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Abstract- Speech can be recognized by machine using many algorithms like Dynamic Time Warping, Hidden Markov Model, 

Artificial Neural Networks etc.,. In this paper, an overview of Dynamic Time Warping and the various distance metrics used to 

measure the spectral distance are discussed. A new distance metric is proposed which reduces the computational complexity

.  
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I. INTRODUCTION 

Speech is a natural mode of communication for people. Speech 

has many advantages like easy to understand and contains 

emotion. Speech has many areas of research like speech 

recognition, speech synthesis, speech analysis etc., [1]. Speech 

Recognition is a task of converting speech signal into 

orthographical representation. Recognition of speech can be 

done with algorithms like Dynamic Time Warping (DTW), 

Hidden Markov Model (HMM), and Artificial Neural 

Networks (ANN) [2].  

 There are three approaches to speech recognition namely the 

acoustic phonetic approach, the pattern recognition approach 

and artificial intelligence approach [1].  The acoustic phonetic 

approach is based on the theory of acoustic phonetics that 

postulates that there exist finite, distinctive phonetic units in 

spoken language, and that the phonetic units are broadly 

characterized by a set of properties that are manifest in the 

speech signal or its spectrum over time. 

 Pattern recognition approach to speech recognition is 

basically one in which the speech patterns are used directly 

without explicit feature determination and segmentation. 

Pattern recognition is concerned with the classification of 

objects into categories, especially by machine [1]. A strong 

emphasis is placed on the statistical theory of discrimination, 

but clustering also receives some attention. Hence it can be 

summed in a single word: ‘classification’, both supervised 

(using class information to design a classifier – i.e. 

discrimination) and unsupervised (allocating to groups without 

class information – i.e. clustering). Its ultimate goal is to 

optimally extract patterns based on certain conditions and is to 

separate one class from the others.  

 Artificial Intelligence approach to speech recognition is a 

hybrid of the acoustic phonetic approach and the pattern 

recognition approach [1] in that it exploits ideas and concepts 

of both methods. The artificial Intelligence approach attempts 

to mechanize the recognition procedure according to the way a 

person applies its intelligence in visualizing, analyzing, and 

finally making a decisions on the measured acoustic features. 

 One of the simplest and earliest approaches to pattern 

recognition is the template approach. Matching is a generic 

operation in pattern recognition which is used to determine the 

similarity between two entities of the same type. In template 

matching the template or prototype of the pattern to be 

recognized is available. The pattern to be recognized is 

matched against the stored template taking into account all 

allowable pose and scale changes. Dynamic Time Warping is a 

pattern recognition technique. 

II. DYNAMIC TIME WARPING 

Dynamic Time Warping is a pattern matching algorithm with a 

non-linear time normalization effect. It is based on Bellman's 

principle of optimality[3] , which implies that, given an 

optimal path w from A to B and a point C lying somewhere on 

this path, the path segments AC and CB are optimal paths from 

A to C and from C to B respectively. The dynamic time 
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warping algorithm creates an alignment between two 

sequences of feature vectors, (T1, T2...TN) and (S1, S2...SM). A 

distance d(i, j) can be evaluated between any two feature 

vectors Ti and Sj.  This distance is referred to as the local 

distance. In DTW the global distance D(i,j) of any two feature 

vectors Ti and Sj is computed recursively by adding its local 

distance d(i,j) to the evaluated global distance for the best 

predecessor. The best predecessor is the one that gives the 

minimum global distance D(i,j)( see Eq.1)at row i and column j 

with m≤ i and k≤ j  

                                        

 Dynamic Time Warping (DTW) is used to establish a time 

scale alignment between two patterns. It results in a time 

warping vector w, describing the time alignment of segments 

of the two signals assigns a certain segment of the source 

signal to each of a set of regularly spaced synthesis instants in 

the target signal. 

2.1. Advantages of DTW [4]:  

 Works well for small number of templates(< 20). 

 Language independent  

 Speaker specific  

 Easy to train (end user controls it)  

 DTW is a cost minimization matching technique in which 

a test signal is stretched or compressed according   to a 

reference template.  

 DTW is widely used in the small-scale embedded-speech 

recognition systems such as those embedded in cell phones. 

The reason for this is owing to the simplicity of the 

hardware implementation of the DTW engine, which makes 

it suitable for many mobile devices.  

 Additionally, the training procedure in DTW is very 

simple and fast, as compared with the Hidden Markov 

Model (HMM) and Artificial Neural Networks (ANN) 

rivals.  

 The accuracy of the DTW-based speech recognition 

systems greatly relies on the quality of the prepared 

reference templates.  

 The computational complexity can be reduced by 

imposing constraints that prevent the selection of sequences 

that cannot be optimal  

2.2. Disadvantages of DTW [4] 

 Limited number of templates  

 Speaker specific 

 Need actual training examples 

 It can produce pathological results. The crucial 

observation is that the algorithm may try to explain 

variability in the Y-axis by warping the X-axis. This can 

lead to unintuitive alignments where a single point on one 

time series maps onto a large subsection of another time 

series.  

 They suffer from the drawback that they may prevent the 

"correct" warping from being found. In simulated cases, the 

correct warping can be known by warping a time series and 

attempting to recover the original.  

 An additional problem with DTW is that the algorithm 

may fail to find obvious, natural alignments in two 

sequences simply because a feature (i.e. peak, valley, 

inflection point, plateau etc.) in one sequence is slightly 

higher or lower than its corresponding feature in the other 

sequence.  

 The weakness of DTW is in the features it considers.  

 The other main drawbacks of DTW were the explosion of 

the search space for continuous recognition tasks and poor 

speaker independent performance.  

 One of the main problems in dynamic time-warping 

(DTW) based speech recognition systems are the preparation 

of reliable reference templates for the set of words to be 

recognized.  

2.3. Applications of DTW  

 speaker verification in forensic applications  

 Voice/speech recognition  

 Signature recognition systems  

 Voice dialer[5]  

 Simple command and control  

 Speaker ID  

 Motion capture problems[5]  

 Practical applications of online handwritten character 

recognition. 

 

2.4. DTW Algorithm 

The DTW algorithm does the pattern matching of the input 

pattern and reference pattern using the following steps. The 

Figure 1 is a pictorial representation of the DTW algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Dynamic Time Warping 

1. Get the voice input from user 

2. Perform Voice Activity Detection (VAD) algorithm to 

find the initial and end points of speech signal which consist of 

background silence, voiced and unvoiced sounds. [6] 

3. Perform the Feature Extraction with Mel Frequency 

cepstral coefficient (MFCC). 

4. For each word in the dictionary (say p) and the input word 

(say q) perform step 5. 

5. Find the local distance matrix (d)(see Eq.2) between the 

Feature Vectors using Euclidean distance[7] 

             
                            

6. Calculate distance between the vector p and q using DTW 

Algorithm. 

7. The signal with minimum distance is found and the word 

recognized which is shown in Figure 2. 
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Figure 2: Sample of time normalization of two sequential 

patterns to a common time index 

 

III. DISTANCE MEASURES OF DYNAMIC TIME 

WARPING 

In the pattern classification process of DTW, the unknown test 

pattern is compared with each reference pattern and a measure 

of similarity is computed. A local distance is first found 

between the two patterns then the global time alignment [8] is 

done. The DTW algorithm uses a Euclidean distance to 

measure the local distance between two signals.  There are 

many other distance measures available. The following section 

describes the distance measures available and the local distance 

is found using five existing distance measures with the same 

set of data. The proposed distance measure slope distance is 

also used to find the local distance for the same set of data. The 

result of the six distance measures is compared. 

 The distance measures are also called as similarity measures 

or dissimilarity measure. There are nineteen distance measures 

which are derived from eight basic distance measures. 

Distances are measured using distance functions, which follow 

triangle inequality. The triangle inequality [9] states that for 

any triangle, the sum of the lengths of any two sides must be 

greater than the length of the remaining side which is shown in 

Eq.3. Figure 3 shows a triangle where the lengths of the sides 

are given as X, Y and Z.  

                                            
 

 

 

 

 

 

 

Figure 3: Triangle Inequality 

 In the distance measures discussed in the following sections, 

x and y represents the patterns vectors of test and the reference 

signal. The length of x and y vector is assumed to be ‘n’. In 

real time implementation of the distance measures to a speech 

signal, the length of x and y vector need not be same. The 

formulas Eq.4 to Eq.26 can be used only after Time 

Normalization [1].  

3.1. Euclidean Distance 

Euclidean distance [10] is the most widely used distance 

measure of all available. In the Eq.4, the data in vector x and y 

are subtracted directly from each other. 

            
 

 

   

                         

3.2. Normalized Euclidean distance  

The normalized Euclidean distance [10] is calculated by 

dividing the Euclidean distance between vector x and y by the 

square root of length ‘n’ as given in Eq.5. 

   
  

  
                                  

3.3. Harmonically summed Euclidean Distance 

It is a variation of the Euclidean distance, here the terms for the 

different dimensions are summed inversely as shown in Eq.6 

and is more robust against outliers compared to the Euclidean 

distance [10]. 

   
 

 
  

 

     

 
  

   

 

  

                 

3.4. Manhattan Distance 

It is also known as City Block or Taxi Cab distance [11]. It is 

closely related to the Euclidean distance. The Euclidean 

distance corresponds to the length of the shortest path between 

two points, the city-block distance is the sum of distances 

along each dimension as shown in Eq.7. This is equal to the 

distance a traveler would have to walk between two points in a 

city. The Manhattan distance cannot move with the points 

diagonally, it has to move horizontally and vertically which is 

shown in Figure 4. The city-block distance is a metric, as it 

satisfies the triangle inequality. As for the Euclidean distance, 

the expression data are subtracted directly from each other, and 

therefore should be made sure that they are properly 

normalized.  

 

 

 

 

 

 

 

 

 

Figure 4: Difference between Euclidean and Manhattan 

Distance 

          

 

   

                                 

3.5. Normalized Manhattan Distance 

The Normalized Manhattan Distance is a version of Manhattan 

distance where the Manhattan distance is divided by the length 

n as shown in Eq.8. 
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3.6. Canberra Distance 

The Canberra distance [12] is a numerical measure of the 

distance between pairs of points in a vector space, introduced 

in 1966 and refined in 1967 by G. N. Lance and W. T. 

Williams. It is a weighted version of Manhattan distance. The 

Canberra distance has been used as a metric for 

comparing ranked lists and for intrusion detection in computer 

security. Eq.9 shows the Canberra Distance. 

  
 

 
 

       

       

 

   

                              

3.7. Bray –Curtis Distance 

The Bray–Curtis dissimilarity, named after J. Roger Bray and 

John T. Curtis, is a statistic used to quantify the compositional 

dissimilarity between two different vectors, based on counts at 

each vector as shown in Eq.10. The Bray–Curtis dissimilarity 

is bound between 0 and 1 [13], where 0 means the two vectors 

have the same composition and 1 means the two vectors do not 

have composition. The Bray–Curtis dissimilarity is often 

erroneously called a distance. The Bray–Curtis dissimilarity is 

not a distance since it does not satisfy triangle inequality, and 

should always be called a dissimilarity to avoid confusion. 

  
        

        
                                 

3.8. Maximum Coordinate Difference Distance 

It is also known as chessboard distance. It is a metric defined 

on a vector space where the distance between two vectors is 

the greatest of their differences along any coordinate 

dimension [11] as shown in Eq.11. 

        
 

                           

3.9. Minimum Coordinate Difference Distance 

As shown in Eq.12, the minimum coordinate difference 

distance is similar to Maximum coordinate difference distance 

[11]. It is defined on a vector space where distance between 

two vectors is smallest of their difference along any coordinate 

dimension. 

        
 

                      

3.10. Dot Product  

The dot product distance [11] as shown in Eq.13 and Eq.14 is 

the distance between two vectors found by the product 

elements in the vectors x and y. 

                            
 

                  

 

   

                    

3.11. Pearson’s Correlation Coefficient Distance 

In statistics, the Pearson product-moment correlation 

coefficient (sometimes referred to as the PPMCC or PCC, 

or Pearson's r [14] is a measure of the 

linear correlation (dependence) between two variables X and Y 

as shown in Eq.15 and Eq.16, giving a value between +1 and 

−1 inclusive. It is widely used in the sciences as a measure of 

the strength of linear dependence between two variables. It was 

developed by Karl Pearson from a related idea introduced 

by Francis Galton in the 1880s 

  
 

 
  

     

  

  
     

  

 

 

   

                    

 

                                       

 In which       are the sample means of x and y respectively 

and σx, σy are the sample standard deviations of x and y. It is a 

measure for how well a straight line can be fitted to a scatter 

plot of x and y. If all the points in the scatter plot lie on a 

straight line, the Pearson correlation coefficient is either +1 or -

1, depending on whether the slope of line is positive or 

negative. If it is equal to zero, there is no correlation between x 

and y. As the Pearson correlation coefficient fall between [-1, 

1], the Pearson distance lies between [0, 2]. 

3.12. Absolute Pearson’s Correlation Distance 

By taking the absolute value of the Pearson correlation, a 

number between [0, 1] is obtained as shown in Eq.17 [10]. If 

the absolute value is 1, all the points in the scatter plot lie on a 

straight line with either a positive or a negative slope. If the 

absolute value is equal to 0, there is no correlation between x 

and y. 

       
 

 
  

     

  

  
     

  

 

 

   

              

  

 The absolute value of the Pearson correlation coefficient 

falls in the range [0, 1], so the corresponding distance falls 

between [0, 1] as well. In the context of gene expression 

experiments, the absolute correlation is equal to 1 if the gene 

expression data of two genes/microarrays have a shape that is 

either exactly the same or exactly opposite. Therefore, absolute 

correlation coefficient should be used with care. 

3.13. Uncentered Pearson’s Correlation Distance 

This is the same as for regular Pearson correlation coefficient, 

except that sample means       are set equal to 0 as shown in 

Eq.18, Eq.19 and Eq.20. The uncentered correlation may be 

appropriate if there is a zero reference state. For instance, in 

the case of gene expression data given in terms of log-ratios, a 

log-ratio equal to 0 corresponds to green and red signal being 

equal, which means that the experimental manipulation did not 

affect the gene expression [10]. As the uncentered correlation 

coefficient lies in the range [-1, 1], the corresponding distance 

falls between [0, 2]. 
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3.14. Absolute Uncentered Pearson’s Correlation 

Distance  
The Absolute Uncentered Pearson’s Correlation [10] is similar 

to Uncentered Pearson’s Correlation where the absolute value 

of the Uncentered Pearson’s Correlation Coefficient is taken as 

shown in Eq.21. 

       
 

 
  

  

  
    

 
    

  

  
                              

3.15. Pearson’s Linear Dissimilarity Distance 

This is the dissimilarity version [10] of the Pearson linear 

correlation between two vectors as shown in Eq.22. If dp value 

is 0 indicates perfect similarity and 1 indicates maximum 

dissimilarity.         

   

  
             

    

 
                  

3.16. Pearson’s Absolute Value Dissimilarity Distance  

It is version of Pearson Correlation Coefficient. The Eq.23 

shows the Pearson’s Absolute Value Dissimilarity where dN is 

the Euclidean Distance calculated using Eq.4. 

   
 

   
   

   
 

 
    

 

   

    

 

   

  

 

           

3.17. Spearman’s Rank Correlation Distance 

The Spearman rank correlation is an example of a non-

parametric similarity measure. It is useful because it is more 

robust against outliers than the Pearson correlation [10]. To 

calculate the Spearman rank correlation, each data value is 

replaced by their rank if the data in each vector is ordered by 

their value as shown in Eq.24. Then the Pearson correlation 

between the two rank vectors instead of the data vectors is 

calculated. Weights cannot be suitably applied to the data if the 

Spearman rank correlation is used, especially since the weights 

are not necessarily integers. 

                                          

     

where rs is the Spearman rank correlation. 

3.18. Kendall’s  Distance 

The Kendall tau rank distance is a metric that counts the 

number of pair wise disagreements between two ranking lists 

as shown in Eq.25. The larger the distance, the more dissimilar 

the two lists [15]. Kendall tau distance is also called bubble-

sort distance since it is equivalent to the number of swaps that 

the bubble sort algorithm would make to place one list in the 

same order as the other list. The Kendall tau distance was 

created by Maurice Kendall. 

          

 

   

                           

3.19. Cosine Distance 

Cosine similarity is a measure of similarity between two 

vectors of an inner product space that measures the cosine of 

the angle between them as shown in Eq.26. The cosine of 0° is 

1, and it is less than 1 for any other angle. It is thus a judgment 

of orientation and not magnitude: two vectors with the same 

orientation have a Cosine similarity of 1, two vectors at 90° 

have a similarity of 0, and two vectors diametrically opposed 

have a similarity of -1, independent of their magnitude [16]. 

Cosine similarity is particularly used in positive space, where 

the outcome is neatly bounded in [0, 1]. 

  
     

 
   

   
 
      

 
   

                       

 

IV. SLOPE FINDER DISTANCE – A NEW DISTANCE 
MEASURE 

The Slope Finder Distance is calculated by finding the slope 

between two points. Let p and q be two vectors of the test and 

reference signals with size ‘n’. If pi and qi are some point in the 

vectors p and q. The slope can be found by using Eq.27. In 

mathematics, the slope or gradient of line describes its 

steepness, incline, or grade. A slope can be positive, negative, 

or equal to zero. When the slope is equal to zero, we say that 

there is no slope. 

 

 

 

 

 

 

 

Figure 5: (a) Positive slope (b) Negative Slope (c) No slope 

 

     
       

       

 

   

                              

 

V. EXPERIMENTAL RESULT 

 

5.1. Dataset  

Data present in the database are 6 signal S1 to S6 having the 

sound of Alphabet A to F of a single user recorded using 

Audacity. The local distance measures such as Euclidean 

Distance (E), Normalized Euclidean Distance (NE), Manhattan 

Distance (M), Canberra Distance (C), Bray-Curtis Distance (B) 

and Slope Finder Distance (SF) are taken into consideration 

and used in DTW. The user inputs a signal of Alphabet B as 

test signal. 

 

5.2. Comparison of Distance Measures 
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Figure 6: Global Distance Measured Manipulated by DTW for 

Test signal of alphabet B  

 

The signals S1 to S6 are used in Dynamic Time Warping 

algorithm as reference signals. The 13 MFCC coefficients of 

the reference signal are manipulated and stored. When a test 

signal is received for recognition, the 13 MFCC coefficients of 

the test signal is computed and the test and reference patterns 

are given as input to Dynamic Time Warping (DTW) 

Algorithm. The Local Distance is manipulated using the 

distance measures Euclidean Distance (E), Normalized 

Euclidean Distance (NE), Manhattan Distance (M), Canberra 

Distance (C), Bray-Curtis Distance (B) and Slope Finder 

Distance (SF). A global distance manipulated for the test signal 

of alphabet B with the reference pattern signal of alphabet B is 

given in Figure 6.  

 It can noticed from Figure 6 that the DTW algorithm 

implemented using the local distance measures such as 

Euclidean Distance, Manhattan Distance, Normalized 

Euclidean Distance and Slope Finder Distance provide better 

recognition result when compared to Canberra and Bray-Curtis 

Distance. It is also observed that the DTW with Slope Finder is 

having the Minimum Global Distance.The signals S1 to S6 are 

identified correctly with Euclidean, Normalized Euclidean, 

Manhattan and Slope Finder distance measures. 

  

VI. CONCLUSION 

 

The DTW algorithm can use any of the distance measure 

discussed in the paper. The most suitable and easy to compute 

is the slope Finder which minimizes the global distance. The 

measures Canberra Distance (C) and Bray-Curtis Distance (B) 

are not suitable with DTW for the given dataset. The DTW 

Algorithms sued in this paper is speaker dependent.  A Speech 

Recognizer using DTW Algorithms need more training data for 

each speaker as they are speaker dependent. Hidden Markov 

Model (HMM) is a speaker independent algorithm. The future 

work will be to develop a new methodology based on HMM. 
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