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Abstract : In this paper we present a non-uniform filter bank (NUFB) matched to a given signal. To obtain matched M-

channel NUFB, first, we choose the decimation set having M-down sampling/decimation factors for which perfect 

reconstruction NUFB exist and then using novel approach proposed in this paper, M-channel signal matched analysis bank is 

estimated. The outputs of all filters at the analysis side of proposed filter bank are mutually as well as across various channels 

are uncorrelated. By using well established theory of multirate filter bank, M-channel NUFB matched to signal is obtained. 

The equiripple band pass filter will provide better tradeoff compared to previous non uniform Filter bank obtained in this 

fashion will be useful to compress code or represent the signal or image in the best possible manner. 
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1. Introduction 

Many advancements in the area of multirate filter banks in 

conjunction with the ever increasing numerous applications 

have made multirate filter banks design an increasingly 

important field of research. The research effort was first 

focused on design of a two channel quadrature mirror filter 

(QMF) bank [1,2], which was later extended to design of M-

channel filter banks [2–5]. Since then, several techniques 

[6–11] were developed to enhance the performance of filter 

banks in different engineering fields. Among different types 

of the filter banks, non-uniform filter banks have been 

elicited immense interest in the researchers in recent years 

due to their ability to differentiate information into different 

frequency bands based on energy distribution of signal 

which is required for several specific applications. These 

specific applications include sub-band coding like audio 

coding, speech coding, data and image compression [1,2]. 

Uniform filter banks have many constraints like integer and 

uniform decimation in each sub-band, and limited time 

frequency resolution. These constraints catalyze the 

importance of non-uniform filter banks (NUFBs). 

  In addition, NUFBs are able to provide any sort of 

rational decimation in each channel, any extent of time–

frequency resolution as per requirement of the application, 

less quantization error, and low computational complexity. 

Over the past few years, a number of design methods [12–

15] have been proposed by different authors for the design 

of multi-channel filter banks. However, design of a linear 

phase multi-channel filter bank with linear optimization has 

been still an issue since a very few references [16–20] 

provide linear phase as well as zero aliasing error, which is 

very much essential in several applications such as videos 

and communication systems. Such an application oriented 

technique was presented in [21]. In this technique, the 

authors have been used the evolutionary programming 

algorithms to design the optimized prototype filter for 

designing modulated filter banks. Advances in filter banks 

have provided a new generation of sub band coders for 

audio, image and video signals, analog to digital converters, 

signal compression systems, design of wavelet bases, 

antenna systems, digital audio industry and biomedical 

signal processing [1,2]. 

Recently, several design methods [22–27] have 

been proposed and evaluated for designing the non-uniform 

filter bank based on optimization and non-optimizations. 

But still, there is no such iterative technique reported in the 

literature which can reduce the computation time, converse 

in low number of iteration and also reduces the peak 

reconstruction error which can be used for filter banks with 

larger taps. Therefore, the authors in [28] have proposed an 

optimized algorithm for designing NUFB with Blackman 

Window family based on the algorithm given in [16]. 

Similar to the cut-off frequency, a suitable value of pass 

band edge frequency (ωp) can reduce the amplitude 

distortion. There are very few references [16] available in 

which ωp has been optimized for designing a prototype filter 
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for two-channel QMF banks and M-channel CM filter 

banks. Literature available so far on non-uniform filter 

banks reveals that there is still need for a computationally 

efficient technique ,which shall use linear optimization 

technique for designing non-uniform linear-phase filter 

bank. Apart from multirate filter banks designing 

techniques, the authors in [29] have recently proposed 

efficient optimization techniques to design two-dimensional 

IIR filters. This technique is based on the particle swarm 

intelligence approach [30], which was initially introduced 

for simulating human social behaviors. Later on, this 

particle swarm optimization (PSO) approach was improved 

by authors in [31] to give a new optimization algorithm 

called fitness-adaptive differential evolution algorithm to 

design QMF banks. A comparative study of modern search 

techniques is presented in [32] for designing two 

dimensional IIR filters. 

                  In this paper, a new improved iterative 

methodology is presented for the design of non-uniform 

filter bank. Organization of the paper is as follows: a brief 

introduction has been provided in this section on design 

techniques of NUFBs. Section 2 gives an overview of 

NUFBs. Section 3 presents the proposed methodology for 

NUFB. In Section 4, design results and application of the 

proposed method to sub band coding is carried out, followed 

by the concluding remarks in Section 5. 

 

 

 
Fig. 1. A block diagram of multichannel non-uniform filter 

bank. (a) A block diagram of a tree structured filter bank 

and 

 (b) its equivalent parallel structure. 

 

2. Overview of non-uniform filter bank  

The non-uniform filter bank with integer decimation and 

linear phase is realized with the help of tree structured 

techniques, which is based on building the filter bank using 

a two-channel filter bank as basic building blocks [1,2,]. The 

generalized structure of M channel filter banks based on tree 

structure approach is depicted in Fig. 1. For M-channel 

NUFB having decimation M0, M1, M2, . . ., MM−1 ,for each 

band, then decimation factors are such that [1,2] 
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introduced due to decimation/interpolation. For the perfect 

reconstruction (PR), these must be minimized by any 

strategic approach. In a tree-structured approach, a two-

channel QMF bank is used as building blocks; hence the 

aliasing error is completely eliminated by proper selection 

of synthesis filters in terms of analysis filters. In a two-

channel QMF bank, the aliasing error is eliminated with  
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As depicted in Fig. 1(a), the input signal x(n) was 

decomposed into two sub bands in which the sampling rate 

is reduced to 1/2 of the original sampling rate. These sub 

bands can be further extended to more sub bands by 

applying the same decomposition. In general, 2P sub bands 

can be obtained by repeating the same decomposition 

process P times and at each of the P stages of decomposition 

process, the number of two-channel QMF bank structure 

required, is 2P−1.  

                Total number of two-channel systems required is 

2P−1. On the other side, the process of reconstructing the 

original input signal can be seen as mirror image of the 

decomposition process at analysis side as illustrated in Fig. 

1(a) and its equivalent parallel structure shown in Fig. 1(b). 

After resolving the tree structured non uniform filter bank 

into its parallel forms, the following relations can be 

deduced [1,2,28]: 
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Performance of tree structured approach depends on the 

efficient design of QMF bank. The computation load is 

reduced due to some similarities between the coefficients of 

high-pass and low pass filters of a two-channel filter bank. 

However, the frequency characteristics of the filters might 

differ from stage to stage, but they must be the same within 

a particular stage. Depending on which of the filter bank is 
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used in the design, there would be perfect reconstruction 

(PR) or near perfect reconstruction (NPR). But the 

realization of perfect reconstruction filter bank requires very 

tedious and complex approach, which makes it practically 

unrealizable.  

                        Therefore, a common interest of researchers 

is towards NPR, since it is a practically realizable approach. 

But during realization of this approach, there is always an 

introduction of three distortions: amplitude distortion, phase 

distortion and aliasing error. The aliasing error can be 

removed by using proper pairs of analysis and synthesis 

filters, phase error by using linear phase filters, and 

amplitude distortion can be minimized by using different 

optimization techniques. 

The performance of this method is evaluated in terms of 

number of iterations (NOI), computation time (CPU time), 

and reconstruction error (PRE) given by 
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Example-I: A 3-channel linear-phase non-uniform filter 

bank with decimation factors 4, 4, and 2 is designed by the 

proposed method. Design specifications for the prototype 

filter are N + 1 =96, stop band attenuation (As) = 80 dB, 

pass band ripple (Ap) = 0.000521 dB, ωs = 0.51_, and ωp = 

0.41_. The peak reconstruction error (PRE), computational 

time (CPU time) and number of iterations (NOI) obtained 

are 2.8×10
−3

, 0.826 s, and 11, respectively. 

Example-II: A 4-channel linear-phase non-uniform filter 

bank (8, 8, 4, 2) with the prototype filter design 

specifications: N + 1 =48,As = 80 dB, Ap = 0.0005 dB, ωs = 

0.61_ and ωp = 0.41_ is designed with this method. In this 

case, PRE and computational time are 3.11×10
−3

 and 0.733 

s, respectively, while NOI = 15  

 

2.1Algorithm For the Non Uniform Filter bank:   

 

Step 1: Specify design specifications stop band attenuation 

(As), pass band ripple (Ap), and normalized pass band (ωp), 

stop band frequency (ωs), number of band (M), and step 

size. 

Step 2: Initialize counter and the magnitude response (MR) 

of the prototype filter given by Eq 
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 and also specify tolerance (Tol). 

Step 3: Design the prototype filter using constrained equi 

ripple finite impulse response (FIR) technique before the 

optimization start. Calculate the magnitude response of 

designed filter (MRD) 

at ω = 
2

 . Also calculate error = MR − MRD. 

Step 4: (A) If error is not comparable to tolerance (Tol), the 

pass band edge frequency (ωp) is varied using the step size. 

It is varied in two ways: 

 

a. if MRD < MR, then increase ωp by step 

b. Otherwise, decrease ωp by step 

 

Step 4: (B) If error is not comparable to tolerance. Then, 

design the other filters composing the parallel equivalent 

NUFB using Eqs.(4)–(6) in case of 3-channel NUFB, Eq. is 
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in 4-channel NUFB  Eq.is 
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Step 5: Redesign the prototype filter using new ωp and same 

order. Calculate MRD and also error. 

Step 6: Increment the counter by 1 and step = step/2. Go to 

step 4 till error is not comparable to tolerance. 

3.  Proposed methodology 

We now present a method that approximates the desired 

frequency response by a linear-phase FIR amplitude 

function according to the following optimality criterion. 

The integral of the weighted square frequency-domain  error 

is given by 

                        ε 2 = ∫E2(ω)dω 

and we assume that the order and the type of the filter are 

known. Under this assumptions designing the FIR filter now 

reduces to determining the coefficients that would minimize 

ε 2. 

  3.1 Equiripple Design 

  The least-square criterion of minimizing is not entirely 

satisfactory. A better approach is to minimize the maximum 

error at each band 

ε 2 = ∫E2(ω)dω 

ε = maxω |E(ω)| 

The method is optimal in a sense of minimizing the 

maximum magnitude of the ripple in all bands of interest, 

the filter order is fixed. 

It can be shown that this leads to an Equiripple filter – a 

filter which amplitude response oscillates uniformly 

between the tolerance bounds of each band. 

3.2. Remez Method 

There exists a computational procedure known as the Remez 

method to solve this mathematical optimization problem. 

There are also exist formulae for estimating the required 

filter length in the case of low-pass, band-pass and narrow 

transition bandwidths. However, these formulae are not 

always reliable so it might be necessary to iterate the 

procedure so as to satisfy the design constraints [5]. 
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 3.3 Realization of Optimized Equiripple Method using 

Matlab 

We use remez function in the optimized Equiripple method. 

Function c=remez(n,f,a,w,’ftype’) where n shows filter 

order; 

f shows a vector, and is a positive number between 0 and 1; 

a shows a vector, and represents the amplitude in the 

specified frequency domain; 

w shows the weighted value of each frequency band;  

b shows a vector whose length is n+1. 

 

3.4  Designing Equiripple band-pass filter using Remez 

function. 
Requirements: 

1. Sampling frequency is 2 kHz. Stop-band cutoff frequency 

is 0.2 and 0.7π and Pass-band cutoff  frequency is 0.3 and 

0.6π. 

2. The stop-band attenuation is ≥40dB. Stop-band ripple is 

0.01 and pass-band ripple is 0.17. 

 

Algorithm Steps for the Proposed Method: 

 

Step 1:  User Input: Filter Type    

                       (LP,HP,BP,BR)  

Step 2 :  User Input: Frequency Edges (vector f,      

                       depending on the filter type)  

Step 3:  User Input: Sampling Frequency (fs)  

Step 4:  User Input: Attenuation on the    

                       passband   (A
p
)  

Step 5:  User Input: Attenuation on the   

                       passband (A
s
)  

Step 6:  Calculate δ
p 

and δ
s 

using Equations 9.0 

and 10.0 and populate vector dev.  

step7:  If filter type is LP then a=[1 0]  

step8:  If filter type is HP then a=[0 1]  

step 9:  If filter type is BP then a=[0 1 0]  

step 10:   If filter type is BR then a=[1 0 1]  

step 11:  Use the remezord function: [n,f0,a0,w] = 

remezord(f,a,dev,fs)  

step 12: Use the remez function: 

b=remez(n,f0,a0,w)  

step 13: Use the freqz function to obtain the h[k] 

coefficients  

step 14: Plot the frequency response.  

 

Example .  

Design a Band-Pass Equiripple FIR Filter with the following 

specifications:  

1) A passband attenuation of 0.1dB in the range 1000-

1200Hz  

2) A stopband attenuation of 40dB for frequencies <= 

800 Hz  

3) A stopband attenuation of 40dB for frequencies >= 

1400 Hz  

4) Sampling Frequency = 4000 Hz  

 

MATLAB program, Equiripple band pass filter  was run 

with the specifications parameters. And  shows the 

amplitude response of a  filter of order N = 100. 

4. Results and Conclusions: 
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               Fig 2:Input signal response to an NUFB 
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                  Fig 3: Amplitude response of NUFB                                                     
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Fig 4: Amplitude response of the analysis filter of NUFB 
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               Fig 5: PRE of NUFB 
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          Fig 6 :Input  signal to Proposed Method 
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             Fig 7: Amplitude response of  Proposed Method 
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Fig 8: Magnitude response of the analysis filter of NUFB     

                                  using proposed method 
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                               Fig 9: PRE of Proposed Method 

Comparison of the proposed methodology with earlier published results. 

 

Table 1: Comparison of the obtained results with earlier design methods 

 

 

Algorithms   Band (M)   Filter taps        

     (N)  

As (dB) PRE  NOI  CPU time     

     (s) 

Algorithm in 

[6] 

Three band (4, 4, 2) 63 110 7.80×10
-3

 - - 

Algorithm in 

[16] 

Three band (4, 4, 2) 64 60 7.80×10
-3

 - - 

Algorithm in 

[15] 

Three band (4, 4, 2) 63 75 8.60×10
-3

 153 165 

Proposed 

method 

Three band (4, 4, 2) 66 80 2.51×10-3 17 .782 

 

                      V. CONCLUSIONS 

The design of linear phase optimal FIR filters, with very flat 

pass-bands, can be done by solving the frequency response 

equations for different frequency components. To solve the 

filter parameters, one can use an iterative algorithm like 

Remez exchange algorithm [3]. The response of Remez 

algorithm. We can also do this, by sampling the desired 

frequency response with non-uniform frequency spacing as 
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shown the response in Fig. 1. Here we see that the degree of 

flatness in pass-bands and ripples in stop-bands depend on 

the transition bandwidth. If we set this bandwidth low then 

ripples increases and vice versa. We can get better stop-band 

attenuation using Blackman window method. In summary, 

the optimal solution is not always a good solution to the 

filter design problem. The major disadvantage of the 

window design method is the lack of precise control of the 

critical frequencies, such as and, in the design of a low pass 

FIR filter and its value depends on the type of window and 

the filter length N [3]. The frequency sampling method 

provides an improvement over the window design method, 

since Hr(ω) is specified at the frequencies and transition 

band is a multiple of [3]. This filter design method is 

particularly attractive when the FIR filter is realized either in 

the frequency domain by means of the DFT or any of the 

frequency sampling realizations. 
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