
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 6 Issue 8 August 2017, Page No. 22259-22275

Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22259

Explain the ‘Explain’

Dr SP Rahmesh
1
, Uthresh Kumar

2
, Thamilselvi

2
, Abila Jacqulin

2
, Aarthi Rekha

2
, Buvaneshwari

2

Senior Project Manager, HCL Technologies [sulur.rahmesh@ thryvedigital.com],

Uthresh.Neelakandan@thryvedigital.com

Sureshkumar.Thamilselvi@thryvedigital.com

Abila.JacqulinSp@thryvedigital.com

Aarthi.Rekha@thryvedigital.com

Buvaneswari.Rajagopal@thryvedigital.com

Thryve Digital LLP, Chennai

Abstract

The ultimate objective and focus of IT Shops today is to bring down the cost of operations and to run the

business efficiently. High cost element to maintain the application and database is measured using the

measure called MIPS [millions of instructions per second] and is calculated based on MIPS usage by CPU.

In this paper we investigate in detail the causes behind high usage of CPU and the ways in which the MIPS

Usage can be curtailed and the cost for it. This paper deals with the universal database DB2 which runs on

mainframe MVS operating system. As all the older legacy systems were developed on mainframe using

COBOL & DB2 sub-systems, re-engineering the applications is needed to bring the cost down. This paper

discusses various sub topics on why and how the MIPS can be brought down with no impact to the

application and business. Programs written with poor readability in an unstructured manner and without cost

consciousness are the key factors causing performance issues now-a-days.

Optimizer, a component which decides the optimal access path to fetch data from database is based on

statistical data captured in system tables. By adopting various approaches and disciplines outlined in this

paper surely would guide application programmers to script their queries appropriately and as a result,

organization’s objectives and goals can be met. In computing, optimization is the process of modifying a

system to improve its efficiency where the system can be a single entity or a collection of entities.

Keywords: Predicates, MIPS, Indexes, CPU, Optimizer, Explain, SQL, Programming logic

What causes DB2 performance issues?

Usual suspects are

 Organic growth of data [linear in nature] - Size and volume of data in database grows gradually and

over a period time [2 or 3 decades], the application programs and query statements in the programs

perform at low level as it has to handle huge volume of data.

 Workload – [addition of new applications / functionality or new installations / instances] – As the

business scenarios and complex requirements keep growing, the application programs have become

http://www.ijecs.in/
mailto:Abila.JacqulinSp@thryvedigital.com

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22260

like Spaghetti. Application portfolio studies have become hard due to such multifarious scenarios .

Also the emergent needs of customers, instances of the same application is being installed at

various locations to cater different geographies. This adds more complexities beyond control.

 Changes to the system classifications are

 Systematic changes [changes to operating system] – Changing technologies and innovations

introduced operating system changes on a regular basis. Modifications in Architecture is

happening endlessly for security purposes

 Application modifications – Due to business, functional & legal obligations, applications

growing in size incessantly.

 Spikes due to one off execution of SQL statements causing usage of higher MIPS and unplanned

outage of system resources. Due to some untoward incidents, SQL statements might take excess

CPU Time causing delay

 Asleep at the wheel, which means irregular execution of utilities like RUNSTATS, REORG.

Basically DB2 loves to statistics and performs all its activities and makes decisions only based on

the statistical information that gets recorded in system tables for any and every change that happens

in the DB2 sub system. Optimizer the core component of DB2 decides the access path to data for

every SQL based on the statistical information available in the tables. To ensure the statistical data

available in the system tables are unswerving, DB2 utility RUNSTATS which serves this purpose.

Regular execution of this utility will ensure the Statistical data are updated in tables. Similarly the

REORG utility organizes the data in the table, indexes in all table spaces. As the I/O operations are

heavy in all business applications, this utility arranges data in a disciplined manner which advances

the performance of the DB2 sub system.

How to analyze performance issues with DB2

Activities on exceptions to look into, are listed below

Look for number of times the issue has happened – Examine the problem whether is persistent or a

one-off incident. If it’s a rare occurrence look for system or operating environmental parameters to

understand the issue. Many times, such scenarios may not warrant a solution. But for regular issues,

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22261

it’s essential to analyze the complete cycle of events, availability of system resources, conflicts,

deadlock or issues with access paths for the SQL or anything to do with DB2 objects in particular. The

analysis of output from Explain command would serve plenty of information for deep-dive analysis

and investigation

Connection with DB2 issues – Validate the connection with DB2 sub system to avoid errors around

connectivity

Page cleaning – [Ref: IBM knowledge center]

In a well-tuned system, usually the page-cleaner agents that write changed or dirty pages to disk. Page-

cleaner agents perform I/O as background processes and allow applications to run faster because their

agents can perform actual transaction work. Page-cleaner agents are sometimes referred to as

asynchronous page cleaners or asynchronous buffer writers, because they are not coordinated with the

work of other agents and work only when required independently.

To improve performance for update-intensive workloads, one might prefer to enable proactive page

cleaning, whereby page cleaners behave more proactively in choosing which dirty pages get written out

at any given point in time. This is particularly true if snapshots reveal that there are a significant

number of synchronous data-page or index-page writes in relation to the number of asynchronous data-

page or index-page writes.

Figure below explains page cleaning process. Asynchronous page cleaning. Dirty pages are written out to

disk.

Sort Pool – [Is sort happening more or less?] – Sorting is an internal to DB2 activity happens on

various scenarios based on the way the SQLs are written. Based on the business needs, the query can

be written but with all cautions. Because the internal sort operations, take too much of time to comple te

the query. For example, UNION ALL is a key parameter which combines the results of two different

queries without doing any sorting & duplicate checking but UNION removes the duplicates in the

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22262

output. It’s programmer’s responsibility to decide appropriate parameters in such a way to bring the

CPU time down.

Have a holistic view of the system to inch close to the root cause and to look for optimum solution.

Expectations of the IT Shops is to have a highly stable system to support their business. DBAs expec t

no surprises and wants up front communications regarding the changes that happens around the

application and the environment. It’s DBAs responsibility to ensure stability of DB2 sub system on an

overall assessment

1 - Analyzing Programming Logic

A Programmer’s analysis should naturally focus on identifying the problem prone code and to look for

permanently arresting it from happening again. An important step in analyzing the DB2 performance related

issues is to find the query which consumes higher CPU and locks resources. Firstly, isolate the problem to

the smallest number of factors as possible. Before starting the analysis of the SQL or database request, one

should understand that other variables that are involved in the total response time are

 User display I/O

 Authentication

 Data processing

 Communications

Once the query causing the issue is identified, understand what it takes to execute a DB2 query. Upon the

execution of a DB2 query, three main operations around are

 Optimization time

 Open processing time

 Run time

It can be found from the diagram below that which operations affect optimization time, open processing

time, and run time. It is paramount important to identify and minimize the bottlenecks in the above three

main areas of the processing of any DB2 query to Improve the Performance. Programmers should be

empowered to rewrite the query, re-design the programming logic and flow to ensure the improvements in

efficacy.

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22263

2 - Pruning Select List

SQL statements have a major impact on database performance, hence it’s important to understand how SQL

statement works, optimizer chooses shortest access path, indexes used and etc. Select list is one among the

vital statement influences the consumption of CPU time and performance.

Some important basic best practices that can be followed while writing a select statement in DB2 are listed

below:

 Disallow SELECT * in application programs

SELECT only the rows or columns needed in the program and no extra column should be selected as it

avoids space, load

 Do not SELECT columns with known static values

Disallow Condition from SELECT list if Condition = Value

 Make WHERE clause data types match

Costs more to navigate indexes when data types are not matching

 Avoiding Joins, Distinct and complex functions to improve query optimization

The DB2 optimizer might not be able to efficiently run SQL statements that contain non-equality join

predicates, data type mismatches on join columns, unnecessary left or right outer joins and other

complex search conditions

 Optimizing by fetching what is needed

Consider defining unique, check and referential integrity constraints. These constraints provide semantic

information that allows the DB2 optimizer to rewrite queries to eliminate joins, push FETCH FIRST n

ROWS down through joins. Use OPTIMIZE FOR Clause requests special of the select statement

 Usage of literals in right place

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22264

Use constants and literals if the values will not change and this increases optimizer’s accuracy using

statistics

 Avoid using functions in predicates.

The index is not used by the database if there is a function on the column.

For example:

SELECT * FROM TABLE1 WHERE UPPER (COL1) ='ABC'

As a result of the function UPPER (), the index on COL1 is not used by the optimizer. If the function

cannot be avoided in the SQL, create a function-based index in Oracle or generated columns in DB2 to

improve performance

 Avoid Scalar functions

Never put SQL scalar functions on

columns in the WHERE clause

predicates.

For example: WHERE YEAR

(HIREDATE) = 2009 should be

recoded as WHERE HIREDATE

BETWEEN '2009-01-01' and '2009-12-31'. When placing SQL scalar functions on columns in the

SELECT portion of the SQL statement does incur some minimal overhead, but applying it to a column

in the WHERE clause causes the predicate to become stage 2 non indexable

 Usage of host variables for mathematics

Performing mathematics on the left predicates should be avoided.

For example: WHERE HIREDATE – 7 DAYS > :HV-DATE should be recoded as WHERE

HIREDATE > :HV_DATE + 7 days, As Having the mathematics on the host variable won’t cause a

problem.

 Existence checking queries

To check existence of rows in tables select count (*) is being used which is inefficient. Instead Use

select 1 into host variable along with Fetch First 1 Row only Condition, which reduces the runtime

ultimately

[“MIPS & Salaries are the highest

unit cost per month” by Nancy White

– Former CEO – Certegy Corp.]

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22265

3 - Minimize Trips to DB2

Number of times database is queried to fetch or manipulate the data should be minimized to the extent

possible, as every trip to DB2 adds cost to operations. Few tips are listed below to achieve this objective.

 Identify the loops / trips / threads to database to make it as minimal as possible

 Ensure right programming methodologies are applied with all in-built functions utilized

 Use the Bind parameters / options appropriately for row processing

 Use in-built data storage options [use of multi-dimensional arrays] to bring down the I/O operations

 Use multi-row fetch options to avoid singleton fetch operations & look at options to move SQLs written

outside perform loops, wherever possible.

 Avoid cursors inside another cursor which is using the same set of tables. Need to ensure DB2 latches or

uncommitted reads are supporting this scenario

 Use default options while insert time for unknown fields [avoid using host variables for defaults]

 Use NO UPDATE options while updating fields

 Move – 7 to Null Indicator field [when no change, skip column]

 Move – 5 to Null indicator field [when defaults to be used]

 For mass inserts or updates into Database, use the load utilities. While doing mass operations, drop the

indexes and re-create the index objects.

 Use options like a) for Fetch Only in Cursors, b) Optimize for n Rows, c) Fetch First n Rows Only d)

Use ‘Stored Procedures’ f) Reduce network traffic

 Use the NULL indicators to systemic treatment of nulls to satisfy CODD Rules

 Use commits in application all programs performing heavy I/O operations should in-built restart logic /

strategy in ABEND situations. Recommend to have DB2 restart table containing a package name, last

key rules, commit frequency and etc

4 - Predicates stage 1, 2 & 3

A predicate specifies a condition that is true, false, or unknown about a given value, row, or group. The type

of a predicate depends on its operator or syntax. And it can be organized into the following types:

 Sub query predicate

 Equal predicate

 Range Predicate

 IN predicate

 Not Predicate

Predicates can be grouped into four categories that are determined by how and when the predicate is used in

the evaluation process. Applying the predicates for the SQL statements are in stages as in the following list,

ordered in terms of performance starting with the most favorable: .

 Indexable - predicate can match index entries

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22266

 Non- Indexable - predicates that cannot match index entries

 Stage 1 - Predicates that can be applied during the first stage of processing are called Stage 1

predicates. These predicates are also sometimes said to be sargable [an IBM term meaning

Searchable Argument]

 Stage 2 - predicates that cannot be applied until the second stage of processing are called stage 2

predicates, and sometimes described as non sargable or residual predicates.

The STAGE column of DSN_FILTER_TABLE indicates the stage at which a predicate was applied. The

stage 2 predicates are applied on the returned data rows. The predicate might be indexable and stage 1, if

both sides contain the same data type. Otherwise, the predicate is stage 2. The following sets of conditions

make the predicate as stage 2:

 The syntax of the predicate

 Data type and length of constants or columns in the predicate. A simple predicate whose syntax

classifies it as indexable and stage 1 might not be indexable or stage 1 because of data types that are

associated with the predicate. For example, a predicate that is associated with either columns or

constants of the DECFLOAT data type is never treated as stage 1. Similarly, a predicate that contains

constants or columns whose lengths are too long also might not be stage 1 or indexable.

 Whether DB2 evaluates the predicate before or after a join operation. A predicate that is evaluated

after a join operation is always a stage 2 predicate.

 Join sequence -The same predicate might be stage 1 or stage 2, depending on the join sequence. Join

sequence is the order in which DB2 joins tables when it evaluates a query. The join sequence is not

necessarily the same as the order in which the tables appear in the predicate. The join sequence can

be determined by executing EXPLAIN on the query and examining the resulting plan table.

There are tremendous performance benefits to be gained when the query can be processed as Stage 1 or

indexable rather than Stage 2. Here, the stage 2 and stage 1 predicates are listed.

Stage 1 Predicates Stage 2 Predicates

COL = value
value BETWEEN COL1

AND COL2

COL = noncol expr
COL BETWEEN COL1

AND COL2

COL IS NULL
value NOT BETWEEN

COL1 AND COL2

COL op value
value BETWEEN col expr

and col expr

COL op noncol expr T1.COL <> T2.COL

COL BETWEEN value1 AND

value2
T1.COL1 = T1.COL2

COL BETWEEN noncol expr 1

AND noncol expr 2
T1.COL1 op T1.COL2

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22267

COL BETWEEN expr-1 AND expr-

2
T1.COL1 <> T1.COL2

COL LIKE 'pattern' COL = ALL (noncor subq)

COL IN (list) COL <> (noncor subq)

COL IS NOT NULL COL <> ALL (noncor subq)

COL LIKE host variable COL NOT IN (noncor subq)

COL LIKE UPPER ('pattern') COL = (cor subq)

COL LIKE UPPER (host-variable) COL = ALL (cor subq)

COL LIKE UPPER (SQL-variable) COL op (cor subq)

COL LIKE UPPER (CAST ('pattern'

AS data-type))
COL op ANY (cor subq)

COL LIKE UPPER (CAST (host-

variable AS data-type))
COL op ALL (cor subq)

COL LIKE UPPER (CAST (SQL-

variable AS data-type))
COL <> (cor subq)

T1.COL = T2.COL COL <> ANY (cor subq)

T1.COL op T2.COL
(COL1,...COLn) IN (cor

subq)

T1.COL = T2 col expr COL NOT IN (cor subq)

T1.COL op T2 col expr
(COL1,...COLn) NOT IN

(cor subq)

COL = (noncor subq)
T1.COL1 IS DISTINCT

FROM T2.COL2

COL op (noncor subq)
 T1.COL1 IS DISTINCT

FROM T2 col expr

COL = ANY (noncor subq)
COL IS NOT DISTINCT

FROM (cor subq)

(COL1,...COLn) IN (noncor subq) EXISTS (subq

COL = ANY (cor subq) expression = value

COL IS NOT DISTINCT FROM

value
expression <> value

COL IS NOT DISTINCT FROM

noncol expr
expression op value

T1.COL1 IS NOT DISTINCT

FROM T2.COL2
expression op (subq)

T1.COL1 IS NOT DISTINCT

FROM T2 col expr
NOT XMLEXIS

COL IS NOT DISTINCT FROM

(noncor subq)

Some example queries below to see the effect of rewriting the stage 2 SQL to stage 1 SQL.

Original predicate or query Optimized predicates Comments

c1 between 5 and 10 c1 ≥ 5 and c1 ≤ 10

The BETWEEN predicates are rewritten into

the equivalent range delimiting predicates so

that they can be used internally as though the

user specified the range delimiting

predicates.

c1 not between 5 and 10 c1 < 5 or c1 > 10

The presence of the OR predicate does not

allow the use of a start-stop key unless the

DB2 optimizer chooses an index-ORing

plan.

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22268

Original predicate or query Optimized predicates Comments

SELECT * FROM t1 WHERE

EXISTS (SELECT c1 FROM

t2 WHERE t1.c1 = t2.c1)

SELECT t1.* FROM t1

EOJOIN t2 WHERE t1.c1=

t2.c1

The sub query might be transformed into a

join.

SELECT * FROM t1 WHERE

t1.c1 IN (SELECT c1 FROM

t2)

SELECT t1* FROM t1

EOJOIN t2 WHERE t1.c1=

t2.c1

This is similar to the transformation for the

EXISTS predicate example in the previous

row.

c1 like 'abc%'

c1 ≥ 'abc X X X ' and c1 ≤

'abc Y Y Y'

If we have c1 as the leading column of an

index, DB2 generates these predicates so that

they can be applied as range-delimiting start-

stop predicates. Here the characters X and Y

are symbolic of the lowest and highest

collating character.

c1 like 'abc%def'

c1 ≥ 'abc X X X ' and c1 ≤

'abc Y Y Y' and c1 like

'abc%def'

This is similar to the previous case, except

that we have to also apply the original

predicate as an index Sargable predicate.

This ensures that the characters definite

match correctly.

Stage 3: Application filtering

These are the predicates that are returned to an application and the application determines whether to keep

the row or not. These stage 3 predicates are not an actual category described under DB2 but from application

program’s filtering logic. Program logics and filtering techniques used are very much part of stage 3

predicates.

5 - Verifying local filtering sequence

When writing an SQL statement with multiple predicates, determine the predicate that will filter out the

most data from the result set to place that predicate at the start of the list. By sequencing the predicates in

this manner, the subsequent predicates will have less data to filter. The DB2 optimizer by default will

categorize the predicate and process as detailed below.

 DB2 always applies index predicates first, following the order in which the index is created. It’s a

good practice to keep the order of predicates as in index.

 Stage 1 non-index predicates are applied in the following order:

1. Equal predicates 2. Range predicates 3. In-list and like predicates

 Stage 2 predicates are applied

However, if SQL query presents multiple predicates that fall into the same category, these predicates will be

executed in the order that they are written. So, it is important to sequence the predicates placing the

predicate with the most filtering at the top of the sequence.

1. The most-filtering predicates should be coded before the least-filtering predicates. The most restrictive

condition should be listed first, so that extra processing of the second condition can be eliminated.

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22269

2. Code SQL with AND predicates coded with most-filtering predicates before least-filtering predicates

and OR predicates coded the opposite way, with least-filtering predicates coded before most-filtering

predicates.

3. Code join predicates first, followed by local predicates (predicates on a single table) in the same as the

named tables appear in the FROM clause.

4. The order of predicate filtering is mainly dependent on the join sequence, join method, and index

selection. The order the predicates physically appear in the statement only come into play when there is a

tie with one of the above listed categories.

6 – Table Joins

A join statement in SQL relates, associates, or combines multiple table structures together in several

different ways, producing a resultant single tabular structure. Join using ON options are supposedly more

efficient that joins with conditions as WHERE parameters. It is possible to replicate ON functionality via

WHERE implementation, but it is much slower.

 For LEFT OUTER JOIN, pushing predicates of the right table from the WHERE

clause into the ON condition helps the database optimizer to generate a more efficient access path.

Predicates of the left table can stay in the WHERE clause.

 Similarly, for the SQL queries with the RIGHT OUTER JOIN, predicates for the right table should be

moved from the WHERE clause into the ON condition.

Imagine a DB server trying to join two tables, the join condition is specified as a WHERE clause, then the

DB Cross joins (union) all results into memory and then removes the combinations that don't pass the filters.

An ON condition can be processed during that first CROSS JOIN itself and results in smaller memory use

and fewer passes over the dataset.

There will be a difference in LEFT OUTER JOIN ON condition and a WHERE condition. The ON

condition stipulates which rows will be returned in the join, while the WHERE condition acts as a filter on

the rows that were returned. While performing a LEFT OUTER JOIN, make sure that any filter conditions

on the table are in the ON clause, not the WHERE clause. Right and left outer joins are functionally

equivalent. Neither provides any functionality that the other does not, so right and left outer joins may

replace each other if the table order is switched.

Join performs better than sub query because it does not have to do a correlated evaluation, on a row-by-row

basis. In most cases JOINs are faster than sub-queries and it is very rare for a sub-query to be faster. In

JOINs RDBMS can create an execution plan that is better for query and can predict what data should be

loaded to be processed which saves time, unlike the sub-query where it will run all the queries and load all

their data to do the processing.

7 Access Path

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22270

An access path through which the data from DB2 travels back to the application program to satisfy the SQL

statements. It specifies the indexes, tables, access methods, order in which objects are accessed and etc. DB2

selects the access paths static SQL statements when application program is bound or rebound into a package

while DB2 selects the access paths for dynamic SQL statements when the statements are issued. The DB2

optimizer can choose from a variety of different techniques as it creates optimal access paths for each SQL

statement. These techniques range from a simple series of sequential reads to much more complicated

strategies such as using multiple indexes to access data based on the statistical data recorded in the tables.

To select efficient access paths, DB2 relies on the following elements:

 Queries that use effective predicates

 Indexes that support efficient data access

 Statistics that describe the data sufficiently and accurately

Analyzing access path

Performance of queries can be assessed using appropriate current statistics that are available in the database

objects referenced by an SQL statement.

To investigate access path complete the following investigations:

1. Check the accuracy and completeness of statistics for the objects in the SQL statement. Inaccurate

statistics often result in inaccurate access paths chosen

 Invoke the REORG utility to reorganize the DB2 objects and to refresh the content. By Invoking the

DSNACCOX stored procedure to determine when to execute REORG is needed

 Invoke the RUNSTATS utility to capture statistics

2. Execute EXPLAIN statement to capture access path information

3. Check whether indexes are used and how many matching columns are used. The fastest way to access

DB2 data is to use possible indexes. Indexes are structured in such a way as to increase the efficiency of

finding a particular piece of data. It is essential to have limited but effective indexes as having more

indexes lessens the performance and adds cost. When indexes are not defined properly, the selectivity of

indexes would be low and it’s paramount important to ensure higher selectivity of the indexes. Avoid

redundant indexes to have better run time for batch or online applications. At the same time, consider

over loading existing indexes by adding columns to encourage index-only access searches to happen.

 There are different types of indexed access. Table space scan / Index scan / Index only are the options

the Optimizer chooses to access the data.

 Direct index lookup:

For DB2 to perform a direct index lookup, values must be provided for each column in

the index.

 Index scan:

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22271

i. Matching index scans (MATCHCOLS>0)

In a matching index scan, predicates are specified on either the leading or all of the index key

columns. These predicates provide filtering, only specific index pages and data pages need to be

accessed. If the degree of filtering is high, the matching index scan is efficient.

ii. Non-matching index scans(ACCESSTYPE='I' and MATCHCOLS=0)

In a non-matching index scan no matching columns are in the index. Consequently, all of the

index keys must be examined.

iii. Index-only access(INDEXONLY='Y')

An index scan occurs when the database manager accesses an index to narrow the set of

qualifying rows (by scanning the rows in a specified range of the index) before accessing the

base table, to order the output or to retrieve the requested column data directly

 Table space scan

When index access is not possible, DB2 uses a table space scan. DB2 typically uses the

sequential prefetch method to scan table spaces. A table space scan on a partitioned table space

can be more efficient than a scan on a non-partitioned table space. DB2 can take advantage of the

partitions by limiting the scan of data in a partitioned table space to one or more partitions.

 Table space scan access (ACCESSTYPE='R' and

 PREFETCH='S')

 Sequential prefetch (PREFETCH='S')

8 EXPLAIN: To understand the access path

The EXPLAIN statement obtains information about access path selection for an explainable statement. A

statement is explainable if it is a SELECT, MERGE, or INSERT statement, or the searched form of an

UPDATE or DELETE statement. The PLAN_TABLE contains information about access paths that is

collected from the results of EXPLAIN statements.

The information in the plan table helps to perform the following tasks:

● Determine the access path that DB2 chooses for a query

● Design databases, indexes, and application programs

● Determine when to rebind an application

For each access to a single table, EXPLAIN indicates whether DB2 uses index access or a table space scan.

For indexes, EXPLAIN indicates how many indexes and index columns are used and what I/O methods are

used to read the pages. For joins of tables, EXPLAIN indicates the join method and type, the order in

which DB2 joins the tables, and the occasions when and reasons why it sorts any rows. For programs that do

static bind process, either hard code the value for predicates in the code or rebind the program with REOPT

parameter, which triggers optimizer to look for access path at run time. This would improve the performance

in many scenarios, where DBA adds many indexes or any changes to table space.

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22272

Questions to analysis Access Path using EXPLAIN

Investigation of access paths that DB2 uses to process SQL statements by using the PLAN_TABLE data to

answer certain questions.

The following questions can be used to guide initial analysis of the access paths.

How are indexes used to access the data?

The ACCESSTYPE and MATCHOLS values contain information about the use of indexes in an access

path.

 Is an index used? For information about interpreting index access, see Index access (ACCESSTYPE is

'I', 'IN', 'I1', 'N', 'MX', or 'DX')

1. How many indexes are used? For information about interpreting access through multiple indexes,

see Multiple index access (ACCESSTYPE='M', 'MX', 'MI', 'MU', 'DX', 'DI', or 'DU')

2. How many index columns are used in matching? For more information about finding the number of

matching index columns, see Matching index scan (MATCHCOLS>0) and the number of index columns

used for matching (MATCHCOLS=n)

3. Is the query satisfied by the index alone? For more information about analyzing index-only access,

see Index-only access (INDEXONLY='Y')

4. How many index screening columns are used? See Index screening to analyze further

Is direct row access used?

5. Direct row access can only be used only when the table contains a column of the ROWID data type. For

information about direct row access, see Direct row access

(PRIMARY_ACCESSTYPE='D') and ROWID data type.

What possibly costly operations are used?

6. Is a view or nested table expression materialized? Analyzing materialization, see View and nested table

expression access.

7. Was a scan limited to certain partitions? See Prefetch access paths (PREFETCH='D', 'S', 'L', or 'U') to

analyze use of page-range screening

8. What prefetch type is expected? See Prefetch access paths (PREFETCH='D', 'S', 'L', or 'U').

9. Is data accessed or processed in parallel? see Parallel processing access (PARALLELISM_MODE='C')

10. Is data sorted? To analyze the use of sort operations, check Sort access

11. Is a sub-query transformed to a join? Check sub-query access

12. When are aggregate functions evaluated? Check Aggregate function access (COLUMN_FN_EVAL)

13. Is a complex trigger WHEN clause used? Check Complex trigger WHEN clause access

(QBLOCKTYPE='TRIGGR').

https://www.ibm.com/support/knowledgecenter/SSEPEK_12.0.0/perf/src/tpc/db2z_indexscreening.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPEK_12.0.0/perf/src/tpc/db2z_viewnestedtableaccess.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPEK_12.0.0/perf/src/tpc/db2z_viewnestedtableaccess.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPEK_12.0.0/perf/src/tpc/db2z_sortaccess.html?view=kc
https://www.ibm.com/support/knowledgecenter/SSEPEK_12.0.0/perf/src/tpc/db2z_subqueryaccess.html?view=kc

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22273

By using the values captured in EXPLAIN tables and instances of PLAN_TABLE in particular, it’s possible

to understand how Explain works & what changes can be taken up to improve the performance and bring the

cost down.

Usually, the optimizer does not consider the order in which tables appear in the FROM clause when

choosing an execution plan. The optimizer makes this choice by applying the following rules listed below.

14. The optimizer chooses the execution plan with the fewest nested-loops operations in which the inner

table is accessed with a full table scan.

15. If there is a tie, the optimizer chooses the execution plan with the fewest sort-merge operations.

16. If there is still a tie, the optimizer chooses the execution plan for which the first table in the join order

has the most highly ranked access path:

17. If there is a tie among multiple plans whose first tables are accessed by the single-column indexes access

path, the optimizer chooses the plan whose first table is accessed with the most merged indexes.

18. If there is a tie among multiple plans whose first tables are accessed by bounded range scans, the

optimizer chooses the plan whose first table is accessed with the greatest number of leading columns of

the composite index.

If there is still a tie, the optimizer chooses the execution plan for which the first table appears later in the

query's FROM clause.

Examples

Example to analysis Access Path using EXPALIN

The job was running long time, due to Query performance in the COBOL module.

 Query used in the COBOL module

 SELECT A.CTHLD_MBR_ID

 ,C.PLC_ID

 ,C.SUB_ID

 ,C.ASSGN_MBR_ID

 ,A.TIMESTAMP

 FROM WWWW A

 ,XXXX B

 ,YYYY C

 ,ZZZZ D

 WHERE A.CI_ID = :WS-CI-ID

 AND A.CNTR_ID = :WS-INT-CNTR-ID

 AND A.CTHLD_MBR_ID = B.CTHLD_MBR_ID

 AND B.CTHLD_MBR_ID = C.CTHLD_MBR_ID

 AND C.CTHLD_MBR_ID = D.CTHLD_MBR_ID

 AND A.KY_ASGN_MBR_ID = D.KY_ASGN_MBR_ID

 AND B.EFF_DT <= :WS-CANCEL-DATE-F

 AND (C.MAINT_TYPE_CD = '021'

 OR C.MAINT_TYPE_CD = '025')

 ORDER BY A.TIMESTAMP DESC,

 A.CTHLD_MBR_ID DESC

 FOR FETCH ONLY

 WITH UR

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22274

Result of Explain for this Query

---------+---------+---------+--------------+---------+---------+-----

PLANNO METHOD CREATOR TNAME TABNO

 ACCESSTYPE MATCHCOLS

---------+---------+---------+--------------+---------+---------+-----

1 0 DB2TEST WWWW 1 I 2

2 1 DB2TEST XXXX 2 I 1

3 1 DB2TEST YYYY 3 I 1

4 1 DB2TEST ZZZZ 4 I 1

5 3 0 0

---------+---------+---------+

ACCESSCREATOR ACCESSNAME

---------+---------+---------+

DB2TEST XMBD5012

DB2TEST XMBD3391

DB2TEST XMBD311C

DB2TEST XMBD503C

On the basis of Explain information, able to see all the four tables [WWWW, XXXX, YYYY, ZZZZ], all

the predicates used are using the Indexes as given above. But the matchcols for the table WWWW is 2

column but there is a possibility to improve by adding an index. Similarly the ZZZZ table uses the index

with matchcols 1, which can be improved by creating another suitable index

Recommendations for additional indexes are

Table: WWWW:

Another index with the following 4 columns:

CI_ID

CNTR_ID

CTHLD_MBR_ID

KY_ASGN_MBR_ID

Table: ZZZZ:

 Another index with the following 2 columns:

CTHLD_MBR_ID

KY_ASGN_MBR_ID

Conclusion

CPU Consumption and elapsed time of various applications are the major contributors of cost for all IT

shops. Growing complex business requirements keeps adding the application complexity and cost in a

linear fashion.

Optimization techniques and tools [Operations Research tools] are being applied across all the

industries to achieve optimum usage of resources to gain cost benefits. IT industries also now-a-days

started adopting lean principles, statistical tools and techniques to achieve cost benefits. IT consultants

DOI: 10.18535/ijecs/v6i8.07

Dr SP Rahmesh, IJECS Volume 6 Issue 8 August 2017 Page No. 22259-22275 Page 22275

have come-up with plenty of analysis tools and functions to optimize the cost incurred for various

applications across all the business domains and environments. In particular, the database cost is too

heavy and so this paper has been written to share the experiences about how to deal with DB2

operations. Explain being the command used to learn the access path, which triggers overall research

and analysis of SQLs written to meet the business needs, this paper focused more on EXPLAIN.

Various sub topics discussed in this paper by the programmers would guide and help many

programmers and beginners to understand the concepts and walk towards enhancing the efficiency to

meet operational critical success factors.

Beyond the usage of tools, utilities and optimization techniques, skillful programs can still beat these

tools with the help of all the experience, use of best practices, tricks & tips in handling the SQL

commands and scripting structured application programs.

References

1. IBM Manual on ‘Database Performance and query optimization’ Version 7.3, pp 11 – 42, 155 – 171

2. Jeff Sullivan, ‘What can cause performance issues in DB2’, Lecture recorded on 17
th

 Apr, 2010,

recorded by YouTube

3. Tony Andrews, ‘Advanced Query Tuning with IBM Data Studio’, Lecture produced by Curl Films,

Themis Education, 27
th

 Mar 2011

4. Sheryl Larsen, ‘DB2 for z/OS Best Practice: Advanced SQL Performance Insights’, Lecture recorded

on 7
th

 March 2014

[“A little knowledge that acts is worth indefinitely more that

much knowledge that’s idle”]

