
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 5 Issue 8 August 2016 Page No. 17643-17647

Solanke Vikas
*
 IJECS Volume 5 Issue 8 August, 2016 Page No.17643-17647 Page 17643

Analysis of Web base applications testing using mutant
Solanke Vikas

*
 Prof. Shyam Gupta

Department of Computer Engineering

solankevs@mmpolytechnic.com

Department of Computer Engineering

 gohadshyam@rediffmail.com

Abstract— Mutation testing was initially proposed in the 1970s as intends to guarantee vigour in test case improvement. By making

syntactically right substitutions inside the software under test (SUT) and rehashing the test execution stage against the adjusted code, an

evaluation could be made of test quality contingent upon if the definitive test cases could locate the code adjustment. Mutation testing is

normally used in small code programs, but for a small portion of large program or for a specific code it is used. This paper test a access

control part of web based applications for mutant testing, till date testing of web based application is only up to application level only.

Generally test cases are executed and stop the testing, but we can not check capability of test cases.

Keywords:Mmutant, mutation testing, access control, web application, testing.

INTRODUCTION

Mutation Testing is a shortcoming based testing procedure which furnishes a testing rule called the

"mutation ampleness score" or “mutation adequacy score”. The mutation ampleness score could be utilized

to measure the viability of a test set as far as its capability to catch faults .The general guideline underlying

Mutation Testing work is that the shortcomings utilized by Mutation Testing speak to the errors that

programmers regularly make.
One mutation operator to the program is called a mutant. If the test suite is able to detect the change (i.e. one of the tests fails),

then the mutant is said to be killed.

For example, consider the following C++ code fragment:

if (a && b) {

 c = 1;

} else {

 c = 0;

}

The condition mutation operator would replace && with || and produce the following mutant:

if (a || b)

 {

 c = 1;

} else {

 c = 0;

}

Now, for the test to kill this mutant, the following three conditions should be met:

1. A test must reach the mutated statement.

2. Test input data should infect the program state by causing different program states for the mutant and the original

program. For example, a test with a = 1and b = 0 would do this.

3. The incorrect program state (the value of 'c') must propagate to the program's output and be checked by the test.

These conditions are collectively called the RIP model.[3]

Weak mutation testing (or weak mutation coverage) requires that only the first and second conditions are satisfied. Strong

mutation testing requires that all three conditions are satisfied. Strong mutation is more powerful, since it ensures that the test suite

can really catch the problems. Weak mutation is closely related to code coverage methods. It requires much less computing power

to ensure that the test suite satisfies weak mutation testing than strong mutation testing.

Mutation operators: Many mutation operators have been explored by researchers. Here are some examples of mutation operators

for imperative languages:

Statement deletion

Statement duplication or insertion, e.g. goto fail;[15]

Replacement of boolean sub expressions with true and false

Replacement of some arithmetic operations with others, e.g. + with *, - with /

Replacement of some Boolean relations with others, e.g. > with >=, == and <=

Replacement of variables with others from the same scope (variable types must be compatible)

http://www.ijecs.in/
http://en.wikipedia.org/wiki/Mutation_testing#cite_note-mutation2000-3
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Mutation_testing#cite_note-15

DOI: 10.18535/ijecs/v5i8.38

Solanke Vikas
*
 IJECS Volume 5 Issue 8 August, 2016 Page No.17643-17647 Page 17644

mutation score = number of mutants killed / total number of mutants

These mutation operators are also called traditional mutation operators. There are also mutation operators for object-oriented

languages,[16] for concurrent constructions,[17] complex objects like containers,[18] etc. Operators for containers are

called class-level mutation operators. For example the tool offers various class-level mutation operators such as Access Modifier

Change, Type Cast Operator Insertion, and Type Cast Operator Deletion. Mutation operators have also been developed to perform

security vulnerability testing of programs.

I. SYSTEM DESIGNING

Using the source code we write test cases considering various test case scenarios like code sanitation and

covering all code components and all security functionalities. Then mutants are identified using the source

code, mutants are generated manually again keeping the security functionalities and vulnerabilities in mind.

These mutants are checked against the test cases written if mutants are killed then test cases are sufficient

and if mutants are not killed then test cases are again written accordingly. We are using manual approach for

mutant creation to avoid the problem of equivalent mutants which is present in case of automated mutant

generation by tools. This whole process is iterative and mutation testing helps to write strong test cases. Test

cases are written in Java. Now using these test cases we do penetrative testing of source code. In this part we

are checking how well software’s defenses against all types of vulnerabilities are.

STRUCTURAL MODELLING:

Structural modelling captures the static features of a system. They consist of the followings:

 Classes diagrams

 Objects diagrams

 Deployment diagrams

 Package diagrams

 Composite structure diagram

 Component diagram

http://en.wikipedia.org/wiki/Mutation_testing#cite_note-16
http://en.wikipedia.org/wiki/Mutation_testing#cite_note-17
http://en.wikipedia.org/wiki/Mutation_testing#cite_note-18

DOI: 10.18535/ijecs/v5i8.38

Solanke Vikas
*
 IJECS Volume 5 Issue 8 August, 2016 Page No.17643-17647 Page 17645

Structural model represents the framework for the system and this framework is the place where all other components exist. So the

class diagram, component diagram and deployment diagrams are the part of structural modelling. They all represent the elements

and the mechanism to assemble them.

But the structural model never describes the dynamic behavior of the system. Class diagram is the most widely used structural

diagram.

Behavioural Modelling:
Behavioural model describes the interaction in the system. It represents the interaction among the structural diagrams. Behavioural

modelling shows the dynamic nature of the system. They consist of the following:

 Activity diagrams

 Interaction diagrams

 Use case diagrams

All the above show the dynamic sequence of flow in a system.

Architectural Modelling:
Architectural model represents the overall framework of the system. It contains both structural and behavioral elements of the

system. Architectural model can be defined as the blue print of the entire system. Package diagram comes under architectural

modeling.

UML is popular for its diagrammatic notations. We all know that UML is for visualizing, specifying, constructing and

documenting the components of software and non software systems. Here the Visualization is the most important part which

needs to be understood and remembered by heart.

UML notations are the most important elements in modeling. Efficient and appropriate use of notations is very important for

making a complete and meaningful model. The model is useless unless its purpose is depicted properly.

So learning notations should be emphasized from the very beginning. Different notations are available for things and relationships.

And the UML diagrams are made using the notations of things and relationships. Extensibility is another important feature which

makes UML more powerful and flexible.

The chapter describes the UML Basic Notations in more details. This is just an extension to the UML buildling block section I

have discussed in previous chapter.

Structural Things:
Graphical notations utilized in structural things are the most broadly used in UML. Those are considered because the nouns of

UML models. Following are the listing of structural things.

• Classes

• object

• Interface

• Use case

• Component

• Collaboration

• Active Classes

• Nodes

Operand replacement operators Expression Modification Operators Statement modification Operators

Replace the operand with another operand(x

with y or y with x) or with the constant value.

Replace an operator or insertion of

new operators in a program statement.

Programmatic statements are modified to

create mutant programs.

Example-

If(x>y) replace x and y values

If(5>y) replace x by constant 5

Example-

If(x==y)

We can replace == into >= and have

mutant program as

If(x>=y) and inserting ++ in the

statement

If(x==++y)

Example-

Delete the else part in an if-else statement

Delete the entire if-else statement to check

how program behaves

Some of sample mutation operators:

 GOTO label replacement

 Return statement replacement

 Statement deletion

 Unary operator insertion(Like -

and ++)

 Logical connector replacement

 Comparable array name

replacement

DOI: 10.18535/ijecs/v5i8.38

Solanke Vikas
*
 IJECS Volume 5 Issue 8 August, 2016 Page No.17643-17647 Page 17646

 Removing of else part in the if-

else statement

 Adding or replacement of

operators

 Statement replacement by

changing the data

 Data Modification for the

variables

 Modification of data types in the

program

II. ACTUAL EXECUTION OF MUTANT

Mutant Operators : In java web based application we create our own operators where we consider

following

 Information Hiding/Access control

 Inheritance

 Polymorphism

 Overloading

 Java specific Features

 Operators depend on common program mastics

Faults Class Mutation Operators State visibility

anomaly

State definition inconsistency (due to state variable

hiding)

State definition anomaly (due to overriding)

Indirect inconsistent state definition Anomalous

construction behavior

Incomplete construction Inconsistent type use

Overloading methods misuse,

Access modifier misuse

IOP

IHD, IHI

IOD

IOD

IOR, IPC, PNC

 JID, JDC

 PID, PNC, PPD, PRV

OAN OMD, OAO

DOI: 10.18535/ijecs/v5i8.38

Solanke Vikas
*
 IJECS Volume 5 Issue 8 August, 2016 Page No.17643-17647 Page 17647

static modifier misuse

Incorrect overloading methods implementation

 super keyword misuse

this keyword misuse

Faults from common programming mistakes

AMC

JSC

OMR

 ISK

 JTD

 EOA, EOC, EAM, EMM

Operators used in Java Programs

III. CONCLUSION

In our approach we tried to empirically evaluate the process of mutation testing giving developer

an idea for the future. One of the key security polishes that needs to be set up with specific end

goal to relieve the expanding number of vulnerabilities in Web applications, is an organized

security testing technique. The way of Web applications requires an iteration furthermore

evolutionary methodology to advancement. Hence, the structured security testing approach

requirements to have the capacity of being adjusts to such nature's domain, and it should be

particular for Web applications. The most connected security testing approaches today are broad

and are frequently excessively confused with their numerous exercises and stages. By applying

such far reaching security testing strategies in the domain of Web applications, engineers have a

tendency to disregard the testing procedure because the systems are recognized to be; excessively

time intensive, failing to offer a critical result and unseemly to be connected on Web applications

in light of the fact that they have a quite short opportunity to-market. This could be viewed as one

of the variables to why security testing frequently is executed consistent with the infiltrate and-

patch ideal model. In this postulation, the creator has demonstrated that by utilizing an organized

security testing procedure particularly created for Web applications, expedites an altogether more

powerful method for performing security tests on Web applications contrasted with existing

specially appointed methods for performing security tests. The components that the creator used to

measure the proficiency were: the measure of time used on the security testing process, the

measure of vulnerabilities found throughout the security testing procedure and the capacity to

moderate false-positives throughout the security testing procedure

REFERENCES

[1] J.H.Andrews, L.C. Briand and Y. Labiche,”Is Mutation an Approximate Tool for Testing Experiments?” Proc. IEEE Int’I Conf, Software Engg.pp. 402-

411,2005.

[2] [2] H. Do and G.E Rothermel, “On the Use of Mutation Faults in Empirical Assessments of Test Case Prioritization Techniques,” IEEE Trans. Software

Eng., vol. 32, no. 9, pp. 733-752, Aug. 2006..

[3] [3] H. Agrawal, R.A. DeMilo, B.Hathaway,W. Hsu,E.W.Krauser, R.J. Martin, A.P. Mathur and E. Spafford, ”Design of

mutant Operator for C programming language”, Technical report SERC-TR-41P,Purdue, West Lafayette,Ind,Mar.1989

[4] [4] J.J. Chilenski and S.P. Miller, “Applicability of Modified Condition/Decision Coverage to Software Testing,” Software

Eng. J.,vol. 9, no. 5, pp. 193-200, 1994.C. J. Kaufman, Rocky Mountain Research Lab., Boulder, CO, private

communication, May 1995.

[5] [5] D. Daniels, R. Myers, and A. Hilton, “White Box Software Development,” Proc. 11th Safety-Critical Systems Symp.,

Feb. 2003.

[6] [6] R. Butler and G. Finelli, “The Infeasibility of Quantifying the Reliability of Life-Critical Real-Time Software,” IEEE

Trans. Software Eng., vol. 19, no. 1, pp. 3-12, Jan. 1993..

[7] [7] H. Do and G.E Rothermel, “On the Use of Mutation Faults in Empirical Assessments of Test Case Prioritization

Techniques,” IEEE Trans. Software Eng., vol. 32, no. 9, pp. 733-752, Aug. 2006..

[8] [8] M. Daran and P. The´venod-Fosse, “Software Error Analysis: A Real Case Study Involving Real Faults and Mutations,”

ACM SIGSOFT Software Eng. Notes, vol. 21, no. 3, pp. 158-177, May 1996.

[9] [9] R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints on Test Data Selection: Help for the Practical Programmer,”

Computer, vol. 11, no. 4, pp. 34-41, Apr. 1978..

[10] [10] J.J. Chilenski, “An Investigation of Three Forms of the Decision Coverage (MCDC) Criterion,” Report

DOT/FAA/AR-01/18, Office of Aviation Research, Washington, D.C.,Apr. 2001.G. R. Faulhaber, “Design of service

systems with priority reservation,” in Conf. Rec. 1995 IEEE Int. Conf. Communications, pp. 3–8.

