

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 2 Issue 11 November, 2013 Page No. 3136-3140

1
Nivedita Joshi, IJECS Volume 2 Issue 11 November, 2013 Page No.3136-3140 Page 3136

Remote Method Invocation – Usage &

Implementation

1
Nivedita Joshi,

2
Pooja Singh

1Student, B.Tech (IT), Dronacharya College of Engineering, Maharishi Dayanand University

Gurgaon, Haryana, India

Nivedita.joshi92@yahoo.co.in

2Student, B.Tech (IT), Dronacharya College of Engineering, Maharishi Dayanand University

Gurgaon, Haryana, India

Poojasingh.8dec@gmail.com

Abstract:Java Remote Method Invocation (RMI) allows programmer to execute remote methods using the same semantics as local

functions calls. RMI is Java’s version is Remote Procedure Call (RPC). RMI internal implementation is out of client scope and only deals

with exposed interface of remote server object. The aim of RMI is to allow the programmers to invoke remote services from remote objects.

The paper explains the RMI architectural layers and its mechanism. The paper deals with the working of all the layers of RMI and how they

are implemented. This paper has taken into account an example to explain the proper working of RMI.

Keywords: Object Serialization, Marshaling,Stub & Skeleton, Naming, RMI Registry.

1. Introduction

RMI is a way by which a programmer can create an object-

oriented program where the objects on different computers,

usually client and server, can interact over a distributed

network.

The Java RMI is Java’s native scheme for creating and

using remote objects over network. It let us distribute java

object instances across network on different machines,

which can be invoked from local machine.

To interact with the methods of objects on remote machines

using JVM (Java Virtual Machine), RMI is used. This

process allows the exchange of data/statistics using

multiple JVMs. It provides the location transparency by

making the methods being accessed locally.

RMI is the Java version of Remote Procedure Call (RPC),

but has the ability to pass more than one remote objects

along with the request. This object being passed has the

ability to change the service that is performed on the

remote computer. This property of java is called “Moving

Behavior” by Sun Microsystems.

For example, when a user at a remote computer fills out an

expense account, the Java program interacting with the user

could communicate, using RMI, with a Java program in

another computer that always had the latest policy about

expense reporting. In reply, that program would send back

an object and associated

method information that would enable the remote computer

program to screen the user's expense account data in a way

that was consistent with the latest policy. The user and the

company both would save time by catching mistakes early.

Whenever the company policy changed, it would require a

change to a program in only one computer.

Object parameter-passing mechanism is known as object

serialization. An RMI request is a request to invoke the

method of a remote object. The request is of the same

syntax as a request to invoke an object method in the same

computer. In general, RMI is designed to preserve the

object model and its advantages across a network.

2. Remote Method Invocation

The Remote Method Invocation (RMI) model represents an

Evaluation distributed object application. It allows an

object inside a JVM, acting as a client, to invoke a

methodon an object running on a remote JVM, actins as a

server, and return the results to the client.Therefore, RMI

implies a client and a server.

http://www.ijecs.in/
mailto:Nivedita.joshi92@yahoo.co.in
mailto:Poojasingh.8dec@gmail.com
http://searchsoa.techtarget.com/definition/object
http://searchcio-midmarket.techtarget.com/definition/method
http://searchcio-midmarket.techtarget.com/definition/syntax

1
Nivedita Joshi, IJECS Volume 2 Issue 11 November, 2013 Page No.3136-3140 Page 3137

RMI uses a layered architecture; each of the layers could be

enhanced or replaced without affecting the rest of the

model.For example, a UDP/IP layer could replace the

transport layer without affecting the upper layers.

RMI architecture explains the communication between two

Java Virtual Machines, where the methods are invoked

from local machine.

The RMI implementation consists of basically three

abstraction layers. The first is the Stub and Skeleton layer,

which lies beneath the view of the developer. This layer

intercepts method calls made by the client to the interface

reference variable and redirects these calls to a remote RMI

service.

Remote Reference Layer comprehends how to infer and

manage references made from clients to the remote service

objects.

In JDK 1.1, this layer provides a unicast connection from

clients to remote service objects that are running and export

them onto a server. The transport layer is based on TCP/IP

connections between machines in a network. Java RMI

provides the following elements:

1. Remote object implementations.

2. Client interfaces, or stubs, to remote objects.

3. A Registry for remote object for finding objects

over the network.

4. A network protocol for communication between

remote objects and their client, which is Java

Remote Method Protocol.

2.1 Layers of RMI

Figure 1: RMI Architecture

 The Stub Layer (& Skeletons):

A stub is a program on the client side of the

client/serverrelationship.The stub layer resides between

application layer and the rest of the RMI system and acts as

an interface.

Stub is the transparent proxy object that makes the interface

on client side to communicate with the server side. It is

generated by a JDK took, rmic, from the server object

compiled code, and is distributed to the client.

The network-related code dwells in the stub and skeleton,

so that the client and server will not have to deal with the

networkand sockets in their code.A skeleton is a remote

object at the server-side. This stub consists of methods that

invoke dispatch calls to the remote implementation of

objects.

 The Remote Reference Layer:

The second layer of RMI Architecture deals with the

interpretation of references made from client remote

objects to server remote objects. This layer deals the lower

level transport interfaces.

With the help of Remote Object Activation it activates the

latent remote object for unicast communication.

 The Transport Layer:

The third layer of RMI architecture provides the connection

between two JVMs. The transport layer sets up the

connections to remote address spaces, manages them,

monitors the connection liveliness, and listens the incoming

calls.

For incoming calls, the transport layer establishes a

connection. It locates the target, dispatches the remote calls

and passes the connection to the dispatcher.

2.2 RMI Mechanism

i. The Client Program uses the stub for making a

request for a remote object. The server program

receives this request from the skeleton

ii. RMI invocation is initiated by calling a method on

stub object, which maintains an internal reference

to the remote object it represents.

iii. The stub forwards the method invocation request

through Remote Reference Layer with the help of

marshaling process. This layer forwards the

request to appropriate remote object.

iv. Marshaling: this process transforms the local

objects to a suitable portable form, so they can be

easily broadcasted to a remote process. Each

array, string or user-defined object is checked

while being marshaled to conclude whether it

implements java.rmi.Remote interface. If it is a

remote object, then that reference is used for

marshaling.

http://searchenterprisedesktop.techtarget.com/definition/client
http://searchnetworking.techtarget.com/definition/client-server

1
Nivedita Joshi, IJECS Volume 2 Issue 11 November, 2013 Page No.3136-3140 Page 3138

v. If it is a Serializable object, then first it is

serialized into bytes that are sent to remote object

and then they are reassembled to form a copy of

local object. If the object is neither then it throws a

java.rmi.MarshalException to client.

vi. The remote reference layer then receives the

marshaled arguments from the stub, which then

converts the client request into single network-

level requests.

vii. The remote reference layer on server side receives

transport-level request and transforms it into a

request for skeleton to match referenced object.

viii. The skeleton converts the remote request into

suitable method call and carries out the process of

un-marshaling the method arguments appropriate

for server. The arguments sent as remote objects

are converted into local stubs and those sent as

serialized objects are converted into local copies

of originals.

ix. If a return value is generated then the object is

marshaled by skeleton and sent back to the client

through server remote reference layer.

x. The end result is transmitted back to client through

a suitable transport protocol.

2.3 Steps to create RMI-based clients and server

 Creation of RMI-based Server:

Create the remote interface and the servant component

class. To host these servant classes create the RMI Server.

Compile the class files and generate the Skeletons and IDL

File. Start up the Server

 Creation of RMI-based Client:

Create the Client class. Enable the Stub Generation and

compile the Client. Make sure the Server is running and

then startup the Client process.

3. RMI Registry

The server application creates an object and makes it

accessible remotely. For making the object remote, the

server has to register the RMI-enabled objects that are

available to the clients.

The clients can find these Remote Services on a naming

service, which is obtainable on publicly defined port. RMI

defines its own naming service, the RMI Registry, having a

standard port of 1099. A standard JDK tool, rmiregistry,

handles the registry.

If an object implements the java.rmi.Remote interface, then

it is bounded to registry context. The interface that is being

referenced is implemented by each registry context.

3.1 Methods for registering Remote Object

The methods of remote objects are invoked by

implementing the java.rmi.Remote interface. Following are

the methods for registering the remote objects:

i. bind(): It binds the specified name to the remote

object. The parameter of this method should be in

an URL format.

ii. unbind(): Destroys the binding for a specific name

of a remote method in the registry.

iii. rebind(): It again binds the specified name to the

remote object. The current binding will be

replaced by rebinding.

iv. list(): It returns the names that were bound to the

registry in an array form. These names are in the

form of URL-formatted string.

v. lookup(): A stub, a reference will be returned for

the remote object which is related with a specified

name.

4. Implementing an RMI System

The steps involved in building a distributed application

with RMI include:

 Interface definitions for the remote methods

 Implementations of the remote services  

 Stub files  .

 A server to host the remote services

 An RMI Naming service

 A client program that needs the remote services

4.1 Define an interface for declaring remote methods

It involves implementing a remote interface for between the

client and the server. It defines the remote objects that are

requested by client.

We are creating a simple application to add two numbers.

So we declare the add() method in interface Addition.java.

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface Addition extends Remote{

 public long add(long a, long b) throws

RemoteException;

}

The interface is extended so that it can be called remotely

in between the client and server. The RemoteException

occurs when there is some failure in RMI process.

1
Nivedita Joshi, IJECS Volume 2 Issue 11 November, 2013 Page No.3136-3140 Page 3139

4.2 Define the class and implement remote methods

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

public class AdditionImpl extends UnicastRemoteObject

implements Addition

{protected AdditionImpl() throws RemoteException

 {super();}

public long add(long a,long b)throws RemoteException

 {return a+b; }}

We define a class AdditionImpl.java and implement the

interface and define the body of the remote method.

The UnicastRemoteObject is a base class for user-defined

remote objects having the general form as, Public class

UnicastRemoteObject extends RemoteServer

4.3 Defining the Server Program

The first Parameter is a URL to a registry that contains the

name of the application, which here is “AdditionService”.

The second parameter is an object name that is accessed

remotely between client and server. The rebind is a method

of Naming class which is implemented in java.rmi.*

package.

1099 is the default RMI port and 127.0.0.1 is a localhost-ip

address

import java.rmi.Naming;

public class AdditionServer

{AdditionServer()

 {

 try{

 Addition c= new AdditionImpl();

Naming.rebind("rmi://127.0.0.1:1099/AdditionService",c);

 }

 catch(Exception e){

 e.printStackTrace();

 }

 }

 public static void main(String[] args)

 {

 new AdditionServer();

 }

}

4.4 Defining the client program

To access the remote object on client side, which is already

binding at a server side by, reference URL, we use the

lookup method, which has the same reference URL.

This lookup is a method of Naming class which is available

in java.rmi.* package. The name of the URL must be same

as specified on server side class.

import java.rmi.Naming;

public class AdditionClient

{

public static void main(String[] args)

{

 try

 {

Addition c= (Addition)Naming.lookup

("//127.0.0.1:1099/AdditionService");

System.out.println("Addition of two digits is:

"+c.add(10,15));

 }

 catch(Exception e){

 System.out.println(e);

}}}

 Compile all the source java files.

 javac Addition.java

 javac AdditionImpl.java

 javac AdditionClient.java

 javac AdditionServer.java

 The command rmic enables the stub generation.

Syntax: rmic AdditionImpl

This command produces AdditionImpl_Stub.class file.

 Start the RMI remote Registry: The references of the

remote objects are registered to RMI Registry.

Syntax: rmiregistry & (which opens rmiregistry.exe)

 Run the server program and then run the client program

on another terminal window.

Figure 2:Running Server Program

1
Nivedita Joshi, IJECS Volume 2 Issue 11 November, 2013 Page No.3136-3140 Page 3140

Figure 3: Running Client Program

5. Conclusion

The paper describes how Remote Method Invocation

(RMI) represents distributed object application. The paper

explains how RMI implies a client and server and

implements remote connections between them.

 The servers’ job is to accept request from a client, perform

services, and then send the results back to the client.

The use of Registry and Naming classes is to bootstrap our

distributed applications.

RMI implementation involves four software programs

namely:

 Client program: does the request

 Server program: implements the request

 Stub Interface: implemented by client to know the

remote functions

 Skeleton Interface: implemented by server

Advantages of RMI:

 It’s easy and clean to implement and produces

more robust and flexible applications.

 Distributed systems are created while decoupling

the client and server objects.

 No client installation is required except java

environment.

 While changing database, only server objects are

recompiled but not the interface and client

program

References

[1] Java Remote Method Invocation:

http://en.wikipedia.org/wiki/Java_remote_method_invocati

on

[2] Java RMI Tutorial:

http://www.eg.bucknell.edu/~cs379/DistributedSystems/rm

i_tut.html#serial

[3] The JavaTM Tutorials-RMI:

 http://docs.oracle.com/javase/tutorial/rmi/

[4] Ninghui Li, John C. Mitchell and Derrick Tong,

“Securing Java RMI-based Distribute Applications”

[5] Jason Maassen, Rob van Nieuwpoort, Ronald Veldema,

Henri E. Bal and Aske Plaat, “An Efficient Implementation

of Java’s Remote Method Invocation” (1999)

[6] Remote Method Invocation:

http://www.javacamp.org/moreclasses/rmi/rmi4.html

[7] Remote Method Invocation:

 http://www.javatpoint.com/RMI

[8] Naming Methods:

http://www.cis.upenn.edu/~bcpierce/courses/629/jdkdocs/a

pi/java.rmi.Naming.html

http://www.eg.bucknell.edu/~cs379/DistributedSystems/rmi_tut.html#serial
http://www.eg.bucknell.edu/~cs379/DistributedSystems/rmi_tut.html#serial

1
Nivedita Joshi, IJECS Volume 2 Issue 11 November, 2013 Page No.3136-3140 Page 3141

