

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 2 Issue 11 November, 2013 Page No. 3097-3100

Surbhi Kakar
1
IJECS Volume 2 Issue 11 November, 2013 Page No.3097-3100 Page 3097

Identification of level of resemblance between web

based documents
 Surbhi Kakar

1

Assistant Professor, GGSIPU

Abstract—One of the biggest challenges today on web is to deal with the “Big data” problem. Finding documents which are near duplicates of

each other is another challenge which is in turn brought up by Big data. In this paper the author focuses on finding out the near duplicate

documents using a technique called shingling. This paper also presents the different types of shingling that can be used. Further, a measure

called the Jaccard coefficient is discussed which can be used to judge the degree of similarity between the documents.

Index Terms—Big data, shingling, Jaccard Coefficent

INTRODUCTION

“Big Data” as the name suggests refers to a large amount of

data. Every industry today is enjoying the benefits as well as

dealing with the challenges brought up by the ever increasing

data of their own companies. Data mining is a process where

in it is possible to mine huge amounts of data in order to

expose hidden patterns. For instance, with the help of data

mining techniques today, it is possible for a business

organization to get insights into what their customer wants or

how he will react in future. Therefore, mining this Big Data

can help discover user’s hidden behavioral patterns and their

intentions too. [1] The major challenges with “big data” are

the increasing size, heterogeneity and velocity of data being

added to the space every moment [2].

The increasing size of data is resulting in storage overheads. A

serious issue is what to do with this data. What data should to

be discarded and what should be stored. The heterogeneity of

data on the other hand refers to the data coming from several

sources which might be unstructured or even incomplete. For

instance, data can be in various formats ranging from simple

records to geo spatial data.

The velocity of data refers to the rate at which data is

continuously being added on the web. Such data is becoming

difficult to analyze and interpret which is also taking a large

processing time.

Duplicate or near duplicate documents are the documents

which might be exact replicas of each other or might be

similar to one another. Finding out the near duplicates of web

documents in a scenario like today where the web is facing the

challenges of Big data becomes a serious issue to handle. This

is mainly because the users today are just not interested in

responses that are mere duplicates of each other. Also,

indexing such documents affects the storage and processing

time of the search engines. The resemblance between

documents can vary between 0 to 1. A “1” indicates that the

two documents compared for similarity are almost the same.

Whereas a “0” indicates a higher level of dissimilarity

between the two documents [4]

Shingling is a technique which can be used to find out the near

duplicate documents. It is based on creating contiguous

subsequences of a document of length q. These

shingles can be created by either using subsequences of

characters or words.

Jaccard Coefficient on the other hand, is a measure which

determines the similarity between two documents that are

represented as sets. This measure ranges from 0 to 1.

This paper defines the problem definition in the first section

which is to judge the level of resemblance between two

documents.

The second section describes about shingling as a technique

used to solve the problem. The section thereby discusses about

the Jaccard coefficient measure used to judge the similarity

between documents.

1. PROBLEM DEFINITION

One of the problems associated with “Big Data” is finding

duplicate or near duplicate documents as discussed previously.

As per [3] it has been estimated that as many as 40% of web

pages are duplicates of each other. The duplicity here refers to

documents which are textually similar and not semantically

http://www.ijecs.in/

Surbhi Kakar
1
IJECS Volume 2 Issue 11 November, 2013 Page No.3097-3100 Page 3098

similar. Some of the common examples of duplicate/near

duplicate web documents are mirror sites, news articles from a

common source, plagiarized documents. Mirror sites are sites

which are duplicated at a number of hosts to facilitate load

sharing. Plagiarized documents are the ones that may not be

exact copies of one another but it is a possibility that they

share large amounts of text which may not be in the same

order.

The documents which are exact replicas of each other are still

easier to find as compared to documents that are similar.

Finding such documents require the use of hash functions [8].

The items which are duplicates will have the same hash value

as compared to the dissimilar items. Therefore detecting near

duplicate pages is very important because it affects the search

engines time and space complexity when it has to index and

store duplicate web documents.

2. SHINGLING: A SOLUTION

Shingling as discussed above is a technique of creating

consecutive subsequences of tokens of a document. The

tokens here can refer to characters, words or lines. A

document can be represented as a set of string of characters.

Given a document d, we can create ‘t’ tokens of d which are

contiguous sequences of the text of d. Creating a q-shingle/q-

gram means creating a set of substrings of d which are of

length q[4][5]

Shingling can be done by creating tokens of characters as well

as words.

A. Shingling by characters

 Let S(d1) be a set of document d1 which is defined as

“acdacef”. Then q-shingles based on letters for the above

document where q=2 will be {ac, cd, da, ce, ef}.

The elements appearing multiple times in the document are

only considered once while creating a shingle set.

B. Shingling by words

Shingling by words is done by using words as substrings of a

document. If S(d1) contains a string:

“I did my work today”

Then q-shingles based on words where q=3 will be:

“ I did my”, “did my work” “my work today”

In such a case, space used to store these shingles would be

O(q*w), where q is the length of the shingle and w are the

number of words in the document

C. Size of Shingles

While creating the shingle sets, the point to be focused upon is

what should be the size of q so that the probability for the

similarity between the similar documents is maximized as

compared to dissimilar documents. If q is kept too small, there

is a probability that most of the text in one document also

appears in the other document in spite of them being

dissimilar textually. As per [6], the size of q should be picked

large enough so that the probability of one shingle set

appearing in the other document is low. For comparing large

documents like research papers the size of q can be taken

around 9 whereas for documents like comparing emails for

similarity, the size q can be picked as 5.

3. JACCARD COEFFICIENT:

 A MEASURE FOR RESEMBLANCE BETWEEN

 DOCUMENTS

Jaccard coefficient is used to measure resemblance between

two documents. For two documents represented as sets A and

B, the Jaccard coefficient is the ratio of intersection of two

sets to the union of them[5][7]. It can be calculated as:

 JC(A,B)=|A ∩ B| / |A U B|

Where JC(A,B) denotes the Jaccard Coefficient between two

sets A and B. Jaccard coefficients are therefore in a range of

[0,1].

For instance if A={3,4,5,6} and B={5,6,7,8} then:

JC(A,B)=2/4

This measure is used to judge the similarity between only

“textually” similar documents and not “semantically” similar

document. Two documents with a high Jaccard coefficient

denote a higher degree of similarity between them. But at the

same time keeping the size of shingle too small may bring

about a higher Jaccard coefficient which may not imply that

the two documents are similar.

5. IMPLEMENTATION

Here n is the no of documents to be compared for similarity.

getShingle method first reads the document d1 and d2 amongst

the list of documents being iterated and then makes shingles

by characters and words of length q. It does it by finding

consecutive substrings of length q for each document. It then

finds the Jaccard similarity between each set being iterated.

While making the shingle sets, the blank spaces can be split up

to form one blank space.

This algorithm makes O(n
2
) comparisons to compare each

document against the other. For instance, if there are 10

documents, each document will be compared with all the other

documents resulting in overall 45 comparisons. The space

compare(n)

{

 for i=0 to n

 for j=0 to n

 Set S1=getShingle(readFile(d1, q)

 Set S2=getShingle(readFile(d2,q)

 findJaccardSimilarity(s1,s2)

}

//finds Jaccard Similarity between two sets

 findJaccardSimilarity(S1,S2)

 return (S1 intersection S2) /(S1 union S2)

Surbhi Kakar
1
IJECS Volume 2 Issue 11 November, 2013 Page No.3097-3100 Page 3099

complexity for the same would be O(q*w) as discussed

previously.

6. EXPERIMENT

Shingling as a technique was used by the author on a dataset

of 10 text files. The length of shingle was taken as 3, 4 and 5.

A java program was written to implement the same. Out of the

10 text files the Jaccard coefficients calculated for the first

four files are summarized in Table1, 2 and 3.

TABLE1

q=3

Similarity between i: 2 j: 1 0.11809045226130653

Similarity between i: 3 j: 1 0.023178807947019868

Similarity between i: 3 j: 2 0.03070175438596491

Similarity between i: 4 j: 1 0.01559792027729636

Similarity between i: 4 j: 2 0.15834767641996558

Similarity between i: 4 j: 3 0.022974607013301087

TABLE 2

q=4

Similarity between i: 2 j: 1 0.09535452322738386

Similarity between i: 3 j: 1 0.01461038961038961

Similarity between i: 3 j: 2 0.018571428571428572

Similarity between i: 4 j: 1 0.003372681281618887

Similarity between i: 4 j: 2 0.13079470198675497

Similarity between i: 4 j: 3 0.009389671361502348

TABLE 3

q=5

Similarity between i: 2 j: 1 0.07971014492753623

Similarity between i: 3 j: 1 0.00967741935483871

Similarity between i: 3 j: 2 0.011315417256011316

Similarity between i: 4 j: 1 0.0016806722689075631

Similarity between i: 4 j: 2 0.11201298701298701

Similarity between i: 4 j:

3

0.003484320557491289

Note: Here i and j refer to the documents that are being

compared for similarity.

The statistical analysis of the above result can be stated as

below:

Fig. 1. Jaccard coefficients for q=3, 4 and 5

On experimenting the dataset with the algorithm, it was found

that on varying the values of q the Jaccard coefficient also

varied. For smaller values of q, Jaccard coefficient came out to

be larger which indicated a higher degree of similarity

between the documents. Whereas as the value of q was

increased the Jaccard coefficient decreased.

7. CONCLUSIONS

The paper discussed about the problem of “Big Data”

emerging at a speedy rate. It also focused on problems like

near duplicate detection of documents for which it described a

technique called shingling. In the later sections the author

brought about two approaches by which shingling can be

done.

As per the experiment conducted by the author, it was found

that for smaller values of the length of the shingle (q) the

jaccard coefficient between the documents was larger as

compared to when the value of q was increased.

q α 1/JC(A,B)

This implied that a higher Jaccard coefficient does not

necessarily indicate that the documents are similar. It can vary

depending upon what value of q is chosen. Therefore, the

value of q should be appropriately chosen in order to have an

accurate estimate of degree of similarity between the

documents.

8. LIMITATIONS

For very large values of n where n is the number of documents

to be compared for similarity, shingling alone as a technique

used can result in large processing and storage overheads since

it takes O(n
2
) comparisons to compare each document. As a

solution shingling can be clubbed with Minhashing or Locality

sensitive hashing(LSH) to improve the results. Locality

sensitive hashing does not compare all the documents for

similarity. It only focuses on the candidate pairs that are likely

to be similar for comparison. This reduces the comparisons to

be done while checking documents for similarity. Also LSH is

a better technique while searching documents in high

dimensional spaces.

9. FUTURE SCOPE

The author will extend the work discussed in this paper and

implement Minhashing and Locality sensitive hashing

techniques to improve the results in order for efficient near

duplicate detection of web pages.

REFERENCES

[1] Michael, Katina, and Keith W. Miller. "Big Data: New

Opportunities and New Challenges." Editorial: IEEE

Computer 46.6, pp.23, 2013

[2] Einav, Liran, and Jonathan D. Levin. “The Data

Revolution and Economic Analysis”.No. w19035. National

Bureau of Economic Research, pp.3-5, 2013.

Surbhi Kakar
1
IJECS Volume 2 Issue 11 November, 2013 Page No.3097-3100 Page 3100

[3] Manning D. Christopher , Raghavan Prabhakar , Schütze

Hinrich , “Introduction to Information Retrieval”, Cambridge

University Press, April 2009

[4] Broder, Andrei Z. "Identifying and filtering near-duplicate

documents." In Combinatorial Pattern Matching, Springer

Berlin Heidelberg, pp. 2-6, 2000.

[5] Broder, Andrei Z. "On the resemblance and containment of

documents." In Proceedings of Compression and Complexity

of Sequences, IEEE, pp. 3-6, 1997.

[6] Rajaraman, Anand, and Jeffrey David Ullman, “Mining of

massive datasets” Cambridge University Press, pp. 6, 2012.

[7] Andoni, Alexandr, and Piotr Indyk. "Near-optimal hashing

algorithms for approximate nearest neighbor in high

dimensions." In Foundations of Computer Science, 2006.

FOCS'06. 47th Annual IEEE Symposium on. IEEE, pp.120,

2006.

[8] Ye, Shaozhi, Ji-Rong Wen, and Wei-Ying Ma. "A

systematic study on parameter correlations in large-scale

duplicate document detection." Knowledge and Information

Systems 14.2, pp. 2-6, 2008

http://www.amazon.com/Christopher-D.-Manning/e/B001H6KI62/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Christopher-D.-Manning/e/B001H6KI62/ref=ntt_athr_dp_pel_1
http://www.amazon.com/Prabhakar-Raghavan/e/B001IQZ88O/ref=ntt_athr_dp_pel_2
http://www.amazon.com/Prabhakar-Raghavan/e/B001IQZ88O/ref=ntt_athr_dp_pel_2
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&field-author=Hinrich%20Sch%C3%BCtze&search-alias=books&sort=relevancerank

