
www.ijecs.in 

International Journal Of Engineering And Computer Science ISSN:2319-7242 

Volume 5 Issue 8 August 2016 Page No. 17662-17666 

 

 

Chaturvedula Pratyusha, IJECS Volume 05 Issue 08 August 2016 Page No.17662-17666 Page 17662 

Automatic Generation of Coverage tests for System Programs 

Chaturvedula Pratyusha
1
, Naveen Kumar

2
, K. Rajasekhar

3 

1M. Tech (Software Engineering), School of Information Technology, Jntuh 

Email:pratyushach518@gmail.com 

2 Assistant Professor,School of Information Technology, Jntuh 

3 Scientist’ G’, Defense Research and Development Laboratory, kanchanbagh. 

 

Abstract: 

Software testing is one of the critical activity for the organizations who spend lot of time and cost for the 

improvement of software quality. Programming testing is characterized as the way toward executing a project with 

the plan of discovering mistakes. Testing would ensure the correctness and produces reliable software. In order to 

achieve the quality software, sufficient number of test cases should be designed and tested.To calculate the integrity 

of test cases and identify that there are no unexpected functionalities, the structural code coverage should be 

measured like, statement or decision coverage. 

 Numerous strategies and procedures are advanced in era of test information for different experiments and is 

considered as one of the vital components of examination region in the organizations. In this study, the automatic 

generation for test cases are explored. This papermainly focuses on a symbolic execution tool used to generate the 

optimized test cases. The basic aim of the project is to generate the test cases and to achieve 100% coverage of 

given structural code including statement coverage, decision coverage and path coverage. 

 

1. Introduction 

Most of the IT Organizations generate test cases 

manually. This is a slow process and the intervention 

of man power leads to the generation of ineffective 

test cases and lastly the quality is affected. 

Hence, without trying to run the code manually, we 
run it on the symbolic input. When the program 
executes based on symbolic input it produces the 
optimized test cases maintaining set of constraints 
used for the code coverage. Growing more lines of 
code and getting accumulated accurately is a major 
test and immense sum is spent on confirmation and 
approval. 
Code coverage [9] is the cadent to decide the 
completeness of test cases and make sure that there 
is no dead code or uncovered code. Hence code 
coverage is an important test criteria.  
Some of the code coverage metrics include: 

i. Statement coverage: Each statement 
of the code must be covered with at 
least one test case. 

ii. Decision coverage (also branch 
coverage): Each conditional 
statement must be executed in its 
true and false condition. 

iii. Path coverage: Every possible route 
through the code must be operated 
by at least one test case. 

In this paper I present a symbolic execution tool called 

KLEE, which is used for obtaining optimized test 

casesand a coverage tool called GCOV used for 

representing the lines of code covered. 

KLEE: 

Klee is a robust optimization tool used to represent 

the program states completely and obtain the high 

code coverage. Klee uses simple and straight forward 



DOI: 10.18535/ijecs/v5i8.42 
 

Chaturvedula Pratyusha, IJECS Volume 05 Issue 08 August 2016 Page No.17662-17666 Page 17663 

approachto accord with independent conditions. 

These features improve the performance of Klee. 

Klee runs on top of LLVM. LLVM (Low Level Virtual 

Machine) is a just in time compiler which is used to 

generate and execute machine code. Llvm is intended 

for run time, arrange time advancement of programs 

written in various programming dialects. Llvm is also 

used to design the compiler front end and back end. 

Front end is responsible for parsing and validating the 

errors in input code. Then it translates the parsed 

code to llvm IR (Intermediate Representation). Klee is 

implemented with the help of this llvm IR. 

 

LLVM is a research based project to provide modern 

compilation strategy to support static and dynamic 

compilation of different programming languages. 

Hence, LLVM has grown as an umbrella project 

comprising of subprojects used as open source 

projects that can be used for academic research. The 

sub-projects of LLVM are: 

i. LLVM Core Libraries: - Provides a target-

independent optimizer. 

ii. Clang: - Tool that finds bugs in the code and 

provides to build source level tools. 

iii. OpenMP: - Provides runtime for the 

implementation in clang. 

iv. Klee: - Produces a test case in an event to 

detect a bug. Klee implements a symbolic 

virtual machine to evaluate dynamic paths 

and to prove the properties of functions. 

Observations on Klee: 

1. Klee automatically generates the test cases. 

These test cases cover the total lines of the 

program to maximum when run on the 

coverage tools. 

2. Klee gets more code coverage than the 

sustained manual effort. 

3. Klee finds important errors in heavily tested 

code. 

4. Klee is not limited to low level programming 

errors. It also finds out the functional errors 

and other inconsistencies. 

5. Klee can also be applied to non-application 

code. 

GCOV: 

Gcov is a testcoverage tool. Gcov gives the code 

coverage analysis. Gcov helps in understanding: 

 How regularly each line of code executes. 

 What lines of code are really executed. 

 How much processing time each section of 

code employs. 

2.  Overview 

This section explains the functionality of Klee. It 

illustrates problems common to the programs which 

relate to complexity and environmental 

dependencies. The code illustrates two additional 

common features. 

i) If the input code has bugs, Klee finds out and 

generates test cases.  

ii) Second, Klee helps to achieve good code coverage. 

The objectives of Klee is to strike each line of 

executable code in the program and discover risky 

operations which could cause an error. Klee runs the 

programs symbolically by generating the constraints 

that accurately defines the set of values probable on a 

given path. When Klee discovers an error, Klee 

resolves the current path constraints to generate a 

test case that follows same path when run on 

unmodified version of the program. 

Klee is aimed to generate the paths for an unmodified 

program which follows the same path Klee took. The 

capacity to run the tests outside of Klee in 

combination with standard tools is instrumental to 

diagnose the errors and validating the results. 

2.1 Usage 

Klee does not need any source modifications and the 

user can glance real programs with Klee in moments. 

First compile the code to byte code using LLVM 

compiler. 

Command used for ‘ex’ source file: 

$ llvm-gcc -emit-llvm -c -g ex.c 

We get the llvm byte code saved as ex.o 



DOI: 10.18535/ijecs/v5i8.42 
 

Chaturvedula Pratyusha, IJECS Volume 05 Issue 08 August 2016 Page No.17662-17666 Page 17664 

We then run Klee on produced byte code. Command 

used: 

$ klee ex.o 

Klee runs through three paths from our written code 

where one value is equal to 0, one less than 0, and 

other greater than 0. It explores that it generated one 

test case for an each path explored. It generates 

output in the output directory and shows the number 

of instructions, completed paths and generated tests. 

Klee generates the actual test files with extension 

.ktest. 

These binary files can be read and tested with the 

ktest-tool utility. 

3. Klee Architecture 

Klee is the remodel of a prior execution tool called 

EXE. Klee capacities as a crossover identifying with a 

working framework for typical procedure and a 

translator. Klee is represented as a state for symbolic 

process. Programs are compiled to llvm which is an 

instruction set. Klee analyzes this guideline set and 

maps these instructions to imperatives without 

evaluation. 

Klee is apredictor loop which chooses a state to run 

and executes single instruction symbolically. This loop 

proceeds till there are no states left and client 

characterized timeout is come to. 

Conditional branches yield Boolean expressions and 

changes the position of instruction pointer based on 

the conditions whether it is true or false. Klee 

forwards a query to the constraint solver (STP) 

whether the condition fulfills the present path or not. 

Now the instruction pointer will be updated to the 

applicable location. Klee maintains replica of the state 

to discover both paths, renewing instruction pointer 

and the path condition. For the risky operations, if an 

issue is recognized, Klee constructs a test case to 

incite the flaw and ends the state. 

Architecture of Klee 

With the other risky operations, load and store 

instructions produce checks. The upfront 

demonstration of memory used by checked code is a 

byte-array. [7] Unfortunately the constraint solver 

(STP) cannot solve the resultant constraints. 

Hence Klee maps memory object in checked code to 

STP array. Klee is well-optimized for the programs that 

use symbolic pointers when a dereferenced pointer 

refers to many objects.Klee simplifies the constraint 

set by altering prior constraints when new parity 

constraints are added. 

Klee is an instrumentational approach such that the 

symbolic execution is done at backend during the 

execution of normal program. It can be easily 

implemented in C. Llvm byte code or the symbolic 

executed code is important for Klee to generate the 

test cases. After the generation of test cases, they are 

run on the original binaries to describe an instance of 

the symbolic environment. 

4. Experimental Results: 

Code coverage is calculated using gcov tool for the 

statement and decision coverage using the test 

casesgenerated by Klee. The tool has reported with 

the 100% statement coverage. 

4.1 Coverage Methodology: 

The program is run by using the following command in 

terminal: 

$ gcc -fprofile-arcs -ftest-coverage ex.c 

When ./a.out is run, we give the Klee generated test 

cases as input. It compiles and when  

$ gcovex.gcda command is run, it shows: 

90.00% of 10 source lines executed in file ex.c 



DOI: 10.18535/ijecs/v5i8.42 
 

Chaturvedula Pratyusha, IJECS Volume 05 Issue 08 August 2016 Page No.17662-17666 Page 17665 

Further to get the clear idea of what lines are 
covered,we use the command: 
cat ex.c.gcov 
When –b option is used, 
$ gcov -b ex.c 
The result is: 

 90.00% of 10 source lines executed in file ex.c 

 80.00% of 5 branches executed in file ex.c 

 80.00% of 5 branches taken at least once in 
file ex.c 

 50.00% of 2 calls executed in file ex.c 
 
 
The graph shows coverage of klee generated testcases 
versus manual test cases: 
 

 

5.Related Work: 

Apart from statement coverage, another aim was to 

achieve the path coverage. To achieve the path 

coverage, we need to generate a control dependency 

graph for the program so that the graph ensures that 

the program flows in an optimized manner. And when 

tested with the test cases, it satisfies the path 

coverage. 

 To generate this, we basically need C grammar rules 

and an open source tool called ANTLR. By developing 

code to accept all the elements of a c program, this 

tool generates tokens, parser code and lexer code 

when a C program is given as input. From this, it 

provides the nodes and links that can be used to 

generate the control dependency graph. This tool 

mainly uses the concept of stack, to reach every line 

of code and to acquire the dependencies for a given 

program. 

Now, when the nodes and links are generated we 

generate the graph using a tool named Graphviz, 

which generates required graphs using Dot code. 

Lastly, by using the Klee generated test cases, the 

graph is tested for path coverage of given input 

program. 

A similar research is also done to give 100% results for 

the coverage. The path coverage gives more expected 

results through data dependency graph compared to 

control dependency graph. To generate the data 

dependency graph,Backtracking method is to be 

performed and breadth first search graph needs to be 

generated. 

6.Future works: 

Attaining path coverage for vast lines of code is not 

practicable. Hence more optimized testing techniques 

are to be used. Instrumentation of the code directly 

using random testing techniques can give feasible 

results.In future, the reports can be generated   in 

html using clang static analyzer. 

7. Conclusion:  

The main aim is to give a C program as input, and get 

the maximum code coverage.Despite many 

techniques used for the automatic test case 

generation, Klee has given satisfactory results for the 

code coverage. The automated test cases are also 

tested for the path coverage by generating control 

dependency graph which has given good coverage. 

References: 

[1] About Klee. www.klee.github.io 

[2] Getting started with llvm core libraries. 

(Bruno Cardoso lopes & Rafael Auler) 

[3] Wikipedia : llvm URL : 

http://en.wikipedia.org/wiki/llvm 

[4] Llvm compiler infrastructure project 

[5] Architecture of open source applications. 

[6] Automatic generation of test cases. 

[7] Cristian Cadar,Daniel Dunbar, Dawson Engler 

– KLEE: 

[8] http://www.slideshare.net/shauvik/symbolic-

execution-and-klee. 

[9] Automated Testcase Generation for 

Numerical Support functions in Embedded 

Systems.- Johann Schumann,Stefan-

Alexander Schneider. 

[10] Control flow graph generation. 

[11] J. Bauer and A. Finger, “Test plan generation 

using formal grammars,” in       Proc. 4th Int. 

http://www.klee.github.io/
http://www.slideshare.net/shauvik/symbolic-execution-and-klee
http://www.slideshare.net/shauvik/symbolic-execution-and-klee


DOI: 10.18535/ijecs/v5i8.42 
 

Chaturvedula Pratyusha, IJECS Volume 05 Issue 08 August 2016 Page No.17662-17666 Page 17666 

Conf Software Engineering, 1979, pp. 425- 

432. 

[12] J. Benson, “Adaptive search techniques 

applied to software testing,”ACM Perform. 

Eval. Rev., vol. 10, no. 1, pp. 109- 116, Spring 

1981. 

[13] D. Bird and C. Munoz, “Automatic generation 

of random self-checking test cases,” IBM Syst. 

J., vol. 22, no. 3, pp. 229-245, 1983. 

[14] Www.antlr.org 

[15] Bruce   A.   Cota “Control   flow   graph   as 

representation language” Winter Simulation 

Conference, pp 556-559,1994. 

[16] Jon Edvardsson “A Survey on automatic test 

data generation” 

Author: Chaturvedula Pratyusha, M.Tech (Software 

Engineering)  

Email: pratyushach518@gmail.com 

 

http://www.antlr.org/

