

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 2 Issue 11 November, 2013 Page No. 3101-3105

Rajwant Singh Rao, IJECS Volume 2 Issue 11 November, 2013 Page No.3101-3105 Page 3101

Design Pattern Detection by Sub Graph Isomorphism

Technique

Rajwant Singh Rao
1
, Manjari Gupta

2

1Department of Computer Science & Information Technology (CSIT), Guru Ghasidas Vishwavidyalaya,

Bilaspur (C.G.) India,

rajwantrao@gmail.com

2Department of Computer Science, Banaras Hindu University,

Varanasi, India

manjari_gupta@rediffmail.com

Abstract: Design Patterns are proven solution to common recurring design problems. Design Pattern Detection is most important activity

that may support a lot to re-engineering process and thus gives significant information to the designer. Knowledge of design pattern exists

in the system design improves the program understanding and software maintenance. Therefore, an automatic and reliable design pattern

discovery is required. Graph theoretic approaches have been used for design pattern detection in past. Here we are applying an algorithm

for graph matching which is based on the sub graph isomorphism. The same algorithm we are here using for design pattern detection from

the system design.

Keywords: design pattern, UML, matching, sub graph isomorphism.

1. Introduction

Graph based approached have been used in many software

engineering problems. Design Patterns are proven solutions for

common recurring software design problems. The design

patterns have been extensively used by software industry to

reuse the design knowledge [1]. During maintenance of a

software system the necessary tasks are to understand and

modify it. It would be helpful to discover pattern instances in it,

if any. Many algorithms have been proposed for design patterns

detection like [2, 3, 4, 5]. Similar works on design pattern

detection have been discussed in section 2.

 This paper presents a design pattern detection technique by

sub graph isomorphic. Here, the graphs are corresponding to

the relationship graphs which exist in the UML diagrams of

system design (model graph or system under study) as well as

in UML diagrams of design patterns. In the classic concept of

exact graph matching, the aim is to determine whether two

graphs are the same or whether a subgraph of one exists in the

other.

The algorithm is based on graph isomorphism technique. Two

graph are said to be isomorphic when there is a bijective

relation. The outline of this paper is as follows. In section II

related works are discussed. Section 3 explains the

representation of model graph and design patterns in terms of

relationship graphs is explained. The graph matching algorithm

is described in section 4. In section 5 the design pattern

detection is described using some examples. Lastly we

concluded in section 6.

2. Related Workout

The first attempt for automatically detecting design pattern was

by Brown [6]. In this work, Smalltalk code was reverse-

engineered to facilitate the detection of four well-known

patterns from the catalog by Gamma et al. [1]. Antoniol et al.

[5] developed a technique to identify structural patterns in a

system to observe how useful a design pattern recovery tool

could be in program understanding and maintenance. Nikolaos

Tsantalis [2] proposed a methodology for design pattern

detection using similarity scoring. However, the limitation of

similarity algorithm is that it only calculates the similarity

between two vertices, not the similarity between two graphs.

Jing Dong [3] gave another approach called template matching,

which calculates the similarity between sub graphs of two

graphs instead of vertices, to solve the above limitation. S.

Wenzel [4] purposed a difference calculation method works on

UML models. The advantage of difference calculation method

on other design pattern detecting technique is that it detects the

incomplete pattern instances also. Bergenti and Poggi [7]

developed a method that examines UML diagrams and

proposes the software architect modifications to the design that

lead to design patterns. . Kim et al. Champin et al. [8] proposed

a new method to recover the GoF1 patterns using software

measurement skills. They developed a design pattern CASE

tool to facilitate the easy application of their method. DPR

method used three kinds of product metrics, and the

measurement plan was established on the basis of the GQM

paradigm. Many other tools have been developed for design

pattern detection. But there is no standard tool for it that can be

used to solve the maintainer’s problem. Stencel and

http://www.ijecs.in/

Rajwant Singh Rao, IJECS Volume 2 Issue 11 November, 2013 Page No.3101-3105 Page 3102

b b b

Wegrzynowicz, [9] proposed a method for automatic design

pattern detection that is able to detect many nonstandard

implementation variants of design pattern. Their method was

customizable because a new pattern retrieval query can be

introduced along with modifying an existing one and then

repeat the detection using the results of earlier source code

analysis stored in a relational database. Drawback was that the

method was not general enough to identify all design patterns.

Further the translation of first order logic formulae as SQL

queries is very laborious and error-prone.

In earlier work, klenberg approach was used for vertices

scoring and fuzzy graph algorithms for design pattern

detection. But the drawback of these two methods is they are

only concerned about node similarity not the whole graph.

Graph matching detection approach was used that overcomes

this drawback [11]. We have used these and other approaches

for design pattern detection in GIS application [12]. To reduce

complexity of design pattern detecting algorithm we used the

graph decomposition technique [13]. The order of complexity

of this decomposition algorithm is O(n3), where n is the

number of nodes present in the graph. This algorithm works for

only those design patterns having similar relationships among

at most three classes in its UML class diagram. However this

condition may not hold for only few of the design patterns.

Thus this approach can be applied for almost all of the design

patterns. In another work we find out whether design pattern

matches to any subgraph of system design by using decision

tree [14]. A decision tree is developed with the help of row-

column elements, and then it is traversed to identify patterns.

By applying the decision tree approach, the complexity is

reduced. We proposed a new approach ‘DNIT’ (Depth-Node-

Input Table) [15]. It is based on the concept of depths from the

randomly chosen initial node (also called root node which has

depth zero) in directed graph. In another work we applied state

space representation of graph matching algorithm to detect

design patterns [16]. State space representation easily describes

the graph matching process. The advantage of this method used

for design pattern detection was that the memory requirement

was quite lower than from other similar algorithms. Another

advantage is that it detects variants as well as any occurrence of

each design patterns. Inexact graph matching [17, 18] was also

used for design pattern detection. We showed that normalized

cross correlation can also be used for this [19].

3. Relationship Graph Representations

The system under study or the system for which we have the

source code is taken first, the corresponding the class diagram

of UML of that code (object oriented system) is drawn. After

that the relationship graphs (that exists in UML diagram) is

extracted. We have taken the UML Diagram of system designs

shown in Figure 1. There are three relationships (i.e.

generalization, direct association and aggregation), the

corresponding relationship graphs (i.e. directed graph) are

shown in Figure 2. Generalization relationship graph has

relationship between only four of the nodes, Direct Association

relationship graph (i.e. fig 3) has relationship between three of

the nodes and Dependency relationship between two of the

nodes.

Figure 1: UML Diagram of system design [11]

 Generalization Direct Association Dependency

 Graph Graph Graph

Figure 2: Corresponding Graphs for UML diagram shown in

Figure 1

4. Graph Matching Algorithm

Let us consider a directed graph G (V, E), where V is a set of

vertices (nodes) and E is a set of edges.

Consider two graphs, G1 (V1, E1) and G2 (V2, E2), and a matrix

representing the correspondences between V1 and V2. Here

V1and V2 denote sets of vertices, in graph G1 and G2

respectively, similarly E1 and E2 are the set of edges in graph G1

and G2 respectively.

The graph G1 and G2 are said to be subgraph isomorphic if

there exist a subgraph S in G1 such that S is isomorphic to G2,

i.e. There is bijective relation in S and G2.

The relationship graph of model graph and design pattern graph

can be represented by using matrix, in which the (i,j)th entry of

matrix can be represented by 1 if there is a relationship

between node i and j, otherwise 0. One of the characteristics of

such type of matrix is that we can interchange the columns.

Next we see whether the design pattern graph matrix exist in

the model graph matrix or not. If all the rows and columns are

completely exist then is fully matched. If some of the rows or

columns exist the partially matching and if none of the columns

or rows exist then no matching.

5. Design Pattern Detection Using Graph-

Matching Algorithm

There are 23 GoF (Gang of Four) [1] design patterns. UML

diagrams can be drawn for each of the corresponding design

patterns. Here we are considering some of them. After checking

Client

AbstractFactory

+CreateProduct()

AbstractProduct

ConcreteFactory ConcreteProduct

c

d e

a

c

d e

a

c

d e

a

Rajwant Singh Rao, IJECS Volume 2 Issue 11 November, 2013 Page No.3101-3105 Page 3103

2

2 2

sub isomorphism between the relationships graphs of a design

pattern and the model graph, there may be three cases:

i) Relationship graph of a design pattern is (sub) isomorphic to

the model graph.

ii) Relationship graph of a design pattern is partially (sub)

isomorphic to the model graph.

iii) Relationship graph of a design pattern is not (sub)

isomorphic to the model graph.

In the case i) design pattern exist in model graph.

In the case ii) design pattern partially exists in the model graph.

In the case iii) design pattern does not exist in the model graph.

All these cases are described in detail by using examples.

5.1 Design Pattern Detection as Strategy Design Pattern:

 Exact Matching

Firstly, we are considering. Factory Design Pattern, the UML

diagram and corresponding relationship graph (DPG) is shown

in Fig. 3 and Fig. 4 respectively. In this case we find at least

one minimum error (without having q) bijective matching such

that for all matched nodes there corresponding edges are same.

Facade

Subsystem Classes

Figure 3: Factory Design Pattern

Figure 4: Direct Association Graph of Figure 3

Table 1: Direct association matrix for model graph of

figure 2

 a b c d e

a 0 1 1 0 0

b 0 0 0 0 0

c 0 0 0 0 0

d 0 0 0 0 0

e 0 0 0 0 0

Table 2: Direct association matrix for Design pattern

graph of fig 4

 1 2

1 0 1

2 0 0

Here the matrix shown in table 2 is fully matched with the

matrix shown in the table 1. It is exact matching.

5.2. Design Pattern Detection as Command Design

Pattern: Partial Matching

In some cases it is also possible that a particular design pattern

partially exist in the system design pattern (case ii discussed in

section 4). For example consider the Mediator Design pattern,

the UML diagram and corresponding relationship graph (DPG)

is shown in Fig. 7 and Fig. 8 respectively. In this case we will

not find the fully matching, i.e. all the relationship graph are

not fully matched. Some of the relationship matched and some

of the not mtched.

Mediator

ConcreteMediator

Colleague

+mediator

Figure 5: Mediator Design Pattern

Generalization graph Direct Association Graph

Figure 6: Corresponding Graphs for UML diagram shown

in Figure 5

Table 3: Generalization matrix for model graph of fig 2

 a b c d e

a 0 0 0 0 0

b 0 0 0 0 0

c 0 0 0 0 0

d 0 1 0 0 0

e 0 0 1 0 0

Table 4: Generalization matrix for Design pattern graph

figure 6

 1 2 3

1 0 0 0

2 1 0 0

3 0 0 0

1

3
1

3
1

Rajwant Singh Rao, IJECS Volume 2 Issue 11 November, 2013 Page No.3101-3105 Page 3104

Table 5. Direct Association matrix for design pattern

graph figure 6

 1 2 3

1 0 0 0

2 0 0 0

3 1 0 0

In the mediator design pattern there are two relationship graph

there i.e. generalization and direct association and

corresponding matrices are shown in table 4 and Table 5

respectively. If we interchange the columns of the

generalization matrix (Table 3) of model graph, then the

generalization matrix (Table 4) of design pattern graph

matched, but the direct association matrix (Table 5) of design

pattern graph does not match with the direct association matrix

(Table 1) of model graph. Here out of two relationship one

matched, but one not. So there is a partial matching between

System design and design pattern.

5.3 Particular design pattern may not exist

Above we have seen the examples of design pattern existence

(complete or partially) but it can be possible that a particular

design pattern does not exist in the model graph. In this case

we will not find any matching between relationship matrices.

For example if we take singleton design pattern (Fig. 7), there

is only one relationship: direct association on itself node.

Corresponding DPG is shown in Fig. 8 and its matrix is shown

in Table 6. Here there is no matching in the direct association

matrix (Table 6) of design pattern and direct association matrix

(Table 1) of system design.

Singleton

+Instance(): Singleton -instance

Figure7 :Singleton Design pattern

 Figure.8: graph for figure 7

Table 6: Direct Association matrix for figure 8

 a

a 1

6. Conclusion

This paper presents an approach for design pattern detection

using subgraph isomorphism technique. We took the

relationship graphs of the model graph (MG) and a design

pattern (DPG), after that the corresponding relationship graph,

matrices are created and then the sub graph isomorphism is

applied on both of the graphs and tried to find out the bijective

mapping. If for this bijective matching, the matched nodes have

the corresponding edges, we say that the design pattern exist in

the model graph. If for the matched node no corresponding

edges are found, design pattern does not exist in the model

graph, and if for the matched nodes some of the corresponding

edges are found and some are not found, we say that design

pattern partially exists in the model graph.

References

[1]. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design

Patterns Elements of Reusable Object-Oriented Software.

Addison- Wesley, Reading (1995)

[2]. Tsantalis N., Chatzigeorgiou A., Stephanides G., Halkidis S.,

“Design Pattern Detection Using Similarity Scoring”, IEEE

transaction on software engineering, 32(11), 2006.

[3]. Dong J., Sun Y., Zhao Y., “Design Pattern Detection by

Template Matching”, the Proceedings of The 23rd Annual ACM

Symposium on Applied Computing (SAC), pages 765-769,

Ceará, Brazil, 2008.

[4]. Wenzel S., Kelter U., “Model-driven design pattern Detection

using difference calculation”, In Proc. of the 1st International

Workshop on Pattern Detection for Reverse Engineering

(DPD4RE), Benevento, Italy, 2006.

[5]. Antoniol G., Casazza G., Di Penta M., Fiutem R., “Object-

Oriented Design Patterns Recovery”, J. Systems and Software,

vol. 59, no. 2, pp. 181-196, 2001.

[6]. Brown, K.: Design Reverse-Engineering and Automated Design

Pattern in Smalltalk.Technical Report TR-96-07, Dept. of

Computer Science, North Carolina State Univ.(1996).

[7]. Bergenti, F., Poggi, A.: Improving UML Designs Using

Automatic Design Pattern Detection.

In: Proc. 12th Int’l Conf. Software Eng. and Knowledge Eng.

SEKE 2000 (2000).

[8]. Champin P. A., Solnon C., “Measuring the similarity of labeled

graphs”, 5th International Conference on Case-Based

Reasoning (ICCBR), Lecture Notes in computer Science-

Springer Verlag, 2003.

[9]. Stencel K. and Wegrzynowicz P., “Detection of Diverse Design

Pattern Variants”, 15th Asia-Pacific Software Engineering

Conference, IEEE Computer Society, 2008.

[10]. StarUML, The Open Source UML/MDA Platform.

http://staruml.sourceforge.net/en/

[11]. Pande A., Gupta M., “Design Pattern Detection Using Graph

Matching”, International Journal of Computer Engineering and

Information Technology (IJCEIT), Vol 15, No 20, Special

Edition, pp. 59-64, 2010.

[12]. Pande A. & Gupta M., “Design Pattern Mining for GIS

Application using Graph Matching Techniques”, 3rd IEEE

International Conference on Computer Science and Information

Technology. pp. 09-11, Chengdu, China, 2010.

[13]. Pande A., Gupta M., Tripathi A.K., “A New Approach for

Detecting Design Patterns by Graph Decomposition and Graph

a

http://staruml.sourceforge.net/en/

Rajwant Singh Rao, IJECS Volume 2 Issue 11 November, 2013 Page No.3101-3105 Page 3105

Isomorphism”, International Conference on Contemporary

Computing, Jaypee Noida, CCIS, Springer, 2010.

[14]. Pande A., Gupta M., Tripathi A.K., “A Decision Tree Approach

for Design Patterns Detection by Subgraph Isomorphism”,

International Conference on Advances in Information and

Communication Technologies, ICT 2010, Kochi, Kerala, LNCS-

CCIS, Springer 2010.

[15]. Pande A., Gupta M., Tripathi A.K., “DNIT – A New Approach

for Design Pattern Detection”, International Conference on

Computer and Communication Technology, MNNIT- Allahabad,

proceeding published by the IEEE, 2010.

[16]. Gupta M., Singh R.R., Pande A., Tripathi A.K., “Design pattern

Mining Using State Space Representation of Graph Matching”,

1st International Conference on Computer Science and

Information Technology, Banglore, 2011, to be published by

LNCS, Springer.

[17]. Gupta M. Singh R.R., Tripathi A.K., “Design Pattern Detection

using Inexact Graph Matching”, International Conference on

Communication and Computational Intelligence, Tamil nadu,

Dec 2010, to be published by IEEE Explore.

[18]. Gupta M., “Inexact Graph Matching for Design Pattern

Detection using Genetic Algorithm”, International Conference

on Computer Engineering and Technology, Nov 2010, Jodhpur,

to be published by IEEE Explore.

[19]. Manjari Gupta, Akshara Pande, Rajwant Singh Rao,

A.K.Tripathi, Design Pattern Detection by Normalized Cross

Correlation, International Conference on Methods and Models in

Computer Sciences (ICM2CS-2010),December 13-14, 2010,

JNU, to be published by IEEE Explore.

Author Profile

Mr. Rajwant Singh Rao is serving as Assistant

Professor with the Department of Computer Science

& Information Technology (CSIT) of Guru Ghasidas

Vishwavidyalaya, Bilaspur (C.G), India has his MCA

degree from Babasaheb Bhimrao Ambedkar

University (A Central University), Lucknow, India

and pursuing in PhD in Computer Science

department from Banaras Hindu University,

Varanasi, India. He is engaged in teaching and

research for the last 4 years and the areas of his

research interest include Design Pattern Detection.

 Dr. Manjari Gupta is serving as Assistant

Professor with the Department of Computer

Science of Banaras Hindu University, Varanasi,

India has her MSc degree in Computer Science

from J.K. Institute of Applied Physics and

Technology, Allahabad University, Allahabad

and the PhD in Computer Engineering from

Banaras Hindu University, Varanasi, India. She

is engaged in teaching and research for the last

10 years and the areas of her research interest

include Software Reuse and Design pattern

Detection.

	PointTmp

