This paper presents a modified version of the MapReduce framework that is developed to 

manage unstructured and semi-structured data. Since, almost most kinds of database systems are designed to manage well-structured data 

requiring users to design a schema before storing and querying data. However, there are significant amount of unstructured data and semi-

structured data that cannot be effectively managed this way. In this paper, we develop the engineering principles and practices to manage 

unstructured and semi-structured data in a MapReduce platform. Having a single data platform for managing both well-structured data, 

unstructured and semi-structured data is beneficial to users; this approach reduces significantly integration, migration, development, 

maintenance, and operational issues. The Hadoop environment is used to write SQL/XML schemas first, then, all commands are translated 

to Hadoop as MapReduce jobs. The efficiency of using this method in MapReduce software is discussed and evaluated. 

Keywords: unstructured and semi-structured data, SQL/JSON schema, SQL/XML schema, Hadoop MapReduce framework. 

1.  Introduction 

Having a huge role over the last 20 years in digital world, the 

software will remain a driving force for its continued 

enhancements and updates. The innovation is based on 

software as a key component [1]. It allows presenting different 

features and services with short turnaround times and high 

speed to market. As a result, software has become an essential 

factor in industry and a basis for innovation [2]. Designing a 

software is not a simple work, because it needs to be developed 

in close cooperation with R&D units and domains built in 

universities, companies, factories and others.  

Software engineering research and innovation presents new 

ways, techniques, mechanisms, languages and tools which 

enhance software production and engineering in itself. Industry 

will remain skilled, capable and competitive in delivering 

software and software-based products to their customers and 

markets through continued software engineering research and 

innovation.  

One important aspect of software engineering when speaking 

about Big Data is how to design the software systems. 

Implementing Big Data technologies to develop and create 

large scalable data systems makes a significant software 

architecture challenge for software architects. The challenge 

comes from the scale factor where software architects must 

deal with issues related to distributed systems. Problems like 

data replication, data consistency, temporary failures, 

communications latencies and concurrent processing require to 

be solved in the system design. These problems are amplified 

in Big Data systems, where these systems need to dynamically 

extend to make use of data distributed geographically. 

Parallel database systems, which all share a common 

architectural design, have been commercially used for nearly 

two decades, and there are a lot of these systems in the 

marketplace, such as; Teradata, Microsoft SQL Server, 

Vertica, DB2 with the database partitioning feature, and 

Oracle. These systems are robust, as they use high performance 

computing platforms.  

The increased focus on the „schema first, data later‟ 

technique has prevented relational database systems 

(RDBMSs) from being the ideal platform for dealing with 

unstructured or semi-structured data. Instead, unstructured or 

semi-structured data support has been adopted in specialized 

database systems, but, some found that it is inadequate to 

support schema evolution [3] to manage data whose structure 

varies a lot over time.   

For managing unstructured documents in database 

management systems (DBMSs), content management systems 

are frequently used to store documents such as files with text 

index providing keyword search [4, 5]. MarkLogic NoSQL 

system [6] is known for implementing XQuery as query 

language for managing document-oriented semi-structured data 

like XML.  MongoDB [7] based NoSQL systems with JSON 

specific query language became a popular choice for managing 

JSON data as JSON became the data-centric semi-structured 

data format. Polygolt storage with NoSQL [8] and some other 

specialized NoSQL based database systems [9] are becoming 

known. In [10], a new technique that depends on the paradigm 

(data first, schema later/never) for managing unstructured and 

semi-structured data in relational database systems, has been 

explained in details to treat the problems that appeared during 

handling these kinds of data. Due to an explosion in the 

number of massive-scale data intensive applications both in 

industry and in the sciences, the need for highly parallel data 

processing platforms have appeared.  
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Today, NoSQL and MapReduce are used frequently 

compared to parallel data processing platforms, because they 

provide efficient storage, representation and query of Big Data. 

However, apart from large, long-standing batch jobs, many Big 

Data queries require only small, short and increasingly 

interactive jobs. MapReduce [11] is a famous framework used 

in programming commodity computer clusters to implement 

large-scale data processing in a single pass. A MapReduce 

cluster can expand to thousands of nodes in a fault-tolerant 

manner. Although parallel database systems [12] may provide 

these data analysis applications, they are expensive, difficult to 

administer, and lack fault-tolerance for long-running queries 

[13]. Hadoop [14], an open-source MapReduce 

implementation, has been used by Yahoo, Facebook, and other 

companies for large-scale data analysis. Programmers can 

realize their applications simply by using a map function and a 

reduce function inside the MapReduce framework to transform 

and aggregate their data, respectively. Many algorithms can be 

implemented using the MapReduce model, such as word 

counting, equi-join queries, and inverted list building [11]. 

MapReduce constitutes an attractive environment for 

developers to create new techniques for handling it due to 

previous advantages.  

In this paper, the goal is to enable MapReduce to manage 

unstructured and semi-structured data along with the structured 

data and, thereby providing all the advanced data management 

services that have been designed over many years for dealing 

with it. The main contribution of this paper is a detailed 

analysis and evaluation of the techniques used to manage 

unstructured and semi-structured data, the issues of importance 

when applying these techniques, and the potential of handling 

unstructured, semi-structured data and structured data in a 

MapReduce platform are thoroughly analyzed and evaluated.  

The Outline of the Paper is as follows: Section 2 presents a 

description for Hadoop and MapReduce platforms. Section 3 

provides detailed analysis and evaluation of techniques for 

managing unstructured and semi-structured data in MapReduce 

platform. Section 4 presents and discusses the experimental 

results. Section 5 presents the conclusions and future work.  

 

2. Description of Hadoop and MapReduce 

Platforms 

2.1.  HadoopDB architecture 

2.1.1. HadoopDB‟s Components  

HadoopDB, whose architecture is shown in Figure 1, expands 

the Hadoop framework and consists of the following four 

components [21]:  

(a) Database Connector  

The interface that connects between independent database 

systems residing on nodes in the cluster and Task Trackers is 

called the Database Connector. It expands Hadoop‟s Input 

Format class and constitutes a part of the Input Format 

Implementations library. Each MapReduce job feeds the 

connector with the SQL query and connection parameters, such 

as: which JDBC driver to use, query fetch size and other query 

tuning parameters. The Database Connector has been assigned 

the role of connecting to the database, processing the SQL 

query and providing results as key-value pairs. The Database 

Connector can create connection to any JDBC-compliant 

database that exists in the cluster. However, different databases 

need different read query optimizations.  

(b) Catalog  

The catalog keeps meta information about the databases. The 

meta information can be as follows: (a) connection parameters 

such as database location, driver class and credentials, (b) 

metadata such as data sets included in the cluster, copies 

locations, and data partitioning properties. The current 

implementation of the HadoopDB catalog enables saving its 

meta information in the form of an XML file in HDFS. This 

file can be reached by the Job Tracker and Task Trackers to 

acquire information needed to schedule tasks and execute data 

required by a query.  

(c) Data Loader  

The Data Loader is assigned the following tasks for (a) 

repartitioning data on a given partition key upon loading, (b) 

breaking single node data into multiple smaller partitions 

called chunks and (c) then loading the single-node databases 

with the chunks. The Data Loader has two main components: 

Global Hasher and Local Hasher. The Global Hasher processes 

a custom made MapReduce job over Hadoop that reads raw 

data files stored in HDFS and creates new partitions from them 

as many as the number of nodes in the cluster. The 

repartitioning job does not include the overhead of organizing 

in order typical MapReduce jobs. The Local Hasher role is to 

copy a partition from HDFS into the local file system of each 

node, and secondarily, to partition the file into smaller sized 

chunks depending on the maximum chunk size setting.  

(d) SQL to MapReduce to SQL (SMS) Planner  

HadoopDB presents a parallel database front-end to data 

analysts making them able to execute SQL queries. The SMS 

planner expands Hive [15]. Hive converts HiveQL, a variant of 

SQL, into MapReduce jobs that can be linked to tables stored 

as files in HDFS. The MapReduce jobs constitutes of lots of 

relational operators (such as filter, select (project), join, 

aggregation) that work as iterators: each operator sends a data 

tuple to the next operator after executing it. Since each table is 

saved as a separate file in HDFS.  

2.1.2. Hadoop Implementation  

In the middle of HadoopDB exists the Hadoop framework. 

Hadoop is composed of two layers [21]: (a) a data storage layer 

named the Hadoop Distributed File System (HDFS) and (b) a 

data processing layer named the MapReduce Framework. 

HDFS is a block-structured file system controlled by a central 

Name Node. Individual files are divided into blocks of the 

same size and distributed across multiple Data Nodes in the 

cluster. The Name Node work includes keeping metadata about 

the size and location of blocks and their copies. The 

MapReduce Framework has a simple master-slave architecture. 

The master works as a single Job Tracker and the slaves or 

worker nodes work as Task Trackers. The Job Tracker 

manages the runtime scheduling of MapReduce jobs and keeps 

information on each Task Tracker‟s load and available 

resources. Each job is divided into Map tasks depending on the 

number of data blocks that need processing, and Reduce tasks. 
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The Job Tracker assigns tasks to Task Trackers depending on 

their locations and load balancing. It reaches locality by 

matching a Task Tracker to Map tasks that execute data inside 

it. It performs load balancing by ensuring all available Task 

Trackers are assigned tasks. Task Trackers regularly inform the 

Job Tracker with their status through heartbeat messages. The 

Input Format library constitutes the interface between the 

storage and processing layers. Input Format implementations 

scan text/binary files or make connections to arbitrary data 

sources, and convert the data into key-value pairs that Map 

tasks can execute.  

 
Figure 1: The architecture of HadoopDB 

 

 

2.2. MapReduce framework 

MapReduce was introduced by Dean et. al. in 2004 [11]. 

Shortly, MapReduce executes data distributed across many 

nodes in a shared-nothing cluster via three basic processes. 

First, a set of Map tasks are executed in a parallel way by each 

node in the cluster without having to communicate with other 

nodes. Next, data is divided into new partitions across all nodes 

of the cluster. Finally, a set of Reduce tasks are processed in a 

parallel way by each node on the partition receving it. This can 

be followed by a certain number of additional Map-repartition-

Reduce cycles as needed. MapReduce does not provide a query 

execution plan that determines which nodes will execute which 

tasks in advance; instead, this can be determined during 

runtime. This gives MapReduce the ability to adjust to node 

failures and slow nodes by giving more tasks to faster nodes 

and redistributing tasks from failed nodes. MapReduce also 

examines the output of each Map task inside the local disk to 

decrease the quantityt of work that has to be redone after a 

failure. MapReduce best achieves the fault tolerance and 

ability to work in heterogeneous environment characteristics. It 

reaches fault tolerance by finding and redistributing Map tasks 

of failed nodes to other nodes in the cluster, specially nodes 

with copies of the input Map data. It has the ability to operate 

in a heterogeneous environment via redundant task execution. 

Tasks that takes a long time to finish compared to slow nodes 

has to be processed inside other nodes that have finished their 

assigned tasks. MapReduce contains a flexible query interface; 

Map and Reduce functions are considered arbitrary 

computations written in a general-purpose language. Therefore, 

each task can do anything on its input, just as long as its output 

follows the conventions determined by the model. In general, 

most MapReduce-based systems, such as Hadoop, which 

provides the systems-level details of the MapReduce platform, 

do not allow declarative SQL. Many of the performance 

enhancing tools that are implemented by database systems can 

not be realized if not obligating the user to first design and load 

data before execution. The fault tolerance and ability to operate 

in different environment characteristics of  MapReduce could 

be integrated with the performance of parallel databases 

systems. Figure 2 [11] shows the MapReduce programming 

model, where a Hadoop application can handle Hadoop 

distributed file system (HDFS) in a cluster. 

 
Figure 2: The MapReduce programming model 

 

 

 

 

3. Approach for Managing Unstructured and 

Semi-Structured Data Using MapReduce 

3.1 Managing unstructured and semi-structured data in a 

MapReduce platform 

There is a huge need to reengineering Hadoop platform to 

handle new challenging data management requirements, such 

as unstructured or semi-structured data, that were not 

addressed in the original Hadoop MapReduce data 

management paradigm. It is better to create a single system 

which avoids the complexity of multiple architectures instead 

of having users to manage multiple systems. Management of 

unstructured and semi-structured data has challenged the 

fundamental assumption that a schema must exist to store, 
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index and query data first. then, there is a need to think out-of-

the schema. Indeed, management of unstructured and semi-

structured data requires thinking how to store, query and index 

data without making schema definition first. To achieve this 

goal, there is a work done to extend technology for managing 

user defined object types, functions and indexes. Implementing 

extensibility ideas leads us to the current engineering principles 

and practices for managing unstructured and semi-structured 

data in MapReduce. The idea in this paper is inspired by the 

research done on RDBMS [10]. In the following sections, a 

detailed analysis and description of storage, query, and update 

and index principles in a MapReduce platform is going to be 

explained. And, experimental results using different simulation 

methods such as HiveQL, JSON and XQuery were analyzed to 

discuss the efficiency of applying this idea. 

3.1.1. Storage technique for management of unstructured and 

semi-structured data in a MapReduce environment  

The design of most of the database platforms including 

MapReduce provides a clean separation between structure and 

data. In most database platforms, a schema has to be 

determined before data can be loaded. A collection of 

unstructured and semi-structured data, has a small number of 

common attributes accompanied by a large variety of non-

common attributes, that are managed using JSON and XML 

documents, then, they are transformed into MapReduce jobs in 

a MapReduce platform. The structure cannot be separated 

easily from data content because the structure changes a lot 

from instance to instance.  The instance schema is included in 

each unstructured or semi-structured data (UNSED) instance 

so that each UNSED instance is self-contained, and can be 

distributed to different layers. Schema based on data of a 

UNSED collection are not treated as central dictionary data but 

can be computed dynamically from all unstructured or semi-

structured data (UNSED) instances saved in a UNSED 

collection.   

Unlike the schema based on structured data, inside the 

schema based on UNSED data, there does not exit a set of 

finite size of dimension D such that every element of a set of 

data S can be expressed as a linear combination of elements 

from set D. The schema based on structured data may have 

bounded dimensions with unlimited number of elements as 

formal schema definition, while, schema based on unstructured 

and semi-structured data has unlimited dimensions.   

All the dimensions are called schemas. Managing UNSED 

data cannot be done by separating the data from its schema. 

Each element in this case has to keep track of its dimensions 

and the corresponding value.  Each element is represented by a 

vector of dimension and value (name value pair). Then, 

management of unstructured or semi-structured data requires 

store, query and index both schema and data together. Then, 

after implementing the storage technique using XML 

documents or JSON objects, these queries were transformed 

into Map and Reduce jobs in a MapReduce environment.   

UNSED instances are stored in a UNSED collection using 

document-object-store model, where both structure and data 

are saved together for each UNSED instance, so each UNSED 

instance is self-descriptive and does not rely on a central 

schema. New structures can be added on a per-record basis 

without dealing with schema architecture. Adding a new 

domain UNSED is done by storing into existing SQL datatype, 

without the need to add a new SQL type and this enables the 

new UNSED domain to acquire full operational data capability 

support. 

A data-guide can be derived from UNSED collections in the 

form of virtual tables, to know the complete structures of the 

data which helps to create queries over UNSED collection. 

UNSED management with data-guide supports the paradigm of 

“storage without schema but query with schema”. For master-

detail hierarchical structures existing in UNSED instances, a 

table architecture must be created. They can be built as 

secondary structures on top of the primary hierarchical 

UNSED storage.  

Storage technique in the MapReduce depends on the 

following steps. UNSED instances containing both schema and 

data are stored in the UNSED collections in the data loader 

inside the MapReduce environment. Also, schemas created 

inside UNSED instances are saved in schema collections in the 

catalog inside the MapReduce environment. Then, all saved 

schemas are transformed using SMS planner into MapReduce 

jobs, that are executed inside the MapReduce platform.  

Figure 3 shows the storage technique for management of 

unstructured and semi-structured data in a MapReduce 

environment. 

 
Figure 3: Storage technique for management of UNSED  

in a MapReduce environment 

3.1.2. Query and Update technique for management of 

unstructured and semi-structured data in a MapReduce 

environment  

A UNSED collection is saved as a table of UNSED instances. 

A UNSED instance itself is domain specific and typically owns 

its domain-specific query language. The domain-specific query 

language is XQuery for UNSED of XML documents. The 

domain-specific query language is the SQL/JSON path 

language for UNSED of JSON objects.  

In the domain-specific query language, querying or updating 

UNSED can be performed by surfing through document-object 

structures, A UNSED instance is not distributed into tables 

since hierarchies in a UNSED are dynamic. Then, it is obvious 

to express hierarchical traversal of UNSED as path navigation 

with value predicate constructs in the UNSED domain 

language. There must exist ability of performing full context 

aware text search, UNSED instances may be document centric 

with mixture of textual content and structures. There is a 
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considerable quantity of full text content in UNSED that can be 

subject to full text query. Full text search can be embedded 

within a context identified by path navigation into the UNSED 

instance. Also, querying or updating can be done by projecting, 

transforming object component and developing new document 

or object, results of path navigational queries can be partitions 

or called fragments of UNSED. The new UNSED fragments 

can be created by extracting components of existing UNSED 

and combining them through creation and transformation.  

While a UNSED domain-specific query and update language 

constitutes as an intra-document query language, SQL can be 

implemented as an inter-document query language.  The query 

of UNSED depends on positioning SQL as a set-oriented 

language to present access to a set of UNSED instances by 

integrating the set based algebra supported by SQL.  By 

positioning SQL as a Set Query Language, SQL achieves the 

needed constructs to express set algebra operators, such as 

selection, projection, join, group by, aggregation, union, 

intersection and difference among UNSED instances. Query 

and update techniques in the MapReduce is performed as 

follows.  

Some UNSED instances saved in the UNSED collections in 

the data loader inside the MapReduce environment are 

retrieved according to the required query or update commands. 

The retrieved UNSED instances are gathered in a fragment of 

UNSED collection created after the query or update command 

is executed. After that, schemas contained in the extracted 

fragment of UNSED collection are saved in schema collections 

in the catalog inside the MapReduce environment as virtual 

schemas. Then, all virtual schemas saved inside the schema 

collections are converted using SMS planner into MapReduce 

jobs, that are executed inside the MapReduce platform.  

Figure 4 shows query and update techniques for 

management of unstructured and semi-structured data in a 

MapReduce environment.  

 

 

 
Figure 4: Query and update techniques for management of 

UNSED in a MapReduce environment 

 

3.1.3. Indexing technique for management of unstructured and 

semi-structured data in a MapReduce environment  

UNSED indexing must be able to achieve performance for 

both predefined query access pattern and ad-hoc query access 

pattern. In a pre-defined query access pattern in the context of 

UNSED, a projection out of UNSED in the form of a set of 

scalar value projections or in the form of UNSED table for a 

set of views can be determined, because users are aware of the 

partial schema within UNSED derived from data-guide. This is 

known as „data first, schema later as index‟ indexing approach.  

Meanwhile, in the ad-hoc query access pattern in the context 

of UNSED, users do not own any prior knowledge of the 

UNSED, then a UNSED search index is required to make 

efficient evaluation of the existence of UNSED using ad-hoc 

query search. This is known as „data first, schema never‟ 

search index approach, which is similar to full text index 

search index.  

The columnar index embeds efficient range queries over the 

columnar projection of UNSED values and returns a set of 

DOCIDs, each of which is an ordinal number that defines a 

row of the base document-object-store table including UNSED 

that satisfy the range query. The original UNSED can be 

provided from the primary document-object-store table using 

the DOCID returned by the columnar index. To support range 

queries over multiple scalar values extended from UNSED via 

multiple UNSED values, multiple columnar indexes, each of 

which links to a UNSED value, can be implemented.  

The idea of table index [16] is used, to efficiently execute 

UNSED table queries. Table index can be presented in two 

physical forms in dealing with UNSED. In a classical row 

store, table index can internally keep master-detail relational 

tables to carry the results calculated by evaluation of UNSED 

tables. The master-detail table is connected by internally 

generated primary foreign key so that the column values in the 

master table are not repeatedly saved in detail tables. Besides, 

the tuple-store model can be used to determine columnar index 

in the form of UNSED values and UNSED tables to index 

UNSED.   

To manage an ad-hoc query, a search index over a UNSED 

table without having users to determine what path structures or 

values require to be indexed is created. A search index indexes 

everything in a UNSED collection. Search indices can be 

created depending on classical inverted index that indexes all 

keywords in a document to present ad-hoc keyword search 

capability [17]. This achieves the basic full text search 

capability over document centric XML documents or JSON 

objects. Unlike classical inverted indices that index only 

keywords in a document, a generalized inverted index is 

expanded to index hierarchical path structures inside UNSED 

to provide path-aware full text search scalar range value search 

workload queries.    

Each UNSED document in a UNSED collection indexed by 

the search index is determined by an ordinal number as a 

DOCID. The DOCIDs of all documents containing the 

keyword are saved in an organized way using delta-

compression inside a posting list, so that efficient pre-sorted 

merge join is accomplished on the posting lists to efficiently 

manage multi-keywords searches and phrase searches linked 

by AND, OR and NOT Boolean predicates [18].  Classical 

inverted indices can be expanded to support efficient 

processing of path query and path aware full text search [19] 

that is a common query for XML full text search.   
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Each distinct XML tag is indexed and saved as an entry in 

inverted index with the posting list saving not only the 

DOCIDs of documents including the XML tags, but also the 

range of tag open and close positions inside the document. In 

the same method, an inverted index can be expanded to index 

JSON objects saved in JSON collection table [20]. Like XML 

tree nodes, JSON objects and arrays create nested hierarchical 

relationship that can be indexed using their positions inside the 

JSON object.  

Indexing technique in the MapReduce can be accomplished 

according to the following steps. Each UNSED instance 

containing both schema and data has a DOCID, as mentioned 

before, these UNSED instances are stored in the UNSED 

collections in the data loader inside the MapReduce 

environment. A fragment of UNSED collection is created 

according to the indexing required. This fragment contains the 

UNSED instances in need. Then, schemas residing inside 

UNSED instances are stored with their DOCIDs in schema 

collections in the catalog inside the MapReduce environment. 

Then, all saved schemas in the catalog are transformed using 

SMS planner into MapReduce jobs, that are executed inside the 

MapReduce platform. Figure 5 shows indexing technique for 

management of unstructured and semi-structured data in a 

MapReduce environment. 

 
Figure 5: Indexing technique for management of UNSED in a 

MapReduce environment 

 

4. Experimental Results 

In this section, the execution times of these three methods were 

analyzed and evaluated. The TCP-H benchmark dataset was 

used to compute the results using HiveQL, JSON, XQuery.  

The following table (table 1) shows the total execution times 

of running TCP-H dataset using five proposed queries with 

HiveQL, JSON, XQuery to compare, analyze and evaluate the 

fastest execution method, and the differences of execution 

times between the three methods. Let‟s consider the following 

queries: 

 

Query 1: 

Using HiveQL: 
Select n_nationkey, n_name, n_regionkey, n_comment from 

nation; 

Using JSON: 
CREATE TABLE json_nation (json string); 

LOAD DATA INPATH  '/user/datafiles/nation.json' OVERWRITE 

INTO TABLE json_nation; 

CREATE TABLE jt_nation AS 

select 

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valueregnat from json_nation; 

SELECT get_json_object(jt_nation.valueregnat,'$.id') AS id, 

get_json_object(jt_nation.valueregnat,'$.N_NATIONKEY') AS 

n_nationkey, 

get_json_object(jt_nation.valueregnat,'$.N_NAME') AS n_name, 

get_json_object(jt_nation.valueregnat,'$.N_REGIONKEY') AS 

n_regionkey, 

get_json_object(jt_nation.valueregnat,'$.N_COMMENT') AS 

n_comment FROM jt_nation; 

Using XQuery: 
xquery version "1.0"; 

for $i in 0 to 25  

   let $y := doc(“nation.xml”)/nations/id[$i] 

     return $y/(n_nationkey,n_name,n_regionkey,n_comment) 

Query 2: 

Using HiveQL: 
select n.n_nationkey, n.n_name, r.r_regionkey , r.r_name 

from region r join nation n on 

n.n_regionkey = r.r_regionkey; 

Using JSON: 
CREATE TABLE json_region ( json string ); 

LOAD DATA INPATH  '/user/datafiles/region.json' OVERWRITE 

INTO TABLE json_region; 

CREATE TABLE jt_region AS 

select 

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valueregreg from json_region; 

SELECT 

get_json_object(jt_nation.valueregnat,'$.N_NATIONKEY') AS 

n_nationkey, 

get_json_object(jt_nation.valueregnat,'$.N_NAME') AS n_name, 

get_json_object(jt_region.valueregreg,'$.R_REGIONKEY') AS 

r_regionkey, 

get_json_object(jt_region.valueregreg,'$.R_NAME') AS r_name  

FROM jt_region join jt_nation on 

get_json_object(jt_nation.valueregnat, '$.N_REGIONKEY') = 

get_json_object(jt_region.valueregreg, '$.R_REGIONKEY');  

Using XQuery: 
xquery version "1.0"; 

let $regions := doc('region.xml') 

   let $y := doc('nation.xml') 

   for $i in 0 to 25 

      for $j in 0 to 5 

       where  $y/nations/id[$i]/n_regionkey = 

$regions/regions/id[$j]/r_regionkey 

           return <result>{$y/nations/id[$i]/n_nationkey} 

and {$y/nations/id[$i]/n_name} and 

{$regions/regions/id[$j]/r_regionkey} and 

{$regions/regions/id[$j]/r_name}</result>  

Query 3: 

Using HiveQL: 
select  

  s_suppkey, s_name, s_address, s_acctbal, s_comment 

from nation n join supplier s on  

  s.s_nationkey = n.n_nationkey and n.n_name = 'GERMANY'; 

Using JSON: 
CREATE TABLE json_nation (json string); 

CREATE TABLE json_supplier (json string); 

LOAD DATA INPATH  '/user/datafiles/nation.json' OVERWRITE 

INTO TABLE json_nation; 

LOAD DATA INPATH  '/user/datafiles/supplier_v.json' 

OVERWRITE INTO TABLE json_supplier; 

CREATE TABLE jt_nation AS  

select 

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valueregnat from json_nation; 

CREATE TABLE jt_supplier AS 

select 

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valuesupp from json_supplier; 

SELECT get_json_object(jt_supplier.valuesupp,'$.S_SUPPKEY'),  

get_json_object(jt_supplier.valuesupp,'$.S_NAME'),   

get_json_object(jt_supplier.valuesupp,'$.S_ADDRESS'),  

get_json_object(jt_supplier.valuesupp,'$.S_ACCTBAL'), 

get_json_object(jt_supplier.valuesupp,'$.S_COMMENT')   

FROM jt_nation join jt_supplier on 

get_json_object(jt_nation.valueregnat, '$.N_NATIONKEY') = 

get_json_object(jt_supplier.valuesupp, '$.S_NATIONKEY') and 
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get_json_object(jt_nation.valueregnat, '$.N_NAME') = 

'GERMANY'; 

Using XQUERY: 
xquery version "1.0"; 

let $suppliers := doc('supplier.xml') 

   let $y := doc('nation.xml') 

   for $i in $suppliers/suppliers 

      for $j in $y/nations 
       where  $y/nations/id[$j]/n_nationkey = 
$suppliers/suppliers/id[$i]/s_nationkey and 

               $y/nations/id[$j]/n_name = „GERMANY‟ 

           return 

<result>{$suppliers/suppliers/id[$i]/s_suppkey} and 

{$suppliers/suppliers/id[$i]/s_name} and 

{$suppliers/suppliers/id[$i]/s_address} and 

{$suppliers/suppliers/id[$i]/s_acctbal} and 

{$suppliers/suppliers/id[$i]/s_comment}</result>  

Query 4: 

Using HiveQL: 
select s_suppkey from supplier 

where not s_comment like '%Customer%Complaints%'; 

Using JSON: 
CREATE TABLE json_supplier (json string); 

LOAD DATA INPATH  '/user/datafiles/supplier_v.json' 

OVERWRITE INTO TABLE json_supplier; 

CREATE TABLE jt_supplier AS 

select 

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valuesupp from json_supplier; 

SELECT get_json_object(jt_nation.valuesupp,'$.S_SUPPKEY') AS 

ps_suppkey FROM jt_supplier 

where not get_json_object(jt_supplier.valuesupp, 

'$.S_COMMENT') like '%Customer%Complaints%'; 

Using XQUERY: 
xquery version "1.0"; 

let $suppliers := doc('supplier.xml') 

    for $i in $suppliers/suppliers 

      where  not $suppliers/suppliers/id[$i]/s_comment like 

„%Customer%Complaints%‟ 

           return 

<result>{$suppliers/suppliers/id[$i]/s_suppkey}</result>  

Query 5: 

Using HiveQL: 
select s_suppkey, s_acctbal, s_name, n_name, s_address, 

s_phone, s_comment  

from nation n join region r on  

    n.n_regionkey = r.r_regionkey and r.r_name = 'EUROPE'  

  join supplier s on   s.s_nationkey = n.n_nationkey  

  where s_acctbal > 50.0; 

Using JSON: 
CREATE TABLE json_nation (json string); 

CREATE TABLE json_region (json string); 

CREATE TABLE json_supplier (json string); 

LOAD DATA INPATH  '/user/datafiles/nation.json' OVERWRITE 

INTO TABLE json_nation; 

LOAD DATA INPATH  '/user/datafiles/region_v.json' OVERWRITE 

INTO TABLE json_region; 

LOAD DATA INPATH  '/user/datafiles/supplier_v.json' 

OVERWRITE INTO TABLE json_supplier; 

CREATE TABLE jt_nation AS 

select 

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valueregnat from json_nation; 

CREATE TABLE jt_region AS 

select 

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valueregreg from json_region; 

CREATE TABLE jt_supplier AS 

select 

regexp_replace(regexp_replace(json,'\\}\\,\\{','\\}\\\n\\{')

,'\\[|\\]','') as valuesupp from json_supplier; 

SELECT get_json_object(jt_supplier.valuesupp,'$.S_SUPPKEY'),  

get_json_object(jt_supplier.valuesupp,'$.S_ACCTBAL'), 

get_json_object(jt_supplier.valuesupp,'$.S_NAME'),  

get_json_object(jt_nation.valueregnat,'$.N_NAME'), 

get_json_object(jt_supplier.valuesupp,'$.S_ADDRESS'),  

get_json_object(jt_supplier.valuesupp,'$.S_PHONE'),  

get_json_object(jt_supplier.valuesupp,'$.S_COMMENT')  

FROM jt_nation join jt_region on 

get_json_object(jt_nation.valueregnat, '$.N_REGIONKEY') = 

get_json_object(jt_region.valueregreg, '$.R_REGIONKEY') 

and get_json_object(jt_region.valueregreg, '$.R_NAME') = 

'EUROPE' 

join jt_supplier on 

get_json_object(jt_nation.valueregnat, '$.N_NATIONKEY') = 

get_json_object(jt_supplier.valuesupp, '$.S_NATIONKEY') 

where get_json_object(jt_supplier.valuesupp,'$.S_ACCTBAL') > 

50.0; 

Using XQUERY: 
xquery version "1.0"; 

let $suppliers := doc('supplier.xml') 

   let $y := doc('nation.xml') 

      let $z = doc(„region.xml‟) 

   for $i in $suppliers/suppliers 

      for $j in $y/nations 

         for $m in $z/regions 

       where  $y/nations/id[$j]/n_nationkey = 

$suppliers/suppliers/id[$i]/s_nationkey and 

              $y/nations/id[$j]/n_regionkey = 

$z/regions/id[$m]/r_regionkey and 

$suppliers/suppliers/id[$i]/s_acctbal > 50.0 

           return 

<result>{$suppliers/suppliers/id[$i]/s_suppkey} and 

{$suppliers/suppliers/id[$i]/s_acctbal} and 

{$suppliers/suppliers/id[$i]/s_name} and  

{$y/nations/id[$j]/n_name} and  

{$suppliers/suppliers/id[$i]/s_address} and 

{$suppliers/suppliers/id[$i]/s_phone} and 

{$suppliers/suppliers/id[$i]/s_comment}</result>  

 

Using the three techniques, execution times are computed for 

the five proposed queries. For query 1, HiveQL was executed 

in 4 seconds and 530 milliseconds, JSON was executed in 7 

seconds 880 milliseconds, which is a little bit longer than 

HiveQL, and XQuery was executed in 1 seconds and 500 

milliseconds, which is the shortest time. In query 2, HiveQL 

took 15 seconds and 350 milliseconds to finish, JSON took a 

very close time from HiveQL with fractions in milliseconds, 

which is 15 seconds and 490 milliseconds, then XQuery took 

the shortest time with 2 seconds 400 milliseconds.  For query 

3, JSON took a little bit longer with 34 seconds and 640 

milliseconds, followed by, HiveQL with 8 seconds and 320 

milliseconds, and XQuery took the shortest time of 3 seconds 

and 60 milliseconds. For query 4, JSON took the longer time 

with 15 seconds and 590 milliseconds, HiveQL took a little bit 

shorter time of 12 seconds and 750 milliseconds, then, XQuery 

took the shortest time at 2 seconds and 980 milliseconds. For 

query 5, JSON took a very close time from HiveQL, with 7 

seconds and 980 milliseconds, and 7 seconds and 330 

milliseconds respectively, then, XQuery took a shorter time 

with 2 seconds and 560 milliseconds. After analyzing the 

results obtained in table 1 for all the five queries, XQuery 

showed the better execution time, followed by HiveQL, then, 

finally, JSON query. But, in general, the difference in 

execution times between HiveQL and JSON is small. And, this 

showed that JSON and XQuery are preferred to be used in 

managing unstructured, semi-structured, as well as structured 

data, due to their good execution times reasonably compared to 

HiveQL.   

Table 1: Execution times using different methods 

 HiveQL JSON XQuery 

Query 1 4 sec 530 msec  7 sec 880 msec  1 sec 500 msec 

  Query 2 15 sec 350 msec 15 sec 490 msec  2 sec 400 msec 

  Query 3 8 sec 320 msec 34 sec 640 msec 3 sec 60 msec 

Query 4 12 sec 750 msec 15 sec 590 msec  2 sec 980 msec 

Query 5 7 sec 330 msec 7 sec 980 msec  2 sec 560 msec 

 

Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10 show 

execution times of queries 1, 2, 3, 4 and 5. These figures are 

derived from table 1. The execution times of the three methods 

are represented in seconds. In each figure, the execution time is 
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represented by the x-axis, and the HiveQL, JSON and XQuery 

methods used in execution are represented by the y-axis. These 

figures compare the execution times of the three methods. 

 

 
Figure 6: Execution times of query 1 

 
Figure 7: Execution times of query 2 

 

 
Figure 8:  Execution times of query 3 

 

 
Figure 9:  Execution times of query 4 

 

 
Figure 10:  Execution times of query 5 

5. Conclusions and Future Work 

A model for managing unstructured and semi-structure is 

proposed in this paper using JSON and XQuery.  It was 

concluded from simulation that JSON and XQuery provided 

good execution times compared to HiveQL. It is better to 

create a single interface to manage structured, unstructured and 

semi-structured data. In the future work, there is a need to 

make a unified model that all kinds of environments and 

platforms and that can be used to manage all types of data; 

such as structured, unstructured and semi-structured data.   
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