
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 5 Issue 8 August 2016 Page No. 17737-17743

Nagina, IJECS Volume 05 Issue 08 August 2016 Page No.17737-17743 Page 17737

Scheduling Algorithms in Big Data: A Survey
Nagina, Dr. Sunita Dhingra

Research Scholar,
CSE, UIET,

MDU, ROHTAK

nagina260@gmail.com

Assistant Professor,
CSE, UIET,

MDU, ROHTAK

sunitadhingramdu@rediffmail.com

Abstract- It is not easy to quantify the large amount of data stored electronically. Data is in the unit of zettabytes or exabytes referred as

Big Data. Hadoop system is used to process large datasets. Map Reduce program is used to collect data according to the request. To

process big data proper scheduling is required to achieve greater performance. Scheduling is a technique of assigning jobs to available

resources in a manner to minimize starvation and maximize resource utilization. Performance of scheduling technique can be improved

by applying deadline constraints on jobs. The objective is to study Map Reduce and different scheduling algorithms that can be used to

achieve better performance.

Keywords: Big Data; Hadoop; Map Reduce; HDFS; Scheduling

Algorithms.

I. INTRODUCTION

Data exists in various forms (structured, unstructured and

semi structured) generated from different fields like

network, economic development and business was so

massive that surmounts the competence to store and analyse

[27]. Data has increased in various fields in large scale.

Under the explosive increase in large scale, the term big data

is used to define huge data sets. Big Data is high volume,

high variety and high velocity information that require new

processing techniques to enable improved decision making,

process optimization and insight discovery. Big Data

requires novel architecture, intelligent algorithms and

processing techniques for proper scheduling in Hadoop [31].

Big data is characterized from the context of volume,

velocity, veracity and variety [44]. Volume indicates the

size of the data. Velocity means data are streaming at faster

rates than that can be managed by conventional algorithms

and systems. Veracity recommends that the quality of data,

despite the data being available. So, one cannot presuppose

that big data have higher quality. In fact, size raises quality

issues, which desire to be either undertaken at the data pre-

processing stage or by the learning algorithm. Variety

represents different types of data and modalities for a given

object. Big Data encompasses different challenges including

analysis of data, capture and data curation, efficient storage,

transfer and visualization of data along with the privacy and

security of data [24]. Hadoop is an open source framework

for processing big data using simple programming models.

Components of Hadoop are Hadoop Distributed File System

for storage and MapReduce for processing. MapReduce

functionality depends on two functions: Map and Reduce

function. Both functions are written by user. The Map

function takes an input pair and generates a set of

intermediate key/value pairs. The MapReduce library

gathers all intermediate values associated with the same

intermediate key and transfers them to the Reduce function.

The Reduce function gets an intermediate key with

associated set of values. It combines these associated values

to make a smaller set of values.

The rest of this part is organized as follows. Section 2

describes Hadoop. Section 3 describes scheduling

algorithms. Section 4 describes Performance Metrics.

Section 5 describes performance issues. Section 6 describes

observations. Section 7 describes conclusion.

II. HADOOP

Hadoop is an open-source framework, created by Doug

Cutting, the creator of open source search technology.

Hadoop allows to store and process big data in a distributed

environment with asymmetrical clusters of computers using

simple programming models. It is designed to expand from

single server to thousands of machines, each machine

offering local computation and storage [33]. Because of its

distributed file system, it can run applications that involve

thousands of nodes containing terabytes of data [48]. A

single node failure doesn’t affect the ruinous system failure.

Steps of Hadoop Work [17]:

1) A job is submitted to the Hadoop job client for

requisite process by user or application on defining the

following items:

a) The input and output files location in the

distributed file system.

b) The jar files comprising the implementation of

map and reduce functions.

c) The job configuration defined by setting different

parameters specific to the job.

DOI: 10.18535/ijecs/v5i8.53

Nagina, IJECS Volume 05 Issue 08 August 2016 Page No.17737-17743 Page 17738

2) The job and job configuration is submitted to the

JobTracker from Hadoop job client. Master Job

Tracker distributes the software/configuration to the

slaves, schedule tasks and monitor them, provide status

and logical information to the job-client.

3) The Task Trackers on different nodes execute tasks

according to MapReduce implementation and the

output is stored into the output files on the HDFS file

system.

Hadoop system can be depicted based on three factors:

cluster, user and workload [13]. Each factor is either

homogeneous or heterogeneous, which reflects the degree of

heterogeneity.

Cluster: Cluster is a group of linked resources, where

each resource (Rj) has a data storage unit and a

computation unit. The computation unit consists of a set

of slots with given execution rate. In Hadoop systems,

each CPU core is referred as one slot. Similarly, the

data storage unit has a given storage capacity and data

retrieval rate. In Hadoop system, data is organized into

files, which are usually large. Each file is partition into

small pieces, called slices and all slices have the same

size.

User: User submits jobs to the system. Hadoop allots

minimum share and priority to each user on the basis of

particular policy (e.g. the pricing policy). The user’s

minimum share is the minimum number of slots assured

for the user at each point in time.

Workload: Workload is a set of jobs, where each job

(Ja) has number of map tasks and reduce tasks. A map

task performs a process on the slice, which have

required data for this task. A reduce task processes the

results of a subset of a job’s map tasks. The value m

(Ja, Rb) defines the mean execution time of job Ja on

resource Rb. Hadoop workloads can classify into

classes of ―common jobs‖ .We define the class of

common jobs are the set of jobs whose mean execution

times (on each resource) are in the same range.

MapReduce

MapReduce is a framework for parallel processing of big

data in a reliable, fault-tolerant manner on large clusters.

The data have to be clustered based on their priorities, data

dependence, deadline schedule for processing and

processing of data clusters. For example, if processing of

one data needs the output of another data as input then

these can be combined to form a cluster [4, 39].

The MapReduce refers to the following two tasks that

Hadoop programs perform [15]:

 The Map Task: It takes input data and transforms it

into a set of data (key/value pairs).

 The Reduce Task: It takes set of data (key/value

pairs) as input and combines those data tuples to

form a smaller set [40].

The MapReduce framework consists of a master

JobTracker and slave Task Tracker. The master JobTracker

provides resource management such as schedule the tasks

on the slave TaskTrackers, monitor and re-execute the

failed tasks and track resource consumption/availability.

The slave TaskTrackers execute tasks and give task-status

information to the master periodically. There is a single

point of failure, which means if JobTracker fails, all

running jobs are halted. In case of a single node failure,

map tasks and incomplete reduce tasks will be reexecuted

instead of the complete map tasks and reduce tasks to

achieve the minimum execution time [11, 46].

.

Fig: Execution flow of MapReduce.

Hadoop Distributed File System

Hadoop can use any of the distributed file system such as

HFTP FS, Local FS, S3 FS, but the file system used by

Hadoop is known as Hadoop Distributed File System

(HDFS). The HDFS depends on the Google File System

(GFS) and offers a distributed file system to run an

application in a fault-tolerant and reliable manner on large

clusters (thousands of computers) of small computer

machines. HDFS uses master/slave architecture. Master is

expressed by a single Name Node that stores the file system

metadata. One or more slave DataNodes store the original

data. The DataNodes perform read and write operation with

the HDFS. They also perform block creation, replication

and deletion based on instruction specified by NameNode.

A file is partitioned into several blocks and those blocks are

stored in set of DataNodes. The NameNode find out the

mapping of blocks to the DataNodes [30, 39].

III. SCHEDULING ALGORITHM

a) Inbuilt Algorithm:

 First In First Out (FIFO) Scheduling

DOI: 10.18535/ijecs/v5i8.53

Nagina, IJECS Volume 05 Issue 08 August 2016 Page No.17737-17743 Page 17739

FIFO scheduling is based on queue mechanism. Job is

divided into several tasks and submitted to free slots

available on TaskTracker nodes. Jobs have to wait for

execution due to acquisition of clusters. This leads to

wait for other task for their turn [4]. All jobs need to

complete in a time manner and provide better response

time to every job [29].

 Fair Scheduling

Facebook develops the Fair Scheduler to manage access

the Hadoop cluster. The objective is to assign each user

a fair share of the cluster capacity over a time. User

group jobs in to job pools, with a guaranteed minimum

number of Map and Reduce slots. It supports

preemption i.e. to give the slots to the pool running

under capacity, the scheduler forcefully kill tasks in job

pools running over capacity. Priority is also assigned to

various pools [4][9][29][49].

 Capacity Scheduling

Yahoo developed the capacity scheduler to concentrate

on a conventional situation where the number of users

is large and the goal is to ensure a fair allocation of

resources amongst users. Capacity scheduler shares fair

percent of cluster. It supports FIFO scheduling within

each queue with preemption. When a TaskTracker slot

becomes free, the job with the lowest load and lowest

arrival time is chosen. A task is then scheduled from

that job [9, 29,50].

b) User Defined Algorithm:

 Dynamic Proportional Scheduling:

According to Sandholm and Lai (2010), Dynamic

Proportional Scheduling provides more job sharing and

prioritization that result in increasing share of cluster

resources and more differentiation in service levels of

different jobs. This algorithm improves response time

for multi-user Hadoop environments. Zhang et al.

(2014), provides scheduling of multitasking and

dynamic workloads for big-data analytics, it requires a

significant amount of parameter sweeping and

iterations. Ordinal optimization using fast simulation

and rough models is introduced to obtain suboptimal

solutions in much shorter time frame. If the scheduling

solution for each period is not the best, ordinal

optimization can processed fast in an evolutionary and

iterative way to capture the details of big-data workload

dynamism [25].

 Resource-Aware Adaptive Scheduling(RAS):

Polo et al. (2011) proposed resource-aware scheduling

technique for Map Reduce with multi-job workloads

that aim to improve resource utilization across

machines while observing completion time. RAS

dynamically determines the number of job slots, and

their position in the cluster at run-time.RAS provides

scheduler with the adaptability needed for respond to

changing conditions in resource demand and

availability. In RAS three resource capacities were

considered: CPU, memory and I/O. Zhao et al. (2013)

gives task scheduling algorithm based on resource

attribute selection (RAS) to determine its resource

attributes by sending a set of test tasks to an execution

node before a task is scheduled; and then select optimal

node to execute a task according to resource

requirements and appropriateness between the resource

node and the task, which uses history task data if exists

 MapReduce task scheduling with deadline constraints

(MTSD) algorithm:

According to Tang et al. (2012), scheduling algorithm

sets two deadlines: map-deadline and reduce-deadline.

Reduce-deadline is just the users’ job deadline. To get

map-deadline, the proportion of Map task’s time to the

task’s execution time should be needed. In a cluster

with limited resources, Map and Reduce slot number is

decided. For arbitrary submitted jobs with deadline

constraints, the scheduler has to schedule the remaining

resources in order to ensure that all jobs should be

finished before the deadline constraints. Pop et al.

(2014) presents the classical approach for aperiodic task

scheduling by considering a scheduling system with

different queues for periodic and aperiodic tasks and

deadline as the main constraint, and develops a method

to estimate the number of resources needed to schedule

a set of aperiodic tasks, by considering both execution

and data transfers costs. Based on a mathematical

model, and by using different simulation scenarios,

MTSD proved the following statements: (1) multiple

source of independent aperiodic tasks can be considered

approximating to a single one; (2) when the number of

estimated resources go beyond a data center capacity,

the tasks migration between different regional centers is

the suitable solution with respect to the global deadline;

and (3) in a heterogeneous data center, we need higher

number of resources for the same request with respect

to the deadline constraints. Wang and Li (2015)

elaborated the task scheduling in MapReduce for

distributed data centers on heterogeneous networks with

adaptive heartbeats, job deadlines and data locality. Job

deadlines are split according to the maximum data

volume of tasks. With the considered constraints, the

task scheduling is created as an assignment problem in

each heartbeat, in which adaptive heartbeats are

calculated by the processing times of tasks and jobs are

sequencing in terms of the divided deadlines and tasks

are scheduled by the Hungarian algorithm. On the basis

of data transfer and processing times, the most suitable

data center for all mapped jobs are determined in the

reduce phase.

 Delay Scheduling

The objective is to address the conflict between locality

and fairness. When a node requests for a task, if the

head-of-line job cannot project a local task, scheduler

skip that task and looks at subsequent jobs. If a job has

been skipped for long, we allow it to project non- local

tasks, to avoid starvation. Delay scheduling temporarily

relaxes fairness to improve locality by allowing jobs to

wait for scheduling on a node with local data. Song et

al. (2013) gave a game theory based method to solve

scheduling problems by dividing a Hadoop scheduling

problem into two levels—job level and task level. For

DOI: 10.18535/ijecs/v5i8.53

Nagina, IJECS Volume 05 Issue 08 August 2016 Page No.17737-17743 Page 17740

the job level scheduling, use a bid model to provide

guarantee to the fairness and reduce the average waiting

time. For tasks level, change scheduling problem into

assignment problem and use Hungarian Method to

optimize the problem. Wan et al. (2013) gives multi-job

scheduling algorithm in MapReduce based on game

theory which deals with the contest for resources

between multiple jobs.

 Multi Objective Scheduling:

Nita et al. (2015) explains scheduling algorithm named

MOMTH by considering objective functions related to

resources and users in the same time with constraints

like deadline and budget. The implementation model

consider as all MapReduce jobs are independent, there

is no nodes failure before/during scheduling

computation and scheduling decision is taken only

based on the current knowledge. Bian et al. (2013)

presents scheduling strategy based on fault tolerance.

According to this scheduling strategy, the cluster finds

the speed of the current nodes and creates some

backups of the intermediate MapReduce data results on

to a high performance cache server. The data produced

by that node may go wrong soon. Thus the cluster may

resume the execution to the previous level rapidly if

there are several nodes going wrong, the Reduce nodes

read the Map output from the cache server or from both

the cache and the node, and keeps its high performance

[14,16,43,45].

 Hybrid Multistage Heuristic Scheduling (HMHS):

Chen et al. (2013) elaborates heuristic scheduling

algorithm called HMHS, which tries to solve the

scheduling problem by splitting it into two

subproblems: sequencing and dispatching. For

sequencing, we use a heuristic based on Pri (the

modified Johnson’s algorithm). For dispatching, they

recommend two heuristics Min-Min and Dynamic-Min-

Min[38].

 Utility-Driven Share Scheduling Algorithm:

Wan et al. (2013) provides utility-driven share

scheduling algorithm by considering cost and time.

Algorithm offers a global optimization scheduling

scheme according to the workload of the job which

maximize the user satisfaction. The scheduling

algorithm consists of three functions: job added, assign

task and utility. They would be called when a job added

and response the heartbeat request of Task Tracker.

When a new job arrives, first of all, we calculate a set of

decision variables P={ p1 , p2 ... pn } using the utility

as the optimization objective. Then, if the new utility

greater than before, the resource should be allocated to

each job depending on recalculated decision variable P.

Otherwise, the new job will be rejected. When idle slot

appears, calculate the hungry degree which is defined as

the number of assigned slot divided by the number of

required slot of each job and allocate the slot to the

hungriest job.

 Quality of Service (QoS) Based scheduling

Sandhu and Sood (2014) proposed QoS based

scheduling for big data application towards distributed

cloud datacenter at two levels - coarse grained and fine

grained. On coarse grained level, accurate local

datacenter is selected on the basis of network

throughput, network distance between user and

datacenter, available resources by using adaptive K

nearest neighbor algorithm. On fine grained level,

probability triplet (C, I, M) is predicted by using naïve

Bayes algorithm which gives probability of new

application in compute intensive (C), input/output

intensive (I) and memory intensive (M) categories.

Each datacenter is reformed into a pool of virtual

clusters capable of executing jobs with some specific

(C, I, M) requirements by using self organized maps.

Novelty of study is to represent datacenter resources in

a topological ordering and execute new incoming jobs

in their respective predefined virtual clusters according

to their respective QoS requirements.

 Classification and Optimization based scheduler for

Heterogeneous Hadoop (COSHH):

Pakize (2014) introduced a scheduling system that

called COSHH, which is designed and implemented for

heterogeneity at both application and cluster levels in

Hadoop. The main approach is to use system

information to make scheduling decisions better, which

improves the performance. COSHH consists of two

main processes, where each process is activated by

receiving one of these messages. On receiving a new

job, the scheduler performs the queuing process to store

the incoming job in proper queue. On receiving a

heartbeat message, the scheduler activates the routing

process to assign a job to the free resource. COSHH

improves the mean completion time of jobs.

 MapReduce workflow scheduling algorithm (MRWS):

On analyzing the defects in system schedule in the

heterogeneous cluster environment, Tang et al. (2014)

gave MRWS algorithm, which consists of a job

prioritizing phase and a task assignment phase. The job

prioritizing phase can be classified as I/O-intensive and

computing-intensive. The priorities of all jobs are

estimated according to their corresponding types and

then suitable slots are allocated for each block. The

MapReduce tasks are scheduled with respect to data

locality.

 Longest Approximate Time to End(LATE) -Speculative

Executions

Sometime task will be completed slowly, due to heavy

load on the node, some failure or slow background

processes. The technique works for MapReduce in

heterogeneous environment. The scheduler finds real

slow tasks by computing remaining time of all the tasks.

The scheduler ranks tasks by estimated remaining time

and starts a copy of the highest ranked task, which has a

progress rate lower than the slow task threshold. LATE

is based on three principles: prioritizing tasks, selecting

fast nodes to run and restricting speculative tasks to

prevent thrashing. This method would be optimal if all

DOI: 10.18535/ijecs/v5i8.53

Nagina, IJECS Volume 05 Issue 08 August 2016 Page No.17737-17743 Page 17741

nodes ran at consistent speeds and have no cost to

launch a speculative task[32].

 Service Level Agreement (SLA) scheduling:

Ayesha (2015) proposed SLA driven resource

provisioning and scheduling in multiple data centre.

The user requests in terms of SLA (deadline and

budget) are stored at an entry point from where user

request for user information is sent to cloud provider.

The cloud provider receives SLA constraints and user’s

job details, then checks all the data centres for

availability of resources and decide the data centre at

which the user application can be installed without

violating the SLA and budget constraints.

 Max Percentages(MP) Algorithm

Li et al. (2015) gave MP algorithm, which consider the

inherent correlation of information about resources and

tasks and utilizes the percentages of resource service

times to emphasize the overall performance. MP

algorithm search the resource which is most affected on

its service time if one task was mapped on it, and then

allocate this task to it. The percentages of the

completion time of each available task taken, the total

used time of each resource to measure the effects on

resources and the task which has the max percentage

will be scheduled to be executed.

 Context-Aware Scheduling:

According to Cassales et al. (2015), main goal is to

improve the scheduling of Hadoop by providing support

to dynamic changes in the availability of resources. The

scheduler must collect context information i.e. available

resources on the nodes to detect dynamic changes.

Slave JobTrackers must communicate periodically with

the master TaskTrackers to keep updated information

and let the scheduler prepare to the new context. The

design is based on two key measures. First, a large

percentage of Map Reduce jobs run periodically and

roughly have the same characteristics regarding CPU,

disk and network requirements. Second, in a Hadoop

cluster, the nodes become heterogeneous over time due

to failures, when newer nodes replace old ones. If

Hadoop does not perform preemption/migration of

tasks, the involvement of speculative tasks and context-

aware scheduler may contribute to avoid the bottlenecks

caused by the resources variability.

IV. PERFORMANCE METRICS

Hadoop performance metrics are used to evaluate

scheduling algorithms [22]:

 Average Completion Time: sum of completion time

of all jobs divided by number of jobs.

 Dissatisfaction: amount of satisfaction provided by

scheduling algorithm in minimum share

requirement of users.

 Fairness: how fair the scheduling algorithm is in

dividing the resources among users [26].

 Locality: proportion of tasks which are running on

the same resource as where their stored data are

located.

 Scheduling Time: total time spent for scheduling all

of the incoming jobs. This measures the overhead

of each Hadoop scheduler.

V. PERFORMANCE ISSUES

Drawbacks of scheduling algorithm to heterogeneity level to

each hadoop factor [22, 47]:

 Jobs Starvation: If required resources are not

allocated to job since long time is known as

starvation

 Sticky Slots: The scheduler assigns a job to the

same resource every time.

 Resource and Job Mismatch: In a heterogeneous

Hadoop system, resources can acquire different

features with respect to their computation or

storage units. Moreover, jobs in a heterogeneous

workload have different requirements. To reduce

the average completion time, it is critical to assign

the jobs to resources by examining resource

features and job requirements.

 Scheduling Complexity: The complexity of

scheduling algorithms can result from different

features, such as gathering more system parameters

and state information, and considering various

factors in making scheduling decisions.

VI. OBSERVATIONS

Hadoop schedulers are based on system heterogeneity.

When the system is homogeneous in all three factors:

cluster, workload and user, the FIFO algorithm is selected.

When the job size is small and users are heterogeneous,

select Fair Sharing algorithm to improve the fairness.

COSHH algorithm is the recommended in heterogeneous

Hadoop. Scheduling algorithms emphasis on data locality,

sharing, fairness and fault tolerant ability

VII. CONCLUSION

To overcome the issue of Big Data storage and processing

the open source framework named Hadoop is developed by

Apache can be used. Hadoop gives a source to Big Data

processing with its components like Map Reduce and

HDFS. To process with the Big Data the default scheduler

called FIFO has been used. Different scheduling techniques

to enhance the data locality, makespan, efficiency, fairness

and performance are discussed.

VIII. REFERENCES

[1] Sandholm T, Lai K ―Dynamic proportional share

scheduling in hadoop‖ Proceedings of the 15th

Workshop on Job Scheduling Strategies for Parallel

Processing, Vol-6253, pp. 110–131, 2010, ISBN: 978-

3-642-16504-7.

[2] Chen Y, Ganapathi A, Griffith R, Katz RH ―The case

for evaluating MapReduce performance using workload

suites‖ Proceedings of the 19th Annual IEEE/ACM

International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication

DOI: 10.18535/ijecs/v5i8.53

Nagina, IJECS Volume 05 Issue 08 August 2016 Page No.17737-17743 Page 17742

Systems, Washington, pp. 390–399, 2011, ISSN: 1526-

7539.

[3] Polo J, Castillo C, Carrera D, Becerra Y, Whalley I,

Steinder M, Torres J, Ayguade E ―Resource-Aware

Adaptive Scheduling for MapReduce Clusters‖

Middleware, LNCS 7049, pp. 187–207, 2011, ISSN:

0302- 9743.

[4] Wolf J , Balmin A , Rajan D , Hildrum K, Khandekar

R, Parekh S, Wu KL, Vernica R ―On the optimization

of schedules for MapReduce workloads in the presence

of shared scans‖ The VLDB Journal, Vol-21, pp. 589–

609, 2012, ISSN: 1066-8888.

[5] Tang Z, Zhou J, Li K, Li R ―A MapReduce task

scheduling algorithm for deadline constraints‖ Cluster

Comput, , pp. 651–662,2012, ISSN: 1386-7857.

[6] Song G, Yu L, Meng Z, Lin X ―A Game Theory Based

MapReduce Scheduling Algorithm‖ Emerging

Technologies for Information Systems, Computing, and

Management, Vol-236, pp. 287-296, 2013, ISBN: 978-

1-4614-7009-0.

[7] Chen H, Shen Y, Chen Q, Guo M ―HMHS: Hybrid

Multistage Heuristic Scheduling Algorithm for

Heterogeneous MapReduce System‖ ICA3PP, Part I,

LNCS 8285, pp. 196–205, 2013, ISSN: 0302- 9743.

[8] Zhao Y, Chen L, Li Y, Liu P, Li X, Zhu C ―RAS: A

Task Scheduling Algorithm Based on Resource

Attribute Selection in a Task Scheduling Framework‖

IDCS, LNCS 8223, pp. 106–119, 2013, ISSN: 0302-

9743.

[9] Yuan Z, Wang J ―Research of Scheduling Strategy

Based on Fault Tolerance in Hadoop Platform ‖

GRMSE, Part II, CCIS 399, pp. 509–517, 2013, ISSN :

1865- 0929.

[10] Wan C, Wang C, Yuan Y, Wang H ―Game-Based

Scheduling Algorithm to Achieve Optimize Profit in

MapReduce Environment‖ ICIC, LNCS 7995, pp. 234–

240, 2013, ISSN: 0302- 9743.

[11] Xie J, Meng FJ, Wang HL, Pan HF, Cheng JH, Qin X

―Research on Scheduling Scheme for Hadoop clusters‖

International Conference on Computational Science,

ICCS, Procedia Computer Science, Vol-18, pp. 2468 –

2471, 2013, ISSN: 1877- 0509.

[12] Wan C, Wang C, Yuan Y, Wang H, Song X ―Utility-

Driven Share Scheduling Algorithm in Hadoop‖ ISNN,

Part II, LNCS 7952, pp. 560–568, 2013, ISSN: 0302-

0947.

[13] Hassan MM, Song B, Hossain MS, Alamri A ―Efficient

Resource Scheduling for Big Data Processing in Cloud

Platform‖ IDCS, LNCS 8729, pp. 51–63, 2014, ISSN:

0302 9743.

[14] Kalra S, Lamba A ―A Review on HADOOP

MAPREDUCE-A Job Aware Scheduling Technology‖

International Journal of Computational Engineering

Research (IJCER), Vol-04, Issue 5, May 2014, ISSN:

2250 – 3005.

[15] Saranya N, Yoganandh T ―An Efficient Map Reduce

Task Scheduling and Micro-Partitioning Mechanism for

Optimizing Large Data Analysis‖ International Journal

On Engineering Technology and Sciences – IJETS,

Vol-1, Issue 7, November 2014, ISSN: 2349-3968.

[16] Mashayekhy L, Nejad MM, Grosu D, Zhang Q, Shi W

―Energy-Aware Scheduling of MapReduce Jobs for Big

Data Applications‖IEEE Transactions On Parallel And

Distributed Systems, Vol.- 25, No. X, pp. 1-14, 2014,

ISSN: 1045- 9219.

[17] Mridul M, Khajuria A, Dutta S, Kumar N Prasad MR ―

Analysis of Bidgdata using Apache Hadoop and Map

Reduce‖ International Journal of Advanced Research

in Computer Science and Software Engineering, Vol-

4, Issue 5, pp. 555-560, May 2014, ISSN: 2277- 128X.

[18] Sandhu R, Sood SK ―Scheduling of big data

applications on distributed cloud based on QoS

parameters‖ Cluster Comput, pp.817–828,2014, ISSN:

1386-7857.

[19] Pop F, Dobre C, Cristea V, Bessis N, Xhafa F, Barolli L

―Deadline scheduling for aperiodic tasks in inter-Cloud

environments: a new approach to resource

management‖ J Supercomput, pp. 1754–1765,2014,

ISSN: 0920-8542.

[20] Pakize SR ―A Comprehensive View of Hadoop

MapReduce Scheduling Algorithms‖ International

Journal of Computer Networks and Communications

Security ,Vol-2, Issue-9, pp. 308–317, September 2014,

ISSN 2308-9830.

[21] Zhang F, Cao J, Tan W, Khan SU, Li K, Zomaya AY

―Evolutionary Scheduling of Dynamic Multitasking

Workloads for Big-Data Analytics in Elastic Cloud‖

IEEE transactions on Emerging Topics in Computing,
,Vol- 2, pp. 338-351,2014, ISSN: 2168-6750.

[22] Rasooli A, Down DG ―Guidelines for Selecting Hadoop

Schedulers Based on System Heterogeneity‖ J Grid

Computing, Vol- 12 , pp. 499–519,2014, ISSN: 1570-

7873.

[23] Rasooli A, Down DG ―A classification and

optimization based scheduler for heterogeneous Hadoop

systems‖ Future Generation Computer Systems, Vol-

36,pp. 1-15, 2014, ISSN: 0167- 739X.

[24] Singh D, Reddy CK ―A survey on platforms for big

data analytics‖ Journal of Big Data,pp. 1-20, 2014,
ISSN: 2196-1115.

[25] Harshitha R, Rekha GS, Guruprasad HS ―A Survey on

Scheduling Techniques in Hadoop‖ IJEDR ,Vol-3,

Issue 1,pp. 248-254, 2014, ISSN: 2321-9939

[26] Suresh S, Gopalan NP ―An Optimal Task Selection

Scheme for Hadoop Scheduling‖ International

Conference on Future Information Engineering IERI

Procedia, Vol-10, pp 70-75, 2014, ISSN: 2212-6678.

[27] Chen M, Mao S, Liu Y ―Big Data: A Survey‖ Mobile

Netw Appl, Vol-19, pp. 171–209,2014, ISSN: 1383-

469X.

[28] Cassales GW, Charao AS, Pinheiro MK, Souveyet C,

Steffenel LA ―Context-Aware Scheduling for Apache

Hadoop over Pervasive Environments‖ The 6th

International Conference on Ambient Systems,

Networks and Technologies, Procedia Computer

Science, Vol- 52, pp. 202 – 209, 2015, ISSN: 1877-

0509.

[29] Nikhil B, Riddhikesh B, Balu P, Mukesh T ―A Survey

On Scheduling In Hadoop For Bigdata Processing‖

Multidisciplinary Journal of Research in Engineering

and Technology, Volume 2, Issue 3, pp. 497-501,2015,
ISSN: 2348 – 6953.

[30] Divya S, Rajesh KR, Nithila RMI, Vinothini M ―Big

Data Analysis and Its Scheduling Policy – Hadoop‖

DOI: 10.18535/ijecs/v5i8.53

Nagina, IJECS Volume 05 Issue 08 August 2016 Page No.17737-17743 Page 17743

IOSR Journal of Computer Engineering (IOSR-JCE),

Vol-17, Issue 1, pp 36-40, Jan – Feb. 2015, ISSN:

2278-8727.

[31] Tsai CW, Lai CF, Chao HC, Vasilakos AV ―Big data

analytics: a survey‖ Journal of Big Data,pp. 1-32, 2015,

ISSN: 2196-1115.

[32] Sreedhar C, Kasiviswanath N , Reddy PC ― A Survey

on Big Data Management and Job Scheduling‖

International Journal of Computer Applications, Vol-

130 ,Issue 13,pp. 41-49, November 2015, ISSN: 0975-

8887.

[33] Raj ED, L.D DB ―A Two Pass Scheduling Policy based

Resource allocation for MapReduce‖ International

Conference on Information and Communication

Technologies (ICICT 2014) Procedia Computer

Science, Vol-46 ,pp. 627 – 634,2015, ISSN:1877 -0509.

[34] Nita MC, Pop F, Voicu C, Dobre C, Xhafa F

―MOMTH: multi-objective scheduling algorithm of

many tasks in Hadoop‖ Cluster Comput, pp. 1011–

1024,2015, ISSN: 1386-7857.

[35] Wang J, Li X ―Task scheduling for MapReduce in

heterogeneous networks‖ Cluster Comput, pp. 1-14,

2015, ISSN: 1386-7857.

[36] Ayesha S ―SLA-aware and Cost-aware Provisioning

and Scheduling of Cloud Resources across Multiple

Data centres‖ International Journal of Advanced

Research in Computer and Communication

Engineering, Vol-4, Issue 5, pp. 238-242, May 2015,

ISSN: 2319-5940.

[37] Saranya N, Yoganandh T, ―Task Scheduling Algorithm

for Map Reduce To Control Load Balancing In Big

Data‖ National Conference on Research Advances in

Communication, computation, electrical science and

structures, pp. 27-32, 2015, ISSN: 2348-8387.

[38] Thangaselvi R, Ananthbabu S, Aruna R ― An efficient

Mapreduce scheduling algorithm in hadoop‖

International Journal of Engineering Research &

Science (IJOER),Vol-1, Issue-9,pp. 102-108, December

2015, ISSN 2278- 0181.

[39] Ghazia MR, Gangodkara D ―Hadoop, MapReduce and

HDFS: A Developers Perspective‖ International

Conference on Intelligent Computing, Communication

& Convergence (ICCC-2014) Procedia Computer

Science, Vol-48, pp. 45 – 50, 2015, ISSN 1877- 0509.

[40] K KKH, Vignesh R, Long CAI, Sugumaran R ―Big

Data - Reduced Task Scheduling‖ International

Conference on Systems, Science, Control,

Communication, Engineering and Technology, Vol-01,

pp. 79-84, 2015, ISBN: 978-81-929866-1-6.

[41] Li X, Song J, Huang B ―A scientific workflow

management system architecture and its scheduling

based on cloud service platform for manufacturing big

data. analytics‖ Int J Adv Manuf Technol, pp. 119-

131,2015, ISSN: 0268-3768.

[42] Tang Z, Liu M, Ammar A, Li K, Li K ―An optimized

MapReduce workflow scheduling algorithm for

heterogeneous computing‖ J Supercomput, pp. 3-23,

2014, ISSN: 0920-8542.

[43] Qin P, Dai B, Huang B, Xu G ―Bandwidth-Aware

Scheduling With SDN in Hadoop: A New Trend for

Big Data‖ IEEE Systems Journal, pp. 1-8, 2015, ISSN:

1932-8184.

[44] Anuradha IJ ― A Brief Introduction on Big Data 5Vs

Characteristics and Hadoop Technology‖ Procedia

Computer Science, Vol- 48 , pp. 319 – 324,2015, ISSN:

1877-0509.

[45] Rani PS, Shalini S, Keerthika JR, Shanthini A ―Energy

Efficient Scheduling of Map Reduce for Evolving Big

Data Applications‖ International Journal of Advanced

Research in Computer and Communication

Engineering, Vol.-5, Issue 2, pp. 54-58, February 2016,

ISSN: 2278-1021.

[46] Mamdapure S, Ginwala M, Papat N ―Task Scheduling

in Hadoop‖ Imperial Journal of Interdisciplinary

Research (IJIR), Vol.-2, Issue-1 ,pp. 22-25, 2016, ISSN

: 2454-1362.

[47] Ling X, Yuan Y, Wang D, Liu J, Yang J, ―Joint

scheduling of MapReduce jobs with servers:

Performance bounds and experiments‖ J. Parallel

Distrib. Comput, Vol- 90–91, pp 52–66, 2016, ISSN:

0743-7315.

[48] https://hadoop.apache.org/

[49] https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.ht

ml

[50] https://hadoop.apache.org/docs/r1.2.1/capacity_schedul

er.html

https://hadoop.apache.org/
https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html
https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html
https://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html
https://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html

