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Abstract:  

This paper deals with a finite element method involving Petrov-Galerkin method with quintic B-splines as 

basis functions and septic B-splines as weight functions to solve a general fourth order boundary value 

problem with a particular case of boundary conditions. The basis functions are redefined into a new set 

of basis functions which vanish on the boundary where the Dirichlet type of boundary conditions are 

prescribed. The weight functions are also redefined into a new set of weight functions which in number 

match with the number of redefined basis functions. The proposed method was applied to solve several 

examples of fourth order linear and nonlinear boundary value problems. The obtained numerical results 

were found to be in good agreement with the exact solutions available in the literature. 

Keywords: Petrov-Galerkin method, Quintic B-spline, Septic B-spline, Fourth order boundary value 
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1. Introduction  

In this paper, we consider a general fourth order 

boundary value problem 

1 2 3

4

(4)

0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ),

a x y x a x y x a x y x a x y x

a x y x b x c x d

    

   
       

(1) 

subject to boundary conditions 

0 0 1 1( ) , ( ) , ( ) , ( )y c A y d C y c A y d C                        

(2)   

where 0 1 0 1, , ,A A C C   are finite real constants and  

0 1 2 3 4( ), ( ), ( ), ( ), ( ) and ( )a x a x a x a x a x b x  are all 

continuous functions defined on the interval [ , ].c d  

 

The fourth order boundary value problems occur in a 

number of areas of applied mathematics, among 

which are fluid mechanics, elasticity and quantum 

mechanics as well as in science and engineering. 

The existence and uniqueness of the solution for 

these types of problems have been discussed in 

Agarwal [1]. Finding the analytical solutions of such 

type of boundary value problems in general is not 

possible. Over the years, many researchers have 

worked on fourth order boundary value problems by 

using different methods for numerical solutions. 

Papamichael and Worsey [2] developed the solution 

of a special case of linear fourth order boundary 

value problems by cubic spline method. Agarwal 

and Chow [3] presented the solution of nonlinear 

fourth order boundary value problems by the 

Picard’s iterative method and the quasilinear 

iterative method. Taiwo and Evans [4] developed 

perturbed collocation method to solve a general 

linear fourth order boundary value problem. 

Wazawz [5] presented modified decomposition 

method to solve a special case of fourth order 

boundary value problems. Waleed and Luis [6] 

developed decomposition method to solve fourth 

order boundary value problems. Erturk and Momani 

[7] presented a numerical comparison between 

di_erential transform methodand the Adomian 

decomposition method for solving fourth-order 

boundary value problems. Momani and Noor [8] 

presented a numerical comparison between the 

Differential transform method, Adomian 

decomposition and Homotopy perturbation method 

for solving a fourth-order boundary value problem. 

Samuel and Sinkala [9] developed higher order B-
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spline collocation method to solve fourth order 

boundary value problems. Syed and Noor [10], Noor 

and Syed [11] developed 

Homotopy perturbation method and Variational 

iteration technique respectively for the solution of 

fourth order boundary value problems. Ahniyaz et 

al. [12] developed Sinc-Galerkin method to solve a 

general linear fourth order boundary value problem. 

Manoj and Pankaj [13], Ramadan et al. [14], Pankaj 

et al. [15] and Ghazala and Amin [16] presented the 

solution of a special case of linear fourth order 

boundary value problems by spline techniques. Kasi 

Viswanadham et al. [17], Kasi Viswanadham and 

Sreenivasulu [20] developed Galerkin methods with 

quintic Bsplines and cubic B-splines respectively to 

solve a general fourth order boundary value 

problem. Rashidinia and Ghasemi [18], Kasi 

Viswanadham and Showri Raju [19] have developed 

B-spline collocation method, cubic B-spline 

collocation method respectively to solve a general 

fourth order boundary value problem. So far, fourth 

order boundary value problems have not been solved 

by using Petrov-Galerkin method with quintic B-

splines as basis functions and septic B-splines as 

weight functions. This motivated us to solve a fourth 

order boundary value problem by Pertrov-Galerkin 

method with quintic B-splines as basis functions and 

septic B-splines as weight functions. 

 

In this paper, we try to present a simple finite 

element method which involves Petrov-Gelerkin 

approach with quintic            B-splines as basis 

functions and septic B-splines as weight functions to 

solve the fourth order boundary value problem of the 

type (1)-(2). This paper is organized as follows. 

Section 2, deals with the justification for using 

Petrov-Galerkin Method. In section 3, the definition 

of quintic B-splines and septic       B-splines has 

been described. In section 4, description of the 

Petrov-Galerkin method with quintic B-splines as 

basis functions and septic B-splines as weight 

functions  has been presented and in section 5, 

solution procedure to find the nodal parameters is 

presented. In section 6, the proposed method is 

tested on several linear and nonlinear boundary 

value problems. The solution to a nonlinear problem 

has been obtained as the limit of a sequence of 

solution of linear problems generated by the 

quasilinearization technique [21]. Finally, in the last 

section, the conclusions are presented. 

 

 

 

2 Justification for using Petrov-Galerkin method 

 

In Finite Element Method(FEM) the approximate 

solution can be written as a linear combination of 

basis functions which constitute a basis for the 

approximation space under consideration. FEM 

involves variational methods like Rayleigh Ritz 

method, Galerkin method, Least Squares method, 

Petrov-Galerkin method and Collocation method etc.  

 

In Petrov-Galerkin method, the residual of 

approximation is made orthogonal to the weight 

functions. When we use Petrov-Galerkin method, a 

weak form of approximation solution for a 

given differential equation exists and is unique 

under appropriate conditions [22, 23] irrespective of 

properties of a given differential operator. Further, a 

weak solution also tends to a classical solution of 

given differential equation, provided sufficient 

attention is given to the boundary conditions [24]. 

That means the basis functions should vanish on the 

boundary where the Dirichlet type of boundary 

conditions are prescribed and also the number of 

weight functions should match with the number of 

basis functions. Hence in this paper we employed 

the use of Petrov-Galerkin method with quintic B-

splines as basis functions and septic B-splines as 

weight functions to approximate the solution of 

fourth order boundary value problem. 

 

3 Definition of quintic B-spline and  Septic B-spline 

 

The quintic B-splines  and septic B-splines are defined in [25]-[27]. The existence of quintic spline 

interpolate s(x) to a function in a closed interval [c, d] for spaced knots (need not be evenly spaced) of a 

partition c = x0 < x1 <…< xn-1 < xn= d     is established by constructing it. The construction of s(x) is done 

with the help of the quintic B-splines. Introduce ten additional knots  x-5, x-4, x-3, x-2, x-1, xn+1, xn+2, xn+3, xn+4 

and xn+5 in such a way that 

x-5<x-4<x-3<x-2<x-1<x0   and   xn<xn+1<xn+2<xn+3<xn+4< xn+5. 

Now the quintic  B-splines sxBi )'(  are defined by 
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3 3
3

( )
, [ , ]

( ) ( )

0,

i
r

i i
r i

i r

x x
x x x

B x x

otherwise






 
 

 
 

 



 

where               

5

5 ( ) ,
( )

0,

r r

r

r

x x if x x
x x

if x x


  
  


 

and       
3

3

( ) ( )
i

r

r i

x x x


 

   

where {B-2(x), B-1(x), B0(x), B1(x),…,Bn(x), Bn+1(x), Bn+2(x)} forms a basis for the space 5( )s   of quintic 

polynomial splines. Schoenberg [24] has proved that quintic B-splines are the unique nonzero splines of 

smallest compact support with the knots at 

x-5<x-4<x-3<x-2<x-1<x0<x1<…<xn-1<xn<xn+1<xn+2<xn+3 

<xn+4< xn+5. 

In a similar analogue septic B-splines Ri(x)'s are defined by 
74

4 4
4

( )
, [ , ]

( ) ( )

0,

i
r

i i
r i

i r

x x
x x x

R x x

otherwise






 
 

 
 

 



 

where 

and       
4

4

( ) ( )
i

r

r i

x x x


 

   

where { R-3(x), R-2(x), R-1(x), R0(x), R1(x),…, Rn-1(x), Rn(x), Rn+1(x), Rn+2(x), Rn+3(x)} forms a basis for the 

space 7 ( )S   of septic polynomial splines with the introduction of four more additional knots 
7 6 6 7, , ,n nx x x x   

 

to the already existing knots 5x  to 
5nx 
. Schoenberg [27] has proved that septic B-splines are the unique 

nonzero splines of smallest compact support with the knots at 

x-7< x-6<x-5<x-4<x-3<x-2<x-1<x0<x1<… 

<xn-1<xn<xn+1<xn+2<xn+3<xn+4<xn+5< xn+6< xn+7. 

 

2. Description of the method  

To solve the boundary value problem (1) subject to boundary conditions (2) by the Petrov-Galerkin method 

with quintic B-splines as basis functions and septic B-splines as weight functions, we define the 

approximation for ( )y x  as 
2

2

( ) ( )
n

j j

j

y x B x




                                                             (3) 

where ,

j s  are the nodal parameters to be determined and ( ) 'jB x s are quintic B-spline basis functions. In 

Petrov-Galerkin method, the basis functions should vanish on the boundary where the Dirichlet type of 

boundary conditions are specified. In the set of quintic B-splines {B-2(x), B-1(x), B0(x),…, Bn(x), Bn+1(x), 

Bn+2(x)}, the basis functions B-2(x),     B-1(x), B0(x), B1(x), B2(x), Bn-2(x),   Bn-1(x), Bn(x), Bn+1(x)  and Bn+2(x) 

do not vanish at one of the boundary points. So, there is a necessity of redefining the basis functions into a 

new set of basis functions which vanish on the boundary where the Dirichlet type of boundary conditions are 

specified. The procedure for redefining of the basis functions is as follows. 

Using the definition of quintic B-splines and the Dirichlet boundary conditions of (2), we get the 

approximate solution at the boundary points as 

2

0 0 0

2

( ) ( ) ( )j j

j

y c y x B x A


                                        (4)                                                      
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2

0

2

( ) ( ) ( )
n

n j j n

j n

y d y x B x C


 

    (5)                                                                                                                                         

Eliminating 
2
 and 2n  from the equations (3), (4) and (5), we get 

         
1

1

( ) ( ) ( )
n

j j

j

y x w x P x




                                   (6) where                    

0 0
2 2

2 0 2

( ) ( ) ( )
( ) ( )

n

n n

A C
w x B x B x

B x B x
 

 

                          (7)  

0

2

2 0

2

2

( )
( ) ( ) , 1,0,1,2

( )

( ) ( ) , 3,4,..., 3

( )
( ) ( ) , 2, 1, , 1

( )

j

j

j j

j n

j n

n n

B x
B x B x j

B x

P x B x j n

B x
B x B x j n n n n

B x










  




  

     


    (8) 

 

The new set of basis functions in the approximation y(x) is { ( ), 1,0,..., 1}jP x j n   . Here w(x) takes care of 

given set of Dirichlet boundary conditions and ( )jP x 's vanish on the boundary. In Petrov-Galerkin method, 

the number of basis functions in the approximation should match with the number of weight functions. Here 

the number of basis functions in the approximation is n + 3, where as the number of weight functions is n+7. 

So, there is a need to redefine the weight functions into a new set of weight functions which in number 

match with the number of basis functions. The procedure for redefining the weight functions is as follows: 

 

Let us write the approximation for v(x) as 

       
3

3

( ) ( )
n

j j

j

v x R x




                                               (9)                

 where ( ) 'jR x s are septic B-splines and here we assume that above approximation  v(x) satisfies 

corresponding homogeneous boundary conditions of the given boundary conditions (2). That means v(x) 

defined in (9) satisfies the conditions 

        ( ) 0, ( ) 0, ( ) 0, ( ) 0v c v d v c v d                                (10)                                                                        

Applying the boundary conditions (10) to (9), we get the approximate solution at the boundary points as  

3

0 0

3

( ) ( ) ( ) 0j j

j

v c v x R x


                                      (11)                                                                                       

3

3

( ) ( ) ( ) 0
n

n j j n

j n

v d v x R x


 

                                   (12)                                                                               

3

0 0

3

( ) ( ) ( ) 0
n

j j

j

v c v x R x




                                     (13)                                                                                 

3

3

( ) ( ) ( ) 0
n

n j j n

j n

v d v x R x


 

                                    (14)                                                                                   

Eliminating 
3
, 

2
, 

2n 
 and 

3n 
 from the equations (9) and (11) to (14), we get the approximation for v(x) 

as  

             
1

1

( ) ( )
n

j j

j

v x T x




                                            (15) where                



DOI: 10.18535/ijecs/v5i8.59 

 

S.M. Reddy, IJECS Volume 05 Issue 08 August 2016 Page No.17776-17786 Page 17780 

0

2

2 0

2

2

( )
( ) ( ) , 1,0,1,2,3

( )

( ) ( ) , 4,5,..., 4

( )
( ) ( ) , 3, 2, 1, , 1

( )

j

j

j j

j n

j n

n n

S x
S x S x j

S x

T x S x j n

S x
S x S x j n n n n n

S x










  




  



      
 

  (16)                                        

0

3

3 0

3

3

( )
( ) ( ) , 2, 1,0,1,2,3

( )

( ) ( ) , 4,5,..., 4

( )
( ) ( ) , 3, 2, 1, , 1, 2

( )

j

j

j j

j n

j n

n n

R x
R x R x j

R x

S x R x j n

R x
R x R x j n n n n n n

R x










   




  

       


(17) 

Now the new set of weight functions for the approximation v(x) is { ( ), 1,0,..., 1}jT x j n   . Here ( )jT x 's and 

their derivatives vanish on the boundary. 

 

Applying the Petrov-Galerkin method to (1) with the new set of basis functions { ( ), 1,0,..., 1}jP x j n    and 

with the new set of weight functions { ( ), 1,0,..., 1}jT x j n   , we get 

0

0

0 1 2 3

(4)

4 for   i  -1,  0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( , ,  n+1.) ( )

[

]

n

n

x

x

x

i i

x

a x y x a x y x a x y x a x y x

a x y x x dx b x T x dxT

    

  





         (18)                                                          

Integrating by parts the first three terms on the left hand side of (18) and after applying the boundary 

conditions prescribed in (2), we get  

 

 

0

0

0

2
(4)

0 0 12

2

0 1 0

3

2 3

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )[ ]

n

n

n

x

i i x

x

x

i ix

x

d
a x T x y x dx a x T x C

dx

d d
a x T x A a x T x y x dx

dx dx



 





        (19) 

0 0

2

1 12
( ) ( ) ( ) ( ) ( ) ( )[ ]

n nx x

i i

x x

d
a x T x y x dx a x T x y x dx

dx
            (20)                                                      

0 0

2 2( ) ( ) ( ) ( ) ( ) ( )[ ]
n nx x

i i

x x

d

d
a x T x y x dx a x T y

x
x x dx           (21)  

Substituting (19), (20) and (21) in (18) and using the approximation for y(x) given in (6), and after 

rearranging the terms for resulting equations, we get system of equations in the matrix form as  

                               A B                                           (22)                                                                                          

where [ ];ijaA  

0

3 2

0 13 2

2 3

4

{[ [ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] ( ) ( )] ( )

( ) ( ) ( )}

nx

ij i i
x

i i j

i j

d d
a a x T x a x T x

dx dx

d
a x T x a x T x P x

dx

a x T x P x dx

  

 





     

for  i=-1, 0,…, n+1;  j=-1, 0,…, n+1.                     (23) 

[ ];ibB  
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0

0

3

03

2

1 22

3 4

2 2

0 1 0 12 2

{ ( ) ( ) {[ [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]}

( ) ( )] ( ) ( ) ( ) ( )}

[ ( ) ( )] [ ( ) ( )]

n

n

x

i i i
x

i i

i i

i x i x

d
b b x T x a x T x

dx

d d
a x T x a x T x

dx dx

a x T x w x a x T x w x dx

d d
a x T x C a x T x A

dx dx

 

 

 

 



                                                                                                                                                                                                                   

                for i=-1, 0, ..., n+1.                                               (24) 

and  

1 0 1[ .]T

n         

3 Solution procedure to find the nodal  parameters 

 

A typical integral element in the matrix A  is 
1

0

n

m

m

I




  

where 1

( ) ( ) ( )
m

m

x

m i j
x

I xv r x Z x dx


   and ( )jr x  are the quintic B-spline basis functions or their derivatives. ( )iv x  are 

the septic B-spline weight functions or their derivatives. It may be noted that 0mI   if  

4 4 3 3 1( , ) ( , ) ( , )i i j j m mx x x x x x       .  

To evaluate each mI , we employed 7-point Gauss-Legendre quadrature formula. Thus the stiffness matrix A  

is a thirteen diagonal band matrix. The nodal parameter vector   has been obtained from the system  A B   

using the band matrix solution package. We have used the FORTRAN-90 program to solve the boundary 

value problems (1) - (2) by the proposed method. 

 

3. Numerical results 

 

To demonstrate the applicability of the proposed method for solving the fourth order boundary value 

problems of the type (1) and (2), we considered two linear and three nonlinear boundary value problems. The 

obtained numerical results for each problem are presented in tabular forms and compared with the exact 

solutions available in the literature. 

 

Example 1: Consider the linear boundary value problem 
(4) 3(8 7 ) , 0 1xy xy x x e x                                  (25)                                                                                                             

 

subject to (0) 0, (1) 0,y y  (0) 1,y  (1) .y e    

 

The exact solution for the above problem is (1 ) .xy x x e    

The proposed method is tested on this problem where the   domain [0, 1] is divided into 10 equal 

subintervals.  The obtained numerical results for this problem are given in Table 1. The maximum absolute 

error obtained by the proposed method is 9.524822x10
-5

.     
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Table 1: Numerical results for Example 1 

x 

Absolute error 

 by the proposed 

method 

0.1 8.791685E-06 

0.2 1.873076E-05 

0.3 4.908442E-05 

0.4 5.146861E-05 

0.5 8.371472E-05 

0.6 4.592538E-05 

0.7 9.524822E-05 

0.8 1.540780E-05 

0.9 1.817942E-06 

 

Example 2: Consider the linear boundary value problem 
(4) , 0 1( 3)xyy ey x x                               (26)                                                                                                         

subject to (0) 1, (1) 0, (0) 0, (1) .y y y y e       

The exact solution for the above problem is  

The proposed method is tested on this problem where the   domain [0, 1] is divided into 10 equal 

subintervals.  The obtained numerical results for this problem are given in  Table 2. The maximum absolute 

error obtained by the proposed method is 7.086992x10
-5

. 

Table 2: Numerical results for Example 2 

x 

Absolute error 

 by the proposed 

method 

0.1 4.112720E-06 

0.2 1.251698E-06 

0.3 1.704693E-05 

0.4 9.775162E-06 

0.5 3.945827E-05 

0.6 1.579523E-05 

0.7 7.086992E-05 

0.8 7.897615E-06 

0.9 5.304813E-06 

Example 3:  Consider   the nonlinear boundary value problem 
(4) 2 10 9 8 7

6 4

4 4 4

8 4 120 48, 0 1

y y x x x x

x x x x

    

     

                                   (27) 

subject to (0) 0, (1) 1, (0) 0, (1) 1.y y y y      

The exact solution for the above problem is 5 4 22 2y x x x    

The nonlinear boundary value problem (27) is converted into a sequence of linear boundary value problems 

generated by quasilinearization technique[21] as 
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(4) 10 9 8

( 1) ( ) ( 1)

7 6 4 2

( )

[2 ] 4 4

4 8 4 120 48 [ ] ,

n n n

n

y y y x x x

x x x x y

     

     
 

                                          n=0, 1, 2, …                               (28) 

 

subject to 
( 1) ( 1)(0) 0, (1) 1,n ny y  

( 1) ( 1)(0) 0, (1) 1.n ny y 
    

Here y(n+1) is the ( 1)thn  approximation for y(x).  The domain [0, 1] is divided into 10 equal subintervals and 

the proposed method is applied to the sequence of linear problems (28). The obtained numerical results for 

this problem are presented in Table 3. The maximum absolute error obtained by the proposed method is 

1.120567x10
-5

.           

Table 3: Numerical results for Example 3 

x 

Absolute error 

 by the proposed 

method 

0.1 6.239861E-07 

0.2 5.766749E-06 

0.3 5.722046E-06 

0.4 1.037121E-05 

0.5 2.086163E-07 

0.6 5.424023E-06 

0.7 1.716614E-05 

0.8 1.192093E-07 

0.9 4.112720E-06 

 

Example 4: Consider the nonlinear boundary value problem 

 
22(4) , 0in 1s sinx xy xy                    (29)          

subject to y(0)=0,  y(1)=sin1, (0) 1y  , (1) cos1.y   

 The exact solution for the above problem is sin .y x  

 The nonlinear boundary value problem (29) is converted into a sequence of linear boundary value problems 

generated by quasilinearization technique [21] as 
(4) 2 2

( 1) ( ) ( 1) ( )[2 ] sin sin [ ] , 0,1,2,...n n n ny y y x x y n 
       (30) 

subject to  y(n+1)(0)=0,   y(n+1)(1)=sin1,   

( 1) (0) 1ny 
  , 

( 1) (1) cos1.ny 
       

Here 
( 1)ny 

 is the ( 1)thn  approximation for y(x). The domain [0, 1] is divided into 10 equal subintervals and 

the proposed method is applied to the sequence of linear problems (30). The obtained numerical results for 

this problem are presented in Table 4. The maximum absolute error obtained by the proposed method is 

3.221631x10
-5

. 

Table 4: Numerical results for Example 4 

 

 

 

 

 

 

 

x 
Absolute error 

 by the proposed method 

0.1 3.345311E-06 

0.2 1.385808E-05 

0.3 2.309680E-05 

0.4 3.221631E-05 

0.5 2.801418E-05 

0.6 2.574921E-05 

0.7 8.583069E-06 

0.8 9.000301E-06 

0.9 1.311302E-06 
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Example 5: Consider the nonlinear boundary value problem 
(4) 4 46 12(1 ) , 0 1yy e x x                               (31)       

subject to 
(0) 0, (1) ln 2, (0) 1, (1) 0.5.y y y y      

The exact solution for the above problem is y=ln(1+x). 

The nonlinear boundary value problem (31) is converted into a sequence of linear boundary value problems 

generated by quasilinearization technique [21] as 

 
( ) ( )4 4(4) 4

( 1) ( 1) ( )[24 ] 12(1 ) [6 24 ],n ny y

n n ny e y x e y
 

          

                                                        n=0, 1, 2...                     (32)                                                                                                                                                    

subject to 

( 1) ( 1) ( 1) ( 1)(0) 0, (1) ln 2, (0) 1, 0.5.n n n ny y y y   
      

Here y(n+1) is the (n+1)
th

 approximation for y(x).  The domain [0, 1] is divided into 10 equal subintervals and 

the proposed method is applied to the sequence of linear problems (32). The obtained numerical results for 

this problem are presented in Table 5. The maximum absolute error obtained by the proposed method is 

2.941489x10
-5

. 

Table 5: Numerical results for Example 5 

x 

Absolute error 

 by the proposed 

method 

0.1 3.077090E-06 

0.2 1.272559E-05 

0.3 2.089143E-05 

0.4 2.941489E-05 

0.5 2.497435E-05 

0.6 2.321601E-05 

0.7 6.139278E-06 

0.8 7.390976E-06 

0.9 1.788139E-07 

4. Conclusions 

In this paper, we have employed a Petrov-Galerkin method with quintic B-splines as basisfunctions and 

septic B-splines as weight functions to solve fourth order boundary value problems with special case of 

boundary conditions. The quintic B-spline basis set has been redefined into a new set of basis functions 

which vanish on the boundary where the Dirichlet boundary conditions are prescribed. The septic B-splines 

are redefined into a new set of weight functions which in number match the number of redefined set of basis 

functions. The proposed method has been tested on two linear and three nonlinear fourth order boundary 

value problems. The numerical results obtained by the proposed method are in good agreement with the 

exact solutions available in the literature. The strength of the proposed method lies in its easy applicability, 

accurate and efficient to solve fourth order boundary value problems.  
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