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Abstract- It is not easy to quantify the large amount of data stored electronically. Data is in the unit of zettabytes or exabytes referred as 

Big Data.  Hadoop system is used to process large datasets. Map Reduce program is used to collect data according to the request. To 

process big data proper scheduling is required to achieve greater performance. Scheduling is a technique of assigning jobs to available 

resources in a manner to minimize starvation and maximize resource utilization. Performance of scheduling technique can be improved 

by applying deadline constraints on jobs. The objective is to study Map Reduce and different scheduling algorithms that can be used to 

achieve better performance.  
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I. INTRODUCTION 

Data exists in various forms (structured, unstructured and 

semi structured) generated from different fields like 

network, economic development and business was so 

massive that surmounts the competence to store and analyse 

[27]. Data has increased in various fields in large scale. 

Under the explosive increase in large scale, the term big data 

is used to define huge data sets. Big Data is high volume, 

high variety and high velocity information that require new 

processing techniques to enable improved decision making, 

process optimization and insight discovery. Big Data 

requires novel architecture, intelligent algorithms and 

processing techniques for proper scheduling in Hadoop [31]. 

Big data is characterized from the context of volume, 

velocity, veracity and variety [44]. Volume indicates the 

size of the data. Velocity means data are streaming at faster 

rates than that can be managed by conventional algorithms 

and systems. Veracity recommends that the quality of data, 

despite the data being available. So, one cannot presuppose 

that big data have higher quality. In fact, size raises quality 

issues, which desire to be either undertaken at the data pre-

processing stage or by the learning algorithm. Variety 

represents different types of data and modalities for a given 

object. Big Data encompasses different challenges including 

analysis of data, capture and data curation, efficient storage, 

transfer and visualization of data along with the privacy and 

security of data [24]. Hadoop is an open source framework 

for processing big data using simple programming models. 

Components of Hadoop are Hadoop Distributed File System 

for storage and MapReduce for processing. MapReduce 

functionality depends on two functions: Map and Reduce 

function. Both functions are written by user. The Map 

function takes an input pair and generates a set of 

intermediate key/value pairs. The MapReduce library 

gathers all intermediate values associated with the same 

intermediate key and transfers them to the Reduce function.  

The Reduce function gets an intermediate key with 

associated set of values. It combines these associated values 

to make a smaller set of values. 

The rest of this part is organized as follows. Section 2 

describes Hadoop. Section 3 describes scheduling 

algorithms. Section 4 describes Performance Metrics.  

Section 5 describes performance issues. Section 6 describes 

observations. Section 7 describes conclusion. 

II.  HADOOP 

Hadoop is an open-source framework, created by Doug 

Cutting, the creator of open source search technology. 

Hadoop allows to store and process big data in a distributed 

environment with asymmetrical clusters of computers using 

simple programming models. It is designed to expand from 

single server to thousands of machines, each machine 

offering local computation and storage [33]. Because of its 

distributed file system, it can run applications that involve 

thousands of nodes containing terabytes of data [48]. A 

single node failure doesn’t affect the ruinous system failure.  

Steps of Hadoop Work [17]: 

1) A job is submitted to the Hadoop job client for 

requisite process by user or application on defining the 

following items: 

a) The input and output files location in the 

distributed file system. 

b) The jar files comprising the implementation of 

map and reduce functions. 

c) The job configuration defined by setting different 

parameters specific to the job. 
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2) The job and job configuration is submitted to the 

JobTracker from Hadoop job client. Master Job 

Tracker distributes the software/configuration to the 

slaves, schedule tasks and monitor them, provide status 

and logical information to the job-client. 

 

3) The Task Trackers on different nodes execute tasks 

according to MapReduce implementation and the 

output is stored into the output files on the HDFS file 

system. 

Hadoop system can be depicted based on three factors: 

cluster, user and workload [13]. Each factor is either 

homogeneous or heterogeneous, which reflects the degree of 

heterogeneity.  

Cluster: Cluster is a group of linked resources, where 

each resource (Rj) has a data storage unit and a 

computation unit. The computation unit consists of a set 

of slots with given execution rate. In Hadoop systems, 

each CPU core is referred as one slot. Similarly, the 

data storage unit has a given storage capacity and data 

retrieval rate. In Hadoop system, data is organized into 

files, which are usually large. Each file is partition into 

small pieces, called slices and all slices have the same 

size. 

User: User submits jobs to the system. Hadoop allots 

minimum share and priority to each user on the basis of 

particular policy (e.g. the pricing policy). The user’s 

minimum share is the minimum number of slots assured 

for the user at each point in time. 

Workload: Workload is a set of jobs, where each job 

(Ja) has number of map tasks and reduce tasks. A map 

task performs a process on the slice, which have 

required data for this task. A reduce task processes the 

results of a subset of a job’s map tasks. The value m 

(Ja, Rb) defines the mean execution time of job Ja on 

resource Rb. Hadoop workloads can classify into 

classes of ―common jobs‖ .We define the class of  

common jobs are the set of jobs whose mean execution 

times (on each resource) are in the same range. 

MapReduce 

MapReduce is a framework for parallel processing of big 

data in a reliable, fault-tolerant manner on large clusters. 

The data have to be clustered based on their priorities, data 

dependence, deadline schedule for processing and 

processing of data clusters. For example, if processing of 

one data needs the output of another data as input then 

these can be combined to form a cluster [4, 39]. 

The MapReduce refers to the following two tasks that 

Hadoop programs perform [15]: 

 The Map Task: It takes input data and transforms it 

into a set of data (key/value pairs). 

 The Reduce Task: It takes set of data (key/value 

pairs) as input and combines those data tuples to 

form a smaller set [40].  

The MapReduce framework consists of a master 

JobTracker and slave Task Tracker. The master JobTracker 

provides resource management such as schedule the tasks 

on the slave TaskTrackers, monitor and re-execute the 

failed tasks and track resource consumption/availability. 

The slave TaskTrackers execute tasks and give task-status 

information to the master periodically. There is a single 

point of failure, which means if JobTracker fails, all 

running jobs are halted. In case of a single node failure, 

map tasks and incomplete reduce tasks will be reexecuted 

instead of the complete map tasks and reduce tasks to 

achieve the minimum execution time [11, 46]. 

 

.  

Fig: Execution flow of MapReduce. 

Hadoop Distributed File System 

Hadoop can use any of the distributed file system such as 

HFTP FS, Local FS, S3 FS, but the file system used by 

Hadoop is known as Hadoop Distributed File System 

(HDFS). The HDFS depends on the Google File System 

(GFS) and offers a distributed file system to run an 

application in a fault-tolerant and reliable manner on large 

clusters (thousands of computers) of small computer 

machines. HDFS uses master/slave architecture.   Master is 

expressed by a single Name Node that stores the file system 

metadata. One or more slave DataNodes store the original 

data. The DataNodes perform read and write operation with 

the HDFS. They also perform block creation, replication 

and deletion based on instruction specified by NameNode. 

A file is partitioned into several blocks and those blocks are 

stored in set of DataNodes. The NameNode find out the 

mapping of blocks to the DataNodes [30, 39]. 

 

 

III. SCHEDULING ALGORITHM 

 

a) Inbuilt  Algorithm: 

 First In First Out (FIFO) Scheduling  
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FIFO scheduling is based on queue mechanism. Job is 

divided into several tasks and submitted to free slots 

available on TaskTracker nodes. Jobs have to wait for 

execution due to acquisition of clusters. This leads to 

wait for other task for their turn [4]. All jobs need to 

complete in a time manner and provide better response 

time to every job [29]. 

  Fair Scheduling 

Facebook develops the Fair Scheduler to manage access 

the Hadoop cluster. The objective is to assign each user 

a fair share of the cluster capacity over a time. User 

group jobs in to job pools, with a guaranteed minimum 

number of Map and Reduce slots. It supports 

preemption i.e. to give the slots to the pool running 

under capacity, the scheduler forcefully kill tasks in job 

pools running over capacity. Priority is also assigned to 

various pools [4][9][29][49]. 

  Capacity Scheduling  

Yahoo developed the capacity scheduler to concentrate 

on a conventional situation where the number of users 

is large and the goal is to ensure a fair allocation of 

resources amongst users. Capacity scheduler shares fair 

percent of cluster. It supports FIFO scheduling within 

each queue with preemption. When a TaskTracker slot 

becomes free, the job with the lowest load and lowest 

arrival time is chosen. A task is then scheduled from 

that job [9, 29,50]. 

 

b) User Defined Algorithm: 

 Dynamic Proportional Scheduling:  

According to Sandholm and Lai (2010), Dynamic 

Proportional Scheduling provides more job sharing and 

prioritization that result in increasing share of cluster 

resources and more differentiation in service levels of 

different jobs. This algorithm improves response time 

for multi-user Hadoop environments. Zhang et al. 

(2014), provides scheduling of multitasking and 

dynamic workloads for big-data analytics, it requires a 

significant amount of parameter sweeping and 

iterations. Ordinal optimization using fast simulation 

and rough models is introduced to obtain suboptimal 

solutions in much shorter time frame. If the scheduling 

solution for each period is not the best, ordinal 

optimization can processed fast in an evolutionary and 

iterative way to capture the details of big-data workload 

dynamism [25]. 

 Resource-Aware Adaptive Scheduling(RAS):  

Polo et al. (2011) proposed resource-aware scheduling 

technique for Map Reduce with multi-job workloads 

that aim to improve resource utilization across 

machines while observing completion time. RAS 

dynamically determines the number of job slots, and 

their position in the cluster at run-time.RAS provides 

scheduler with the adaptability needed for respond to 

changing conditions in resource demand and 

availability. In RAS three resource capacities were 

considered: CPU, memory and I/O. Zhao et al. (2013) 

gives task scheduling algorithm based on resource 

attribute selection (RAS) to determine its resource 

attributes by sending a set of test tasks to an execution 

node before a task is scheduled; and then select optimal 

node to execute a task according to resource 

requirements and appropriateness between the resource 

node and the task, which uses history task data if exists 

 MapReduce task scheduling with deadline constraints 

(MTSD) algorithm:  

According to Tang et al. (2012), scheduling algorithm 

sets two deadlines: map-deadline and reduce-deadline.  

Reduce-deadline is just the users’ job deadline. To get 

map-deadline, the proportion of Map task’s time to the 

task’s execution time should be needed. In a cluster 

with limited resources, Map and Reduce slot number is 

decided. For arbitrary submitted jobs with deadline 

constraints, the scheduler has to schedule the remaining 

resources in order to ensure that all jobs should be 

finished before the deadline constraints. Pop et al. 

(2014) presents the classical approach for aperiodic task 

scheduling by considering a scheduling system with 

different queues for periodic and aperiodic tasks and 

deadline as the main constraint, and develops a method 

to estimate the number of resources needed to schedule 

a set of aperiodic tasks, by considering both execution 

and data transfers costs. Based on a mathematical 

model, and by using different simulation scenarios, 

MTSD proved the following statements: (1) multiple 

source of independent aperiodic tasks can be considered 

approximating to a single one; (2) when the number of 

estimated resources go beyond a data center capacity, 

the tasks migration between different regional centers is 

the suitable solution with respect to the global deadline; 

and (3) in a heterogeneous data center, we need higher 

number of resources for the same request with respect 

to the deadline constraints. Wang and Li (2015) 

elaborated the task scheduling in MapReduce for 

distributed data centers on heterogeneous networks with 

adaptive heartbeats, job deadlines and data locality. Job 

deadlines are split according to the maximum data 

volume of tasks. With the considered constraints, the 

task scheduling is created as an assignment problem in 

each heartbeat, in which adaptive heartbeats are 

calculated by the processing times of tasks and jobs are 

sequencing in terms of the divided deadlines and tasks 

are scheduled by the Hungarian algorithm. On the basis 

of data transfer and processing times, the most suitable 

data center for all mapped jobs are determined in the 

reduce phase. 

 Delay Scheduling  

The objective is to address the conflict between locality 

and fairness. When a node requests for a task, if the 

head-of-line job cannot project a local task, scheduler 

skip that task and looks at subsequent jobs. If a job has 

been skipped for long, we allow it to project non- local 

tasks, to avoid starvation. Delay scheduling temporarily 

relaxes fairness to improve locality by allowing jobs to 

wait for scheduling on a node with local data. Song et 

al. (2013) gave a game theory based method to solve 

scheduling problems by dividing a Hadoop scheduling 

problem into two levels—job level and task level. For 
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the job level scheduling, use a bid model to provide 

guarantee to the fairness and reduce the average waiting 

time. For tasks level, change scheduling problem into 

assignment problem and use Hungarian Method to 

optimize the problem. Wan et al. (2013) gives multi-job 

scheduling algorithm in MapReduce based on game 

theory which deals with the contest for resources 

between multiple jobs. 

 Multi Objective Scheduling:  

Nita et al. (2015) explains scheduling algorithm named 

MOMTH by considering objective functions related to 

resources and users in the same time with constraints 

like deadline and budget. The implementation model  

consider as all MapReduce jobs are independent, there 

is no nodes failure before/during scheduling 

computation and scheduling decision is taken only 

based on the current knowledge. Bian et al. (2013) 

presents scheduling strategy based on fault tolerance. 

According to this scheduling strategy, the cluster finds 

the speed of the current nodes and creates some 

backups of the intermediate MapReduce data results on 

to a high performance cache server. The data produced 

by that node may go wrong soon. Thus the cluster may 

resume the execution to the previous level rapidly if 

there are several nodes going wrong, the Reduce nodes 

read the Map output from the cache server or from both 

the cache and the node, and keeps its high performance 

[14,16,43,45]. 

 Hybrid Multistage Heuristic Scheduling (HMHS):  

Chen et al. (2013) elaborates heuristic scheduling 

algorithm called HMHS, which tries to solve the 

scheduling problem by splitting it into two 

subproblems: sequencing and dispatching. For 

sequencing, we use a heuristic based on Pri (the 

modified Johnson’s algorithm). For dispatching, they 

recommend two heuristics Min-Min and Dynamic-Min-

Min[38]. 

 Utility-Driven Share Scheduling Algorithm:  

Wan et al. (2013) provides utility-driven share 

scheduling algorithm by considering cost and time. 

Algorithm offers a global optimization scheduling 

scheme according to the workload of the job which 

maximize the user satisfaction. The scheduling 

algorithm consists of three functions: job added, assign 

task and utility. They would be called when a job added 

and response the heartbeat request of Task Tracker. 

When a new job arrives, first of all, we calculate a set of 

decision variables P={ p1 , p2 ... pn } using the utility 

as the optimization objective. Then, if the new utility 

greater than before, the resource should be allocated to 

each job depending on recalculated decision variable P. 

Otherwise, the new job will be rejected. When idle slot 

appears, calculate the hungry degree which is defined as 

the number of assigned slot divided by the number of 

required slot of each job and allocate the slot to the 

hungriest job.  

 Quality of Service (QoS) Based scheduling  

Sandhu and Sood (2014) proposed QoS based 

scheduling for big data application towards distributed 

cloud datacenter at two levels - coarse grained and fine 

grained. On coarse grained level, accurate local 

datacenter is selected on the basis of network 

throughput, network distance between user and 

datacenter, available resources by using adaptive K 

nearest neighbor algorithm. On fine grained level, 

probability triplet (C, I, M) is predicted by using naïve 

Bayes algorithm which gives probability of new 

application in compute intensive (C), input/output 

intensive (I) and memory intensive (M) categories. 

Each datacenter is reformed into a pool of virtual 

clusters capable of executing jobs with some specific 

(C, I, M) requirements by using self organized maps. 

Novelty of study is to represent datacenter resources in 

a topological ordering and execute new incoming jobs 

in their respective predefined virtual clusters according 

to their respective QoS requirements. 

 Classification and Optimization based scheduler for 

Heterogeneous Hadoop (COSHH): 

Pakize (2014) introduced a scheduling system that 

called COSHH, which is designed and implemented for 

heterogeneity at both application and cluster levels in 

Hadoop. The main approach is to use system 

information to make scheduling decisions better, which 

improves the performance. COSHH consists of two 

main processes, where each process is activated by 

receiving one of these messages. On receiving a new 

job, the scheduler performs the queuing process to store 

the incoming job in proper queue. On receiving a 

heartbeat message, the scheduler activates the routing 

process to assign a job to the free resource. COSHH 

improves the mean completion time of jobs. 

 MapReduce workflow scheduling algorithm (MRWS):  

On analyzing the defects in system schedule in the 

heterogeneous cluster environment, Tang et al. (2014) 

gave MRWS algorithm, which consists of a job 

prioritizing phase and a task assignment phase.  The job 

prioritizing phase can be classified as I/O-intensive and 

computing-intensive. The priorities of all jobs are 

estimated according to their corresponding types and 

then suitable slots are allocated for each block. The 

MapReduce tasks are scheduled with respect to data 

locality. 

 Longest Approximate Time to End(LATE) -Speculative 

Executions  

Sometime task will be completed slowly, due to heavy 

load on the node, some failure or slow background 

processes. The technique works for MapReduce in 

heterogeneous environment. The scheduler finds real 

slow tasks by computing remaining time of all the tasks. 

The scheduler ranks tasks by estimated remaining time 

and starts a copy of the highest ranked task, which has a 

progress rate lower than the slow task threshold. LATE 

is based on three principles: prioritizing tasks, selecting 

fast nodes to run and restricting speculative tasks to 

prevent thrashing. This method would be optimal if all 
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nodes ran at consistent speeds and have no cost to 

launch a speculative task[32].  

 Service Level Agreement (SLA) scheduling:  

Ayesha (2015) proposed SLA driven resource 

provisioning and scheduling in multiple data centre. 

The user requests in terms of SLA (deadline and 

budget) are stored at an entry point from where user 

request for user information is sent to cloud provider. 

The cloud provider receives SLA constraints and user’s 

job details, then checks all the data centres for 

availability of resources and decide the data centre at 

which the user application can be installed without 

violating the SLA and budget constraints. 

 Max Percentages(MP) Algorithm  

Li et al. (2015) gave MP algorithm, which consider the 

inherent correlation of information about resources and 

tasks and utilizes the percentages of resource service 

times to emphasize the overall performance. MP 

algorithm search the resource which is most affected on 

its service time if one task was mapped on it, and then 

allocate this task to it. The percentages of the 

completion time of each available task taken, the total 

used time of each resource to measure the effects on 

resources and the task which has the max percentage 

will be scheduled to be executed. 

 Context-Aware Scheduling:  

According to Cassales et al. (2015), main goal is to 

improve the scheduling of Hadoop by providing support 

to dynamic changes in the availability of resources. The 

scheduler must collect context information i.e. available 

resources on the nodes to detect dynamic changes. 

Slave JobTrackers must communicate periodically with 

the master TaskTrackers to keep updated information 

and let the scheduler prepare to the new context. The 

design is based on two key measures. First, a large 

percentage of Map Reduce jobs run periodically and 

roughly have the same characteristics regarding CPU, 

disk and network requirements. Second, in a Hadoop 

cluster, the nodes become heterogeneous over time due 

to failures, when newer nodes replace old ones. If 

Hadoop does not perform preemption/migration of 

tasks, the involvement of speculative tasks and context-

aware scheduler may contribute to avoid the bottlenecks 

caused by the resources variability. 

 

IV. PERFORMANCE METRICS 

Hadoop performance metrics are used to evaluate 

scheduling algorithms [22]: 

 Average Completion Time: sum of completion time 

of all jobs divided by number of jobs. 

 Dissatisfaction: amount of satisfaction provided by 

scheduling algorithm in minimum share 

requirement of users. 

 Fairness: how fair the scheduling algorithm is in 

dividing the resources among users [26]. 

 Locality: proportion of tasks which are running on 

the same resource as where their stored data are 

located. 

 Scheduling Time: total time spent for scheduling all 

of the incoming jobs. This measures the overhead 

of each Hadoop scheduler. 

 

V. PERFORMANCE ISSUES 

Drawbacks of scheduling algorithm to heterogeneity level to 

each hadoop factor [22, 47]: 

  Jobs Starvation:  If required resources are not 

allocated to job since long time is known as 

starvation 

 Sticky Slots: The scheduler assigns a job to the 

same resource every time. 

 Resource and Job Mismatch: In a heterogeneous 

Hadoop system, resources can acquire different 

features with respect to their computation or 

storage units. Moreover, jobs in a heterogeneous 

workload have different requirements. To reduce 

the average completion time, it is critical to assign 

the jobs to resources by examining resource 

features and job requirements. 

 Scheduling Complexity: The complexity of 

scheduling algorithms can result from different 

features, such as gathering more system parameters 

and state information, and considering various 

factors in making scheduling decisions. 

 

VI. OBSERVATIONS 

Hadoop schedulers are based on system heterogeneity. 

When the system is homogeneous in all three factors: 

cluster, workload and user, the FIFO algorithm is selected. 

When the job size is small and users are heterogeneous, 

select Fair Sharing algorithm to improve the fairness. 

COSHH algorithm is the recommended in heterogeneous 

Hadoop. Scheduling algorithms emphasis on data locality, 

sharing, fairness and fault tolerant ability 

 

VII. CONCLUSION 

 

To overcome the issue of Big Data storage and processing 

the open source framework named Hadoop is developed by 

Apache can be used. Hadoop gives a source to Big Data 

processing with its components like Map Reduce and 

HDFS. To process with the Big Data the default scheduler 

called FIFO has been used. Different scheduling techniques 

to enhance the data locality, makespan, efficiency, fairness 

and performance are discussed. 
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