
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 5 Issue 8 August 2016 Page No. 17710-17714

Kanchan Rawat, IJECS Volume 05 Issue 08 August 2016 Page No.17710-17714 Page 17710

Proposed Novel Hybrid Approach For Improvement in Bug Severity

prediction

Kanchan Rawat
1
, Dr. Ajay Goel

2

1Research Scohlar,2Professor
1,2Department of Computer Science,Baddi University of Emerging Sciences and Technology

Baddi, Solan.H.P-173205, India
1rawat.kanchan7@gmail.com

2 hod.cse@baddiuniv.ac.in

Abstract: In this research study an approach of creating dictionary of critical terms is proposed to assess the bug severity as

severe and non severe. It is found that using different approaches of feature selection and classifier the pattern of accuracy and

precision is approximately same. However Chi square test and KNN classifier give the maximum performance of precision and

accuracy for the all four components. The proposed work will help Triager in classifying bugs based on severity and assigning

these bugs to relevant developer.

Keywords: Software Bugs, Severity, BTS(Bug tracking
System), Feature-Selection, Naive Bayes, K-Nearest

Neighbor,

I. INTRODUCTION

With the increasing dependence on software systems,

importance of software quality is becoming more critical.

There are different ways to ensure quality in software such

as code reviews and rigorous testing so that bugs can be

removed as early as possible to prevent the loss it may

cause. There is an old saying, “Every software program is

never perfect, there is always at least one bug in it which can

be encountered at any time.”Software bug is commonly used

to describe the occurrence of a fault in a software system

which results it to act differently from its specification [1]. It
is encountered while operating the product either under test

or while in use. Bugs are mostly mistakes which originate

due to human participation. 57% bug originates from error

made by human, which could be either due to carelessness

or absent mindedness [2]. When they lead to software

failure these bugs can cost companies a big amount of

money and in some case loss of human lives e.g. software

bug in the aRoyal Air Force Chinook aircraft's engine

control computer caused it to crash in the year 1994 and 29

people were killed[3]. So early detection of bugs and their

resolution is very critical. Software bug classification helps
in bug triaging system. Bug triaging[5] are the steps that are

taken to manage a bug from the time it is reported to the

time the bug is resolved [6].Effective bug triaging is very

important to any software system. It is evaluation of the

reported bug. It involves making sure that bug has enough

description to make it easily understood by the developer

.

Fig1. Bug Triaging Process

Project Manager facilitates bug triaging meeting with expert

member from business sector, development and tester. In

this meeting it is decided that which bug will be fixed and to

whom this will be assigned for fix and which bug will be

fixed later or will be left undetected. Software repositories

contain important information about software projects. It is

vital database in modern software development [7]. This

information can facilitate to manage the improvement of

these projects. In the last decade, practitioners have

analyzed and mined these software repositories to support

software development and evolution. Bug tracking systems

are one of the important repositories among all available
software repositories. Many open source software projects

have an open bug repository that allows both developers and

users to submit defects or issues in the software, suggest

possible enhancements, and comment on existing bug

reports. One potential advantage of an open bug repository

is that it may allow more bugs to be identified and solved,

improving the quality of the software produced [8].

A. Bug:

A Software bug can be classified as error, flaw, failure or

fault in any system due to which system behave in an

improper manner, may provide results which are not
expected or wrong results. Various ways in which a bug can

arise are either due to flaws in source code, designing of

program or due to operating systems or also can be

Review of Bugs

Assessment of Bugs

Assignment of Bugs

DOI: 10.18535/ijecs/v5i8.50

Kanchan Rawat, IJECS Volume 05 Issue 08 August 2016 Page No.17710-17714 Page 17711

produced by compiler errors. The results of bugs concluded

to be hazardous, from various incidents in real world.[9]

B. Types of bugs:

For betterment of software quality it should be ensured that

the bugs should be detected and to be taken care in their

early stages during software development. Software quality

can be affected due to following types of bugs:

i. Arithmetic Bugs: The bugs which are caused by

violation of arithmetic rules. Example, divide by zero.

ii. Syntax Bug: The bugs which are caused by the violation

of the syntax rules of programming language. Example,
using equal to operator instead assignment operator.

iii. Logic Bug: The bugs which are caused by using wrong

logic and output is not expected. Example infinite loops.

iv. Resource Bug: The bugs which are caused by in

appropriate use of resources. Example, un initialized

variable.

v. Multithreading Bug: Example is Deadlock, for

multithreading bug.

vi. Interface Bug: Incorrect use of the platform results the

interface bug. Examples, incorrect protocol selection.

vii. Performance Bug: Performance bugs degrade the system
performance. Example, high computational complexity

of an algorithm.

C. Bug tracking System(BTS):

Repositories contain important data regarding the System.

In modern software development it is vital to maintain

database. these databases can be facilitated to manage the

improvement in the software. Bug Tracking Systems are one

of the important repositories among all available software

repositories which maintain the data regarding the

occurrence of bugs, their resolution and their description and

many more such attributes regarding the respective bugs

occurred in the system. There are various benefits of using
Bug Tracking Systems:

i. Helps in improving the quality of the software.

ii. Helps in increasing the customer's satisfaction as it allows

them to report it.

iii. User's are not only allowed to report the bugs but they are

also provided by the information regarding the fixation of

the occurred bug.

iv. It improves the communication between the customers and

the developers by reporting bugs and providing the

resolution.

II. RELATED WORK

DavorCubanic, Gail C. Murphy [10] made first attempt in
2004 and proposed to apply supervised machine learning

algorithms to assists in bug triaging task. This technique can

able to detect developer to which the reported bug should be

assigned. The presented work is applicable on 15,859 bug

reports of Eclipse project. Text mining algorithms and Naïve

bayes was used in the approach. The accuracy level 30 %

was achieved.

John Anvik et al. [11] extended the work of DavorCubanic.

The authors used some different algorithms for supervised

learning such as Support Vector Machine (SVM), Naïve

Bayes and C4.5. The approach was used to generate
recommendation of developer to assign new bug report. This

approach was applied on bug reports of Eclipse, Firefox and

gcc (Compiler). Precision levels of Eclipse and Firefox

datasets was obtained 57% and 64% respectively with SVM

but for gcc there was less positive result.

John Anvik [12] further extended his previous work [3] and

created a recommender for assigning the bug reports. The

recommender for a project is constructed by using
recommendation algorithm. That algorithm used

information of the bug reports that was fixed in past and

create a model of expertise of developers of project. The

recommender thus formed is used to offer the set of

recommendations of developers for assigning new bug

reports.

GaeulJeong et al.[13] coined a new term called “tossed”
(reassignment). Bug tossing signifies the reassignment of

bug report to new developer. A tossed graph model has been

proposed based on Markov chains and it performed on

450,000 bug reports of Eclipse and Mozilla. The result
indicated that bug tossing activity was reduced to 72 %.

Thus prediction accuracy was increased up to 23 % as

compared to existing approach.

Israel Herraiz et al. [14] analyzed the bug reports of
Eclipse. It was hard from user’s point of view to distinguish

them. The authors recommended making the bug report

simpler than existing format. Severity levels could be

reduced to three levels as important, non important and

request for enhancement based on time taken to close the

bug. Similarly priority field in bug reports were grouped

according to mean time taken to close the bug. It was found

that this field could also be classified into three levels i.e.
high, medium, low.

Tim Menzies et al. [15] in their paper proposed a new
automated method called SEVERityISsue assessment

(SEVERIS) to assign severity level. It was based on text

mining approach and machine learning techniques. The

result of case study indicated that SEVERIS was a good

method of predicting issue severity levels.

GiulianoAntoniol et al. [16] presented an approach to
create an automatic routing system that routed the real bug

to maintenance team and request for enhancement to the

team leader automatically. This approach considered 1800

issues from BTS of Eclipse, Mozilla and JBoss. Text mining

technique was applied on description of report. The

classifier was build using three supervised ML techniques

like naïve bayes, decision trees and logistic regression. The

performance of this approach was evaluated. It indicated

that recall and precision level of Eclipse, Mozilla and JBoss

was obtained between 33 % to 97 % and 64 % to 98%

respectively.

Syed Nadeem et al. [17] suggested an approach to automate

bug triage system that predicts the developer to bug reports.

Bug reports sample of 1983 of Mozilla were used and

feature selection and feature reduction method was applied

on them. The best result was obtained using latent semantic

and SVM and 44.4 % accuracy level was achieved. The

value of recall and precision of approach was 28 % and 30

% respectively.

DOI: 10.18535/ijecs/v5i8.50

Kanchan Rawat, IJECS Volume 05 Issue 08 August 2016 Page No.17710-17714 Page 17712

Ahmed Lamkanfi and co authors [18] proposed a new
method for classifying bugs based on severity. Bug reports

of Eclipse, GNOME and Mozilla were preprocessed using

text mining algorithms (tokenization, stop word removal,

stemming). Then machine learning classifier naïve bayes
was applied. The average precision and recall of Eclipse and

Mozilla was 0.65-0.75 respectively and 0.70-0.85 in case of

GNOME.

Thomas Zimmerman et al. [19] conducted a survey among

developers and user of APACHE, Mozilla and Eclipse. The

result of survey indicated that there was mismatch between

the information required by developer to the information

provided by user. Further to overcome this mismatch
authors proposed a new tool CUEZILLA that assess the

quality of new bug report. This tool also provided the

recommendation about the elements that should be added in

bug report to improve the quality of it. The tool was trained

on 289 bug reports samples and it calculated the quality of

bug report 31- 48 % accurately.
III. METHODOLOGY

Bug reports are extracted from respective bug repository.

Then preprocessing on textual information of bug reports is

applied to obtain more reliable information. Term-document

matrix (TDM) is created and by using feature selection

method dictionary of critical terms is created. Then reduced

TDM obtained by using critical dictionary terms is fed to

classifier for classification of severe and non severe bug

report. The whole process of severity classification process

proposed in the thesis can be summarized as below:

Step 1: Extraction of Bug Reports of open source software

from Bug Repository

Step 2: Pre-processing of Bug reports by using text mining

approach

Step 3: Use TF/IDF score for creation of a Term-document

matrix(TDM matrix)

Step 4: Use of feature selection methods, information gain

and Chi-square method for dimensionality reduction.

Step 5: Creation of critical term dictionary using top-k

terms that are obtained after dimensionality reduction and
will be fed to the hybrid algorithm proposed in the thesis.

Step 6: Development of Hybrid KNN-NBM algorithm for

improved Bug severity prediction.

Step 7: Severity prediction of the bugs reported.

Step 8: Dataset will be used from Bugzilla repository of

Mozilla Firefox OS

Fig.3 Detailed Methodology

A. Performance Parameters

These are the performance parameters on which our

algorithm accuracy, efficiency and complexity would be

measured.

i) Accuracy- Accuracy: is the proportion of the total

number of predictions that were correct

 Error rate (misclassification rate)= 1 – AC

 Accuracy =

 Precision- Precision or Confidence (as it is called

in Data Mining) denotes the proportion of

Predicted Positive cases that are correctly Real

Positives.

 Precision is defined below:

 Precision = Confidence =

 =

 =

ii) Recall

 Recall or Sensitivity (as it is called in Psychology)

is the proportion of Real Positive cases that are

correctly Predicted Positive.

Recall = Sensitivity = tpr =

 =

 =

B. Comparison Parameter’s

These parameters help us in comparing our algorithm with

other algorithms and techniques which are used for software

quality prediction.

i) Confusion Matrix

 A table of confusion (sometimes also called
a confusion matrix).

BUG

REPORTS

TERM DOCUMENT

MATRIX

NEW INCOMING
BUG

TERM DOCUMENT

MATRIX

FEATURE SELECTION PREPARATION OF CRITICAL

TERM DICTIONARY

FEATURE SELECTION

TRAINING CLASSIFIER PREDICTION MODEL

SEVERITY PREDICTION

TEXT MINING

STOP WORD REMOVAL

STEMMING

TEXT MINING

 TOKENIZATION
TOKENIZATION

STEMMING

STOP WORD REMOVAL

DOI: 10.18535/ijecs/v5i8.50

Kanchan Rawat, IJECS Volume 05 Issue 08 August 2016 Page No.17710-17714 Page 17713

 Is a table with two rows and two columns that
reports the number of false positives, false

negatives, true positives, and true negatives.

Table 1: Confusion Matrix

 Predicted Condition

 Total

Population

Predicted
Condition

(Positive)

Predicted
Condition

(Negative)

Actual

Condition

Actual

Condition

(Positive)

A: True

Positive

B: False

Negative

Actual

Condition

(Negative)

C:

False

Positive

 D:

True

Negative

ALGORITHM_NAIVE BAYES MULTINOMIAL

Step 1. Count the distinct terms called vocabulary terms V

and number of total terms N.

Step2. a) For each c ε C

i. Count documents of class c as Nc..

ii. Calculate prior probability of document of

class c.

iii. Count number of occurrence of term t i.e.

Tct.

b) For each t ε V

i. Calculate conditional probability

 ()

∑

,end for

Step 3. a) For each c ε C, Calculate

 (

) () ∏ ()

end for

Step 4. Testing document is labeled class that has maximum

value of P(c/x)[14][15]

KNN ALGORITHM

Step 1. Compute the distance d from training points (a1, a2,

a3….aN) to testing point (tx) using distance function.

Step 2. Sort the training points according to distance from

the training point in ascending order.

Step 3. Top k training points are chosen as nearest neighbor

to training points.

Step 4. Most common class level c of k training points is

assigned to test point.

IV. PROPOSED METHODOLOGY

Fig: PROPOSED METHODOLOGY FLOWCHART

V. CONCLUSION AND FUTURE SCOPE

The software bugs that are detected after the deployment of
software affect the reliability and quality of software. Bug

tracking systems allow users to report these bugs of many

open source software. However predicting the severity level

of these bug report is emerging issue. Many attempts have

been made to address the problem of severity prediction, but

no attempt was made for creating dictionary of critical terms

of severity indicator. The work presented in this paper

proposed a feature selection and classification approach for

categorizing the bug reports into severe and non severe

class. Feature selection methods filter out most informative
terms from datasets after preprocessing steps. Top 125 terms

are selected and used as dictionary terms to train classifier.

Bug reports of four components of Eclipse are chosen for

this research, four main sub processes performed in

experiment are: dataset acquisition, preprocessing, Feature

selection and classification. In this research work, after the

preprocessing task, matrix of terms and documents are

created. Then a feature selection technique is applied over

them to get dictionary terms. Two feature selection methods

For each point in Training Data

initialize the Dataset

Split into Training and Testing

Calculate max. chances of point test to all points of training data

probabili

ty > ?

Consider as Neighbor

For all Neighbor sort k

For test points find Class of majority Neighbor

Classify test as majority class

Are points

classified ?

Calculate TP,FP,TN,FN

Find Accuracy, Precision and Recall

STOP

Y

N

Y

N

O

DOI: 10.18535/ijecs/v5i8.50

Kanchan Rawat, IJECS Volume 05 Issue 08 August 2016 Page No.17710-17714 Page 17714

named info – gain and Chi square. Then classification is

done by two ML algorithms named as NBM and KNN and

on basis of performance matrices their performance is

compared[16]

The proposed technique is used on bug repository of Mozilla
Firefox for performing severity classification. Therefore in

future other components of Mozilla may be used and cross

component approach could be applied by creating global

dictionary of all components of Mozilla. Also, domain

specific projects could be taken into consideration for the

study to create global dictionary of domain specific projects.

The study could help to make domain specific tool for

prediction of severity

REFERENCES

[1] D. Cubranic and G. C. Murphy, “Automatic bug triage using

text categorization,” in Proc Sixteenth International Conference on
Software Engineering, Citeseer, 2004, pp.92–97.

[2] J. Anvik, L. Hiew, and G. Murphy, “Who should fix thisbug?”
in Proc 28th International Conference on SoftwareEngineering.
ACM, 2006, pp. 361–370.

[3]Anvik, J. 2007. Assisting Bug Report Triage through

Recommendation.Ph.D. Dissertation, University of British
Columbia

[4] G. Jeong, S. Kim, and T. Zimmermann, “Improving Bug Triage
withTossing Graphs,” Proc. 17th ACM SIGSOFT Symp.
Foundations ofSoftware Engineering (FSE ’09), Aug. 2009, pp.
111-120.

[5] I. Herraiz, D. German, J. Gonzalez-Barahona, andG. Robles,

“Towards a Simplification of the Bug ReportForm in Eclipse,” in
5th International Working Conferenceon Mining Software
Repositories, May 2008.

[6]Jonnakuti Ramesh 1 M.Tech II year" An Automated Approach
for Software Bug classification "
http://ijesat.org/volumes/2013Vol_03_Iss_025/IJSEAT_2013-
'03_05_12.

[7]] A. Hotho, A. Nürnberger and G. Paaß, "A Brief Survey of

Text Mining," vol. 20, GLDV Journal for Computational
Linguistics and Language Technology, 2005, pp. 19-62.

[8] A. E. Hassan, "The Road Ahead for Mining Software
Repositories," IEEE Computer society, pp. 48-57, 2008.

[9] S. Diehl, H. C. Gall and A. E. Hassan, "Special issue on mining
software repositories," in Empirical Software Engineering An
International Journal © Springer Science+Business Media, 2009.

[10] L. Yu, C. Kong, L. Xu, J. Zhao and H. Zhang, "Mining Bug
Classifier and Debug Strategy Association Rules for Web-Based

Applications," in 08 Proceedings of the 4th international
conference on Advanced Data Mining and Applications , 2008.

[11] [Online]. Available: https://bugzilla.mozilla.org.

[12]T.Menzies and A. Marcus,“Automated severity assessment of
software defect reports,” in IEEE International Conference on
Software Maintenance, 28 2008-Oct. 4 2008, pp. 346–355.

[13]G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, andY.-G.
´eh´eneuc, “Is it a bug or an enhancement?:a text-based approach
to classify change requests,” inCASCON ’08: Proceedings of the
conference of thecenter for advanced studies on collaborative
research.ACM, 2008, pp. 304–318

[14] Syed Nadeem Ahsan , Javed Ferzund , Franz Wotawa,

“Automatic Software Bug Triage System (BTS) Based on Latent
Semantic Indexing and Support Vector Machine”, Proceedings of
the 2009 Fourth International Conference on Software Engineering
Advances, p.216-221, September 20-25, 2009

[15]Lamkanfi, Ahmed, et al. "Predicting the severity of a reported
bug." Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on. IEEE, 2010.

 1]T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A.

Schr ter, and C. Weiss, What Makes a Good Bug Report?, IEEE
Trans. Software Engineering, vol. 36, no.5, Oct. 2010, pp. 618-
643.

[17] N.Suguna,and Dr. K. Thanushko di"An Improved k-Nearest
Neighbor Classification Using Genetic Algorithm" IJCSI
International Journal of Computer Science Issues, Vol. 7, Issue 4,
No 2, July 2010

[18]Yun-leiCai,DuoJi ,Dong-feng Cai"A KNN Research Paper
Classification Method Based on Shared Nearest Neighbor"
Proceedings of NTCIR-8 Workshop Meeting, June 15–18, 2010,
Tokyo, Japan

[19] Li Baoli1, Yu Shiwen, and Lu Qin"An Improved k-Nearest
Neighbor Algorithm for Text Categorization" To appear in the
Proceedings of the 20th International Conference on Computer
Processing of Oriental Languages, Shenyang, China, 2003

