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Abstrac: Cryptography provides a method for securing and authenticating the transmission of information over the insecure channels. Elliptic 

Curve [EC] Cryptography is a public key cryptography .It replaces RSA because of its increased security with lesser number of key bits .Elliptic 

Curve scalar multiplication module will be available in  majority of secure communication systems. The most important operation in Elliptic 

Curve Cryptosystem is the computation of scalar multiplication using   karatsuba multiplier. In scalar multiplication of kP for given integer k and 

point P on elliptic curve. This work aims to design and implement elliptic curve scalar multiplier on a single field programm able gate array 

(FPGA).The hardware complexity is reduced using polynomial  basis representation of finite field and projective co-ordinate representation of 

elliptic curves. 
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                                                      INTRODUCTION  

Elliptic Curve Cryptography is a public key cryptography. 

Elliptic curve uses lesser number of key bits as compared to 

RSA. Lesser memory  and lower power consumption needed for 

elliptic curve using in cryptography. The Elliptic Curve 

Cryptography (ECC) was proposed in 1985 by Neal Koblitz[3] 

and Victor Miller[4].The ECC provides higher strength-per-bit 

than any other  public-key cryptosystems [1].   Because of 

higher strength-per-bit  Elliptic Curve Cryptosystems are being 

increasingly used in practical applications (e.g. smart card and 

mobile devices). Elliptic curve scalar multiplication module will 

be the major part of secure communication systems. Arithmetic 

in Finite/Galois field is a major part for many applications such 

as error correcting code,decoding and cryptography. Addition 

and multiplication are the two basic operations in the Galois  

field GF (2
m

).The finite field multiplication is the most resource 

and time consuming operation. In this paper the area analysis 

and efficient FPGA implementation of proposed Karatsuba 

Multiplier over  is GF(2
m

) presented. In scalar multiplication we 

use XOR operation by using point addition and point 

multiplication This is especially interesting for high 

performance systems because of its carry free property. To 

reduce the complexity of simple karatsuba Multiplier, multiplier 

with less complexity over GF (2
m

) based on simple and classical 

Karatsuba Multiplier is used. Furthermore, the experimental 

results on FPGAs for simple Karatsuba Multiplier and proposed 

karatsuba multiplier were shown and the comparison table is 

provided. In the first part of the paper we present our 

implementation of an Elliptic Curve scalar multiplier is based on 

the projective coordinate system [5] and the Karatsuba [2] 

algorithm.  The second part of the paper discusses our 

implementations of the important mathematical background.  

  

                               II PRELIMINARIES 

 

The Elliptic Curve Scalar multiplication (Q = kP) is  Performed 

by adding P k times over the curve, where P is a point on the 

curve, called the base point and k  is a positive integer. The 

scalar multiplication of the point P is computed using the 

Algorithm 1 

Algorithm 1: Elliptic Curve Scalar Multiplier 

Input : An integer k ¹ 0 of length l bits and base point P 

Output : Q = kP 

1. begin 

2. Q = O 

3. for i = l - 2 downto 0 do 

4. Q = Double(Q) 

5. if k = 0 then 
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6. Q = Add(Q, P) 

7. end 

The cost of an inversion in affine coordinates is much more 

expensive in scalar multiplication . Inversions can be reduced 

by using a projective coordinator representation. A point P in 

projective coordinates is represented using three coordinates. 

In Lopez Dahab (LD) projective coordinates  representation is 

given by 

Y
2
 + XYZ = X 

3
Z + aX 

2
Z 

2
 + bZ

 4                                                
 (1) 

The equation for point addition in LD coordinate for the 

projective point P = (X1, Y1, Z1) and the affine point Q = (x2, 

y2) is shown in (1). The result is the point on the curve (P + Q) 

= (X3, Y3, Z3) 

A = y
2
 · Z

2 
 + Y1  

 B = x
2
 · Z1 + X1 

C = Z1 · B,  

D = B2 · (C + a · Z1
2
)
 

Z3 = C
2
, E = A · C 

X3 = A
2
 + D + E, 

 F = X
3
 +x

2
 · Z3 

G = (x
2
 + y

2
) · Z 3

2
 

 Y3 = (E + Z3) · F + G. 

To make it more efficient the scalar multiplication is the main 

operation in elliptic curve cryptography. Scalar multiplication 

involves plenty of point addition and point doubling. In affine 

coordinates each point addition and doubling involves a 

multiplicative inverse operation .  Multiplicative inverse is a 

costly operation in finite fields  Two types of operations are 

done in finite field. They are prime field F(q)and binary field 

F(2
m

) .Representing the points in projective coordinate systems 

can be eliminated the multiplicative inverse operation in point 

addition and point doubling and thereby increasing the 

efficiency of point multiplication operation. Before point 

multiplication  the projective coordinate in elliptic curve  to 

convert the given point in affine coordinate. Then projective 

coordinate convert it back to affine coordinate after point 

multiplication. The entire process requires only one 

multiplicative inverse operation. The operation in projective 

coordinate involves more scalar multiplication than in affine 

coordinate. ECC on projective coordinate will be efficient than 

affine coordinates .when the implementation of scalar 

multiplication using projective is much faster than multiplicative 

inverse operation.  

                   III MATHEMATICAL BACKGROUND 

 

A finite field is also known as a Galois field. A Galois field in 

which the elements can take q is the prime number  different 

values is referred to as GF(q). The formal properties of a finite 

field are: 

(a) There are two defined operations, namely  point addition 

and  point  multiplication. 

(b) The result of adding or multiplying two elements from      the 

field is always an element in the  finite field. 

(c) One element of the field is the element zero, such that  

      a + 0 = a for any element a in the field. 

(d) One element of the field is unity, so a • 1 = a for     any    

      element a in the field. 

(e) For every element a in the field, there is an additive  

     inverse element -a, such that a + ( - a) = 0. This allows    

     the operation of subtraction to be defined as addition of     

     the inverse. 

(f) For every non-zero element d in the field there is a  

     multiplicative inverse element d
-1

 such that d.d
-1

= 1. This  

    allows the operation of division to be defined as  

     multiplication by the inverse. 

(g) The associative [a + (b + c) = (a + b) + c, a • (b • c) = 

[(a • b) • c], commutative [a + b = b + a, a • b = b • a], 

and distributive [a • (b + c) = a • b + a • c] laws apply. 

 

These properties cannot be satisfied for all possible finite field. 

They can, however, be satisfied if the field size is an prime 

number or any integer power of a prime. If the irreducible 

polynomial in binary field implementation is chosen to be 

trinomial the implementation of ECC on binary field can be made 

efficient than the prime field implementation. NIST specified 

domain parameters, the irreducible polynomials are either 

trinomial or pentanomial. These chosen polynomials cause the 

polynomial reduction in binary field to run much faster than the 

modular reduction in prime field. Irreducible polynomial is a 

polynomial of degree m that cannot be expressed as the 

product of two polynomials of lesser degree. If in any 

polynomial arithmetic operation the resultant polynomial is 

having degree greater than or equal to m, it is reduced to a 

polynomial of degree less than m by the irreducible polynomial. 

Point Addition 

 

Point addition is the addition of two points J and K on an elliptic 

curve to obtain another point L on the same elliptic curve. 

 
                     Fig1. Point Addition 
Consider two points J and K on an elliptic curve as shown in 

figure (a). If K ≠ -J then a line drawn through the points J and K 

will intersect the elliptic curve at exactly one more point –L. The 

reflection of the point –L with respect to x-axis gives the point 

L, which is the result of addition of points J and K. Thus on an 

elliptic curve L = J + K. If K = -J the line through this point 

intersect at a point at infinity O. Hence J + (-J) = O. This is 

shown in figure (b). O is the additive identity of the elliptic 

curve group. A negative of a point is the reflection of that point 

with respect to x-axis. 

Consider two distinct points J and K such that J = (xJ, yJ) and K 

= (xK, yK) Let L = J + K where L = (xL, yL), then 

xL = s
2
 - xJ – xK 
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yL = -yJ + s (xJ – xL) 

s = (yJ – yK)/(xJ – xK), s is the slope of the line through J and K. 

If K = -J i.e. K = (xJ, -yJ) then J + K = O. where O is the point at 

infinity. If K = J then J + K = 2J then point doubling equations 

are used. Also J + K = K + J. 

 

B. Point Doubling 

 
Point doubling is the addition of a point J on the elliptic curve 

to itself to obtain another point L on the same elliptic curve To 

double a point J to get L, i.e. to find L = 2J, consider a point J on 

an elliptic curve as shown in figure (a). If y coordinate of the 

point J is not zero then the tangent line a J will intersect the 

elliptic curve at exactly one more point –L. The reflection of the 

point –L with respect to x-axis gives the point L, which is the 

result of doubling the point J. Thus L = 2J.  If y coordinate of 

the point J is zero then the tangent at this point intersects at a 

point at infinity O. Hence 2J = O when yJ = 0. This is shown in  

figure (2) 

 

 
                     Fig 2 Point Doubling 

 

 

Consider a point J such that J = (x
J
, y

J
), where y

J
 ≠ 0 

Let L = 2J where L = (x
L
, y

L
), Then 

xL = s
2
 – 2x

J
 

yL = -y
J
 + s(x

J
 - x

L
) 

s = (3x
J
+ a) / (2y

J
), s is the tangent at point J and a is one of the 

parameters chosen 

with the elliptic curve 

If y
J
 = 0 then 2J = O, where O is the point at infinity. 

 

            

                    IV PROPOSED METHDOLOGY 

 

Finite field multiplication of two elements in the field  (2
m

)  

is defined a C(x) = A(x) · B(x)mod P(x) . where C(x), A(x), and 

B(x) are in GF(2
m

) and P(x) is the irreducible polynomial that  

generates the field GF(2
m

). Implementing the multiplication 

requires two steps. First, the  polynomial product C′(x) = A(x) · 

B(x) is determined, then the modulo operation is done on C′(x). 

The Karatsuba multiplier  uses a divide and conquer approach 

to multiply A(x) and B(x). The m term polynomials are 

recursively split into two. With each split the size of the    

multiplication required reduces by half.  

 In the Karatsuba multiplier, the m bit multiplicands A(x) and 

B(x) represented in polynomial basis are split as shown in 

Equation 2  For brevity, the equations that follow represent the 

polynomials Ah(x), Al(x), Bh(x), and Bl(x) by Ah ,A l, Bh, and Bl 

respectively. 

             A(x) = Ahx
m/2 

+ Al 

              B(x) = Bhx
m/2

 + Bl 

The multiplication is then done using three m/2 bit 

multiplications  

      C′(x) = (Ahx
m/2 

+ Al)(Bhx
m/2 

+ Bl) 

               = AhBhx
m

 + (AhBl
 
+ AlBh)x

m/2 
+ AlBl 

               = AhBhx
m

+ ((Ah + Al)(Bh + Bl) + AhBh +         

                   AlBl)x
m/2

+ AlBl                                           (2) 

The Karatsuba multiplier can be applied recursively to each m/2 

bit multiplication . Ideally this multiplier is best suited when mis 

a power of 2, this allows the multiplicands to be broken down 

until they reach 2 bits. The final recursion consisting of 2 bit 

multiplications can be achieved by AND gates. Such a 

multiplier with m a power of 2 is called the basic Karatsuba 

multiplier. 

 

 

                   Fig:3 bit parallel karatsuba multiplier 

          

The classical Karatsuba multiplier is more efficient for small 

sizes of multiplicands, while the bit parallel Karatsuba multiplier 

is efficient for large multiplicands. In our proposed Karatsuba 

multiplier, all recursions are done using the the bit parallel 

Karatsuba multiplier except the final recursion. The final 

recursion is done using a classical Karatsuba multiplier when 

the multiplicands have a size less than 29 bits. The initial 

recursions using the Simple Karatsuba multiplier result in low 

gate count, while the final recursion using the classical 

Karatsuba multiplier results in low LUT requirements. For a163-

bit proposed Karatsuba multiplier as shown in Figure 1, the 

initial four recursions are done using the Simple Karatsuba 

multiplier, while the final recursion is done with 20-bit and 21-bit 

General Karatsuba multipliers. 
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               Fig 4: proposed karatsuba multiplier       

                         

                                V. COMPARISON  

 
The summary of the comparison between two scalar multipliers 

is tabulated as shown below. From the table the conclusion is 

proposed karatsuba multiplier has an area efficient design. That 

is, the second one has almost considerable reduction in area in 

terms of total equivalent gate count.  

 

 BIT PARALLEL 

KARATSUBA 

MULTIPLIER 

(163 bit) 

PROPOSED 

KARATSUBA  

MULTIPLIER 

(163 bit) 

 

AREA UTILIZED 

FOR THE DESIGN 

(in terms of gate 

count) 

 

 

172586 

 

 

141179 

  

LUT 

UTILIZATION (%) 

 

85 

 

65 

 

TABLE : COMPARISON 

 

a. AREA ANALYSIS 

 

The synthesis report generated by the Xilinx ISE software tool can be 

used to analyze the area utilized by the two versions of the 

Montgomery karatsuba scalar multiplier. Device utilization summary 

is shown here for comparison. This report includes total number of 4 

input LUTs, flipflops, the equivalent gate count etc.  

   

b. SIMULATION RESULT FOR SCALAR MULTIPLIER 

 

 

    

                           V .CONCLUSION 

 

The table the conclusion is proposed karatsuba multiplier has 

an area efficient design. That is, the second one has almost 

considerable reduction in area in terms of total equivalent gate 

count. The most important factor contributing the performance 

is the finite field multiplication and finite field inversion. A  

Karatsuba multiplier is proposed for finite field multiplication, 

which has been shown to possess the best area time product 

compared to reported Karatsuba implementations. The  

Karatsuba multiplier is a recursive algorithm which does the 

initial recursions using the simple Karatsuba multiplier, while 

the final recursion is  done using the classical Karatsuba 

multiplier . The classical Karatsuba has large gate counts; 

however it is more compact for small sized multiplications due 

to the better LUT utilization. The simple Karatsuba multiplier is 

more efficient for large sized multiplications. 

After a thorough search, a threshold of 29 was found. 

Multiplications smaller than 29 bits is done using the classical 

Karatsuba multiplier, while larger multiplications are done with 

the the bit parallel Karatsuba multiplier. 
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