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Abstract—Disruption Tolerant Networks (DTNs) utilize the mobility of nodes and the opportunistic contacts among n o d e s  for data communications. 
Due to the limitation in network resources such as contact opportunity and buffer space, DTNs are vulnerable to flood attacks in which attackers send 
as many packets or packet replicas as  possible to the network, in order to deplete or overuse the limited network resources. In this paper, we employ 
rate limiting to defend against  flood attacks in DTNs, such that each node has a limit over the number of packets that it can generate in each time 
interval and a limit over the number of replicas that it can generate for each packet. We propose a distributed scheme to detect if a node has violated its 
rate limits. To address the challenge that it is difficult to count all the packets or replicas  sent  by a node  due  to lack of communication infrastructure, 
our detection adopts claim-carry-and- check:  each node  itself counts the number of packets or replicas  that it has  sent  and  claims  the count  to 
other  nodes; the receiving nodes carry the claims when they move, and cross-check if their carried claims are inconsistent when they contact. The claim 
structure uses the pigeonhole principle to guarantee that an attacker will make incons istent  claims which may lead to detection. We provide 
rigorous analysis on the probability of detection, and evaluate the effectiveness and efficiency of our scheme with extensive trace- driven simulations. 

 
Index Terms—DTN, security, f lood  attack, d et ec t ion  

 

1INTRODUCTION 

ISRUPTION   Tolerant Networks ( DTNs)   [1] c o n s i s t    

of mobile nodes carried by human beings [2], [3], 

vehicles 

[4], [5], etc. DTNs enable data  transfer when mobile 

nodes are only intermittently connected, making them 

appropriate for applications where no communication 

infrastructure is available such as military scenarios and 

rural areas.  Due to lack   of  consistent  connectivity,  

two   nodes   can   only exchange data  when they move  

into the transmission range of  each  other   (which   is  

called   a  contact  between  them). DTNs employ such 

contact  opportunity for data forwarding with  “store-

carry-and-forward”; i.e., when a node  receives some  

packets,  it  stores  these  packets  in  its  buffer,  carries 

them   around  until   it  contacts   another  node,   and   

then forwards them.  Since the contacts  between nodes  

are opportunistic and  the  duration of a contact  may  be 

short because  of mobility,  the  usable  bandwidth which  

is only available during  the   opportunistic  contacts   is  

a  limited resource. Also, mobile nodes may have limited 

buffer space. 

 

Due t o  the l i m i t a t i o n  in bandwidth and b u f f e r  

s p a c e , DTNs   are v u l n e r a b l e  to f l o o d    attacks.   In 

f l o o d    attacks, maliciously or selfishly motivated 

attackers inject as many packets as possible into the 

network, or instead of injecting different packets the  

attacker’s forward replicas of the same packet to as many 

nodes as possible. For convenience, we call the two types 

o f  attack p a c k e t  flood attack and r e p l i c a  flood attack, 

respectively. Flooded packets and replicas can waste the 

precious bandwidth and buffer resources, prevent benign 

packets from being forwarded and thus degrade the 

network service p r o v i d e d  to good n o d e s .  Moreover, 

mobile n o d e s  spend much energy on 

transmitting/receiving flooded packets a n d  r e p l i c a s  

which m a y  shor ten  their ba t te r y life. Therefore, it is 

urgent to secure DTNs against flood attacks. 

 
Although many s ch emes  have been proposed to defend 

against flood  attacks   on  the  Internet [6] and   in  

wireless sensor   networks [7],  they  assume persistent 

connectivity and   cannot    be   directly  applied  to   

DTNs   that   have intermittent  connectivity. In  DTNs,  

little  work   has  been done  on flood  attacks,  despite the  

many  works  on routing [8], [4], [36], data  dissemination 

[9], [37], black hole attack [10], wormhole attack  [11], and  

selfish  dropping behaviour [12], [13]. We  noted  that  the  

packets  flooded by  outsider attackers  (i.e.,  the  

attackers without  valid   cryptographic

with valid signatures. Thus, it is still an open problem is to 

against flood attacks in  DTNs.  In our  approach, each node 

has  a limit  over  the  number of packets  that  it, as a source   

node,  can  send  to the  network in each  time interval. 

Each node also has a limit over the number of replicas that 

it can 
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generate for each packet  (i.e., the  number of nodes  that  it 

can  forward each  packet   to).  The  two  limits  are  used  to 

mitigate packet  flood and replica  flood attacks,  respectively. 

If a node  violates  its rate  limits,  it will  be detected and  its 

data   traffic  will  be  filtered.   In  this  way,   the  amount  of 

flooded traffic  can be controlled. 

Our  main  contribution is a technique to detect  if a node 

has violated its rate limits.  Although it is easy to detect  the 

violation of rate  limit  on the  Internet and  in telecommuni- 

cation  networks where the  egress  router and  base  station 

can account each user’s traffic, it is challenging in DTNs due 

to lack of communication infrastructure and  consistent 

connectivity. Since  a  node  moves   around and  may  send 

data  to any  contacted node,  it is very  difficult  to count  the 

number of packets  or  replicas sent  out  by  this  node.  Our 

basic  idea  of detection is claim-carry-and-check. Each  node 

itself counts  the  number of packets  or  replicas that  it has 

sent out, and  claims  the count  to other  nodes;  the receiving 

nodes  carry  the  claims  around when they  move,  exchange 

some  claims  when they  contact,  and  cross-check if these 

claims are inconsistent. If an attacker floods more packets  or 

replicas than  its limit, it has to use the same  count  in more 

than  one claim  according to the pigeonhole principle,1  and 

this inconsistency may lead to detection. Based on this idea, 

we   use   different  cryptographic  constructions  to   detect 

packet  flood  and  replica  flood  attacks. 

Because   the   contacts   in   DTNs   are   opportunistic  in 

nature, our  approach provides probabilistic detection. The 

more  traffic  an  attacker floods,  the  more  likely  it  will  be 

detected. The detection probability can be flexibly adjusted 

by  system parameters that  control  the  amount of  claims 

exchanged in  a  contact.   We  provide a  lower   and   upper 

bound of detection probability and  investigate the problem 

of  parameter selection   to  maximize detection probability 

under a certain  amount of exchanged claims.  The effective- 

ness   and   efficiency   of  our   scheme   are   evaluated  with 

extensive trace-driven simulations. 

This paper is structured as follows.  Section  2 motivates 

our  work.  Section  3 presents our  models and  basic  ideas. 

Sections  4 and  5 present our  scheme.  Section  6 presents 

security and   cost  analysis. Section  7  presents simulation 

results. The last two sections  present related work  and 

conclusions, respectively. 
 

 

2    MOTIVATION 

2.1    The  Potential Prevalence of Flood Attacks 

Many   nodes   may   launch flood  attacks   for  malicious or 

selfish  purposes. Malicious nodes,  which  can be the  nodes 

deliberately deployed by the adversary or subverted by the 

adversary via mobile  phone worms [16], launch attacks  to 

congest  the network and waste  the resources of other nodes. 

Selfish  nodes  may  also  exploit  flood  attacks  to increase 

their  communication throughput. In DTNs,  a single  packet 

usually can  only  be  delivered to  the  destination with   a 

probability smaller   than   1  due   to  the  opportunistic  con- 

nectivity. If a selfish  node  floods  many  replicas of its own 

packet,   it  can  increase   the  likelihood of  its  packet   being 

delivered, since the delivery of any replica  means successful 

 
1.  The   pigeonhole  principle  states   that   if       items   are   put   into    

pigeonholes with     >  , then  at  least  one  pigeonhole must  contain  more 
than  one item. 

delivery of  the  packet.   With  packet   flood  attacks,   selfish 

nodes  can also increase  their  throughput, albeit  in a subtler 

manner. For example, suppose Alice wants to send  a packet 

to  Bob.  Alice  can  construct  100  variants of  the  original 

packet  which  only differ  in one unimportant padding byte, 

and  send  the 100 variants to Bob independently. When  Bob 

receives  any  one  of the  100 variants, he  throws away  the 

padding byte  and  gets the original packet. 
 

2.2    The  Effect of Flood Attacks 

To study the  effect  of flood  attacks  on  DTN  routing and 

motivate our  work,  we run  simulations on the MIT Reality 

trace  [17] (see more  details  about  this  trace  in Section 7). 

We  consider three  general routing strategies in  DTNs. 

1) Single-copy routing (e.g., [18], [8]): after forwarding a packet 

out,  a node  deletes its own  copy  of the  packet.  Thus,  each 

packet only has one copy in the network. 2) Multicopy routing 

(e.g.,  [19]): the  source   node  of  a  packet   sprays a  certain 

number of copies of the packet  to other nodes  and each copy 

is individually routed using  the  single-copy strategy. The 

maximum number of copies  that  each  packet  can  have  is 

fixed.  3) Propagation  routing  (e.g.,  [17], [20], [21]): when a 

node  finds  it  appropriate  (according to  the  routing  algo- 

rithm)  to forward a packet  to another encountered node,  it 

replicates that packet  to the encountered node  and  keeps  its 

own copy. There is no preset limit over the number of copies 

a packet can have. In our simulations, SimBet [8], Spray-and- 

Focus [19] (three  copies allowed for each packet)  and 

Propagation are used  as representatives of the three  routing 

strategies, respectively. In Propagation, a node  replicates a 

packet  to another encountered node  if the  latter  has  more 

frequent contacts  with  the destination of the packet. 

Two metrics  are used,  The first metric  is packet  delivery 

ratio, which  is defined as the fraction  of packets  delivered to 

their  destinations out  of all the  unique packets  generated. 

The  second  metric  is the  fraction  of wasted transmissions 

(i.e.,  the  transmissions made by  good  nodes   for  flooded 

packets).  The  higher fraction  of wasted transmissions, the 

more  network resources are  wasted. We  noticed that  the 

effect  of packet  flood  attacks  on  packet  delivery ratio  has 

been studied by Burgess et al. [22] using  a different trace [4]. 

Their  simulations show  that  packet   flood  attacks   signifi- 

cantly   reduce  the   packet   delivery  ratio   of  single-copy 

routing  but   do   not   affect   propagation  routing  much. 

However, they  do  not  study replica  flood  attacks  and  the 

effect of packet  flood  attacks  on wasted transmissions. 

In our simulations, a packet  flood attacker floods packets 

destined to  random good  nodes  in  each  contact  until  the 

contact  ends  or the contacted node’s  buffer  is full. A replica 

flood  attacker replicates the  packets   it  has  generated  to 

every  encountered node  that  does  not  have  a copy.  Each 

good  node  generates thirty  packets  on the 121st day  of the 

Reality  trace,  and  each  attacker does  the  same  in  replica 

flood attacks.  Each packet  expires  in 60 days. The buffer size 

of  each  node  is  5 MB, bandwidth is  2 Mbps  and  packet 

size is 10 KB. 

Fig. 1 shows  the effect of flood attacks  on packet  delivery 

ratio.   Packet   flood   attack   can   dramatically  reduce  the 

packet   delivery ratio  of  all  three  types  of  routing. When 

the  fraction   of  attackers is  high,  replica   flood  attack  can 

significantly decrease the  packet   delivery ratio  of  single- 

copy  and  multicopy routing, but  it  does  not  have  much 

effect on propagation routing. 



 

 

 
 

 
 

Fig. 1. The effect of flood attacks on packet delivery ratio. In absent node,  attackers are simply removed from the network. Attackers are selectively 
deployed to high-connectivity  nodes. 

 
Fig.  2  shows   the   effect   of  flood   attacks   on   wasted 

transmission.  Packet   flood   attack   can   waste   more   than 

80 percent of the  transmissions made by good  nodes  in all 

routing strategies when the  fraction  of attackers is higher 

than   5 percent. When  20 percent of  nodes   are  attackers, 

replica   flood   attack   can   waste   68  and   44  percent  of 

transmissions in single-copy and  multicopy routing, re- 

spectively.  However,  replica   flood   attack   only   wastes 

17 percent of transmissions in propagation routing. This is 

because  each good  packet  is also replicated many  times. 

Remarks. The  results show   that   all  the  three   types   of 

routing are vulnerable to packet  flood attack. Single-copy 

and   multicopy routing  are  also  vulnerable  to  replica 

flood   attack,   but   propagation  routing  is  much   more 

resistant to  replica  flood.  Motivated by these results,  this 

paper  addresses packet flood attack  without  assuming  any 

specific routing strategy, and addresses replica flood attack for 

single-copy and multicopy routing only. 
 

 

3    OVERVIEW 

3.1    Problem Definition 

3.1.1   Defense against Packet Flood Attacks 

We consider a scenario  where each node  has a rate  limit  L 

on  the  number of unique packets   that  it  as  a  source  can 

generate  and   send   into   the   network  within  each   time 

interval T . The time  intervals start  from  time  0, T , 2T , etc. 

The  packets   generated within the  rate  limit  are  deemed 

legitimate, but  the  packets  generated beyond the  limit  are 

deemed flooded by  this  node.   To  defend against packet 

flood  attacks,  our  goal is to detect  if a node  as a source  has 

generated and  sent  more  unique packets  into  the  network 

than  its rate  limit  L per  time  interval. 

A node’s  rate  limit  L does  not  depend on  any  specific 

routing  protocol, but  it  can  be  determined by  a  service 
 
 

 
 

 
 

Fig. 2. The effect of flood attacks on the fraction of wasted transmission. 
Attackers are  randomly  deployed. 

contract between the  node   and   the  network operator as 

discussed in Section 3.1.3. Different  nodes  can have different 

rate limits and their rate limits can be dynamically adjusted. 

The length  of time interval should be set appropriately. If 

the  interval  is  too  long,  rate   limiting  may   not  be  very 

effective  against packet  flood  attacks.  If the  interval is too 

short,  the number of contacts  that each node  has during one 

interval may  be too nondeterministic and  thus  it is difficult 

to  set  an  appropriate rate  limit.  Generally speaking, the 

interval should  be  short   under the  condition  that   most 

nodes  can have  a significant number of contacts  with  other 

nodes   within  one   interval,  but   the   appropriate  length 

depends  on  the   contact   patterns  between  nodes   in  the 

specific  deployment scenario. 
 

3.1.2   Defense against Replica  Flood Attacks 

As motivated in Section 2, the defense against replica  flood 

considers  single-copy  and   multicopy  routing  protocols. 

These  protocols require that,  for  each  packet  that  a node 

buffers  no matter if this  packet  has  been  generated by the 

node  or forwarded to it, there  is a limit l on the number of 

times  that  the node  can forward this packet  to other  nodes. 

The  values   of  l  may   be  different  for  different buffered 

packets.   Our  goal  is  to  detect  if a  node  has  violated the 

routing protocol and  forwarded a packet  more  times  than 

its limit  l for the packet. 

A node’s  limit  l for a buffered packet  is determined by 

the routing protocol. In multicopy routing, l ¼ L0  (where L0
 

is a parameter of routing) if the  node  is the  source  of the 

packet,  and  l ¼ 1 if the node  is an intermediate hop  (i.e., it 

received  the  packet   from   another  node).   In  single-copy 

routing, l ¼ 1  no  matter if  the  node   is  the  source   or  an 

intermediate hop.  Note  that  the  two  limits  L and  l do  not 

depend on each other. 

We discuss how  to defend against replica  flood  attacks 

for quota-based routing [23], [19], [24] in Section 4.9. 
 

3.1.3   Setting  the Rate  Limit L 

One possible  method is to set L in a request-approve style. 

When  a user  joins the network, she requests for a rate limit 

from a trusted authority which  acts as the network operator. 

In the  request, this  user  specifies  an  appropriate value  of 

L based  on prediction of her  traffic  demand. If the  trusted 

authority  approves  this   request,  it  issues   a  rate  limit 

certificate to  this  user,  which   can  be  used   by  the  user  to 

prove  to  other  nodes  the  legitimacy of her  rate  limit.  To 

prevent  users   from   requesting  unreasonably  large   rate 

limits,  a  user  pays   an  appropriate amount of  money   or 

 
  

 

 

 

 
  

 

 
 



 

 

 
 

 

 
 

 

Fig. 3. The basic  idea of flood attack  detection. cp and ct are packet count and transmission count, respectively. The arrows  mean the transmission 
of packet or metadata which happens when  the two end  nodes contact. 

 
virtual  currency  (e.g.,   the   credits    that   she   earns   by 

forwarding data   for  other   users   [25])  for  her  rate  limit. 

When  a user predicts an increase  (decrease) of her demand, 

she can request for a higher (lower)  rate  limit.  The request 

and   approval  of  rate   limit   may   be   done   offline.   The 

flexibility  of rate  limit  leaves  legitimate users’  usage  of the 

network unhindered. This process  can be similar  to signing 

a  contract between a  smartphone user  and  a  3G  service 

provider: the user  selects a data  plan  (e.g., 200 MB/month) 

and  pays  for  it; she  can  upgrade or  downgrade the  plan 

when needed. 
 

3.2    Models and Assumptions 

3.2.1   Network Model 

In DTNs, since contact  durations may be short,  a large data 

item  is usually split  into  smaller  packets  (or fragments) to 

facilitate  data  transfer. For  simplicity, we  assume that  all 

packets  have  the  same  predefined size. Although in DTNs 

the  allowed delay  of packet  delivery is usually long,  it is 

still impractical to allow unlimited delays.  Thus, we assume 

that   each   packet   has   a  lifetime.   The   packet   becomes 

meaningless after  its lifetime  ends  and  will be discarded. 

We  assume that   every   packet   generated  by  nodes   is 

unique. This  can  be implemented by including the  source 

node  ID and  a locally  unique sequence number, which  is 

assigned by the source  for this packet,  in the packet  header. 

We also assume that  time  is loosely  synchronized, such 

that  any  two  nodes  are  in the  same  time  slot  at any  time. 

Since the  intercontact time  in DTNs  is usually at the  scale 

of  minutes or  hours,   the  time  slot  can  be  at  the  scale  of 

one  minute. Such  loose  time  synchronization is  not  hard 

to achieve. 
 

3.2.2   Adversary  Model 

There are a number of attackers in the network. An attacker 

can flood  packets  and/or replicas. When  flooding packets, 

the attacker acts as a source  node.  It creates and injects more 

packets  into the network than its rate limit L. When flooding 

replicas, the  attacker forwards its buffered packets  (which 

can  be  generated by  itself  or  received from  other  nodes) 

more  times  than  its limit  l for them.  The attackers may  be 

insiders with  valid  cryptographic keys. Some attackers may 

collude  and  communicate via out-band channels. 
 

3.2.3   Trust Model 

We   assume  that   a  public-key  cryptography  system   is 

available. For example, Identity-Based Cryptography (IBC) 

[26] has  been  shown to be practical for DTNs  [27]. In IBC, 

only  an  offline  Key  Generation Center   (KGC)  is  needed. 

KGC generates a private key  for  each  node  based  on  the 

node’s   id,  and   publishes  a  small   set  of  public   security 

parameters to  the  node.   Except  the  KGC,  no  party  can 

generate the private key for a node  id. With such  a system, 

an  attacker cannot  forge  a  node  id  and  private key  pair. 

Also, attackers do not know  the private key of a good  node 

(not attacker). 

Each  node   has  a  rate  limit  certificate obtained from  a 

trusted authority. The certificate  includes the node’s  ID, its 

approved rate  limit L, the validation time  of this certificate 

and   the   trusted  authority’s  signature.  The   rate   limit 

certificate  can  be merged into  the  public  key  certificate  or 

stand alone. 
 

3.3    Basic Idea: Claim-Carry-and-Check 

3.3.1   Packet Flood Detection 
To detect  the  attackers that  violate  their  rate  limit  L,  we 

must  count  the number of unique packets  that each node  as 

a  source   has  generated and   sent  to  the  network in  the 

current  interval. However, since  the  node   may  send   its 

packets  to any  node  it contacts  at any  time  and  place,  no 

other   node   can  monitor all  of  its  sending  activities.  To 

address this challenge, our idea is to let the node itself count 

the  number of unique packets  that  it, as a source,  has  sent 

out,  and  claim the up-to-date packet  count  (together with  a 

little auxiliary information such  as its ID and  a timestamp) 

in each  packet  sent  out.  The node’s  rate  limit  certificate  is 

also attached to the packet,  such  that  other  nodes  receiving 

the packet  can learn its authorized rate limit L. If an attacker 

is  flooding  more   packets   than   its  rate   limit,   it  has   to 

dishonestly claim a count  smaller  than  the real value  in the 

flooded packet,  since  the  real  value  is larger  than  its  rate 

limit and  thus  a clear indicator of attack.  The claimed count 

must   have   been  used   before  by  the  attacker in  another 

claim, which  is guaranteed by the pigeonhole principle, and 

these  two  claims  are  inconsistent. The  nodes  which  have 

received packets  from the attacker carry the claims included 

in  those  packets   when they  move  around. When  two  of 

them   contact,   they   check if  there   is  any   inconsistency 

between  their   collected   claims.   The  attacker  is  detected 

when an inconsistency is found. 

Let us look at an example in Fig. 3a. S is an attacker that 

successively sends   out  four  packets   to  A,  B,  C,  and   D, 

respectively. Since L ¼ 3, if S claims  the true  count  4 in the 

fourth packet  m4, this packet  will be discarded by D. Thus, 

S dishonestly claims  the  count  to be 3, which  has  already 

been  claimed in  the  third packet   m3.  m3  (including the 

claim)  is  further forwarded to  node   E.  When   D  and   E 

 
 

 
 

 
 

 
 

 
 

  

 

  

 



 
 

 
 

 
 

Fig. 4. The conceptual structure of a packet and  the  changes made at 
each hop of the forwarding path. 

 
contact,  they exchange the count  claims included in m3 and 

m4, and  check that  S has used  the same  count  value  in two 

different packets.  Thus,  they  detect  that  S as an attacker. 
 

3.3.2   Replica  Flood Detection 

Claim-carry-and-check  can   also   be   used   to   detect   the 

attacker that  forwards a buffered packet  more  times  than 

its limit l. Specifically,  when the source  node  of a packet  or 

an intermediate hop  transmits the packet  to its next hop,  it 

claims  a  transmission count  which  means the  number  of 

times  it has  transmitted this  packet  (including the  current 

transmission). Based  on  if  the  node   is  the  source   or  an 

intermediate node  and  which  routing protocol is used,  the 

next  hop  can  know  the  node’s  limit  l for  the  packet,  and 

ensure that  the  claimed count  is within the  correct  range 

½1; l .  Thus,   if  an  attacker wants  to  transmit  the  packet 

more  than  l times,  it must  claim  a false  count  which  has 

been  used  before.  Similarly  as in packet  flood  attacks,  the 

attacker can  be  detected. Examples are  given  in  Figs.  3b 

and  3c. 

 
4    OUR  SCHEME 

Our   scheme   uses   two   different  cryptographic  construc- 

tions to detect packet flood and replica flood attacks 

independently. When  our  scheme  is deployed to propaga- 

tion   routing   protocols,  the   detection  of   replica    flood 

attacks  is deactivated. 

The  detection of  packet   flood  attacks   works   indepen- 

dently for each time interval. Without loss of generality, we 

only consider one time interval when describing our scheme. 

For convenience, we first describe our scheme assuming that 

all  nodes   have   the   same   rate   limit   L,  and   relax   this 

assumption in Section 4.8. In the following, we use SIGi ð Þ 

to denote node i’s signature over the content in the brackets. 
 

4.1    Claim  Construction 

Two  pieces   of  metadata  are  added to  each  packet   (see 

Fig.  4),  Packet  Count   Claim   (P-claim)   and   Transmission 

Count   Claim  (T-claim).  P-claim  and  T-claim  are  used   to 

detect  packet  flood  and  replica  flood  attacks,  respectively. 

4.1.1   P-Claim 

When  a source  node  S sends  a new  packet  m (which  has 

been generated by S and  not sent out before) to a contacted 

node,  it generates a P-claim  as follows: 
 

P-claim:  S; cp ; t; HðmÞ; SI GS ðH ðH ðmÞjSjcp jtÞÞ:       ð1Þ 
 

Here, t is the current time. cp (cp 2 ½1; L ) is the packet  count 

of  S,  which  means that  this  is  the  cth   new  packet   S  has 

created and  sent to the network in the current time interval. 

S increases cp  by one after  sending m out. 

The P-claim is attached to packet  m as a header field, and 

will  always be  forwarded along  with  the  packet   to  later 

hops.   When   the  contacted  node   receives   this   packet,   it 

verifies the signature in the P-claim, and  checks the value  of 

cp . If cp is larger  than  L, it discards this packet;  otherwise, it 

stores  this  packet  and  the P-claim. 
 

4.1.2   T-Claim 

When  node  A transmits a packet  m to node  B, it appends a 

T-claim to m. The T-claim includes A’s current transmission 

count  ct for m (i.e., the number of times it has transmitted m 

out)  and  the current time  t. The T-claim is 
 

T-claim:  A; B; H ðmÞ; ct ; t; SIGA ðHðAjBjH ðmÞjct jtÞÞ:     ð2Þ 
 

B checks  if ct  is in  the  correct  range  based  on  if A is the 

source  of m. If ct  has a valid  value,  B stores  this  T-claim. 

In single-copy and  multicopy routing, after  forwarding 

m for enough times,  A deletes its own  copy  of m and  will 

not forward m again. 
 

4.2    Inconsistency Caused by Attack 

In  a dishonest P-claim,  an  attacker uses  a  smaller  packet 

count   than  the  real  value.  (We  do  not  consider the  case 

where the attacker uses  a larger  packet  count  than  the real 

value,  since  it makes  no sense  for the  attacker.) However, 

this  packet  count  must  have  been  used  in another P-claim 

generated earlier.  This causes  an inconsistency called  count 

reuse,  which   means  the   use   of  the   same   count   in  two 

different P-claims generated by the same node.  For example 

in  Fig.  3a  the  count  value  3 is  reused in  the  P-claims  of 

packet  m3 and  m4. Similarly,  count  reuse  is also caused by 

dishonest T-claims. 
 

4.3    Protocol 

Suppose two  nodes   contact   and   they  have  a  number  of 

packets   to  forward to  each  other.   Then  our   protocol  is 

sketched in Algorithm 1. 
 

Algorithm 1. The protocol run  by each node  in a contact 

1: Metadata (P-claim  and  T-claim)  exchange and  attack  

detection 

2: if Have  packets  to send  then 
 

P-claim  is added by the  source  and  transmitted to later  3: For each new  packet,  generate a P-claim; 
hops   along   with   the   packet.   T-claim   is  generated and  4: For all packets,  generate their  T-claims  and  sign 
processed hop-by-hop. Specifically,  the  source  generates a 

T-claim  and  appends it to the  packet.  When  the  first  hop 
 

5: 
them  with  a hash  tree; 

Send  every  packet  with  the P-claim  and  T-claim 
receives   this   packet,   it  peels   off  the   T-claim;   when  it  attached; 
forwards the  packet  out,  it appends a new  T-claim  to the 

packet.  This process  continues in later hops. Each hop keeps 

the P-claim of the source  and the T-claim of its previous hop 

to detect  attacks. 

 

6: end  if 

7: if Receive a packet  then 

8:      if Signature verification fails or the count  value  in its 

P-claim  or T-claim is invalid then 

 
 

p 



 

   9:           Discard this  packet; 

10:       end  if 

11: Check the P-claim against those locally collected  and 

generated in the same  time  interval to detect 

inconsistency; 

12: Check  the T-claim against those  locally collected  for 

inconsistency; 

13:       if Inconsistency is detected then 

14: Tag the signer  of the P-claim  (T-claim, respec- 

tively)  as an attacker and  add  it into  a blacklist; 

15: Disseminate an alarm  against the attacker to the 

network; 

16:       else 

17:            Store the new  P-claim  (T-claim, respectively); 

18:       end  if 

19:  end  if 

S; i; cp ; He8 ;                                      ð3Þ 

where He8  is a 8-bit string  called hash remainder. It is obtained 

by concatenating 8 random bits  of the  packet  hash  H ðmÞ. 

The  indices  of these  8 bits  in the  hash  are  determined by 

eight   locators.   The  locators   are  randomly  and   indepen- 

dently  generated  by  W  for  S  at  the   beginning  of  the 

ith  interval, and  are shared by all the P-claims  issued by S 

in the ith interval. Each locator  only has log2 h bits where h 

denotes the size of a hash  (e.g., 256 for SHA-256). W keeps 

these  locators  secret. 

Suppose node  W has  collected  n P-claims  generated by 

S in interval i. For all these claims, only one source  node  ID 

and   interval  index   is  stored.  Also,   instead  of  directly 

storing  the   packet   count   values   cp    included  in   these 

P-claims,  the compact structure uses  a L-bit long bit vector 

to  store   them.   If  value   c  appears in  these   P-claims,   the 
 

When  a node  forwards a packet,  it attaches a T-claim to 

the  packet.   Since  many   packets   may  be  forwarded in  a 

cth  bit  of  the  vector   is  set.  Let  Ci
 

structure of these  P-claims.  Then 

denote  the  compact 

contact  and  it is expensive to sign  each T-claim separately,              Ci
 

e      e             e
 

 

an efficient signature construction is proposed in Section 4.7. 

The  node  also  attaches a  P-claim  to  the  packets   that  are 

generated by itself  and  have  not  been  sent  to other  nodes 

before  (called  new packet in line 3, Algorithm 1). 

When  a node  receives  a packet,  it gets  the  P-claim  and 

T-claim  included in the  packet.  It checks  them  against the 

claims  that  it has  already collected  to detect  if there  is any 

inconsistency (see Section 4.5). Only the P-claims  generated 

in the same  time  interval (which  can be determined by the 

time  tag) are cross-checked. If no inconsistency is detected, 

this   node   stores   the   P-claim   and   T-claim   locally   (see 

Section  4.4). 

To better detect flood attacks, the two nodes also exchange 

a  small   number  of  the   recently   collected   P-claims   and 

T-claims  and  check  them  for inconsistency. This  metadata 

exchange process  is separately presented in Section 5. 

When a node  detects an attacker, it adds the attacker into 

a blacklist  and  will  not  accept  packets  originated from  or 

forwarded by the  attacker. The node  also  disseminates an 

alarm  against the attacker to other  nodes  (see Section 4.6). 
 

4.4    Local Data  Structures 

Each node  collects  P-claims  and  T-claims  from  the  packets 

that  it has  received and  stores  them  locally  to detect  flood 

attacks.  Let us look at a received packet  m and  the P-claim 

and  T-claim  included in  this  packet.  Initially,  this  pair  of 

P-claim   and   T-claim   are   stored  in   full   with   all   the 

components shown in Formulas 1 and  2. When  this  node 

removes m  from  its  buffer  (e.g.,  after  m  is  delivered to 

the  destination or dropped due  to expiration), it compacts 

S  ¼ S; i; bit-vector; locators; ½H81 
; H82 

; . . . ; H8n 
 :      ð4Þ 

 

4.4.2   Compact T-Claim Storage 

Suppose node  W stores  a T-claim  CCT  ¼ fR; W ; H ðmÞ; ct ; t; 

SIGR g issued by node  R. The signature is discarded since it 

has been verified. W does not need to store its own ID and  t 

is not useful  for inconsistency check. Then the compacted T- 

claim  is 
 

R; ct ; He32 ;                                       ð5Þ 
 

where He32  is a 32-bit hash  remainder defined similarly as 

He8 . Suppose W  has  collected  n  T-claims  generated by  R. 

Then  the compact structure of these  T-claims  is 
 

CR  ¼ R; locators; ½He321 
; ct1 

 ; . . . ; ½He32n 
; ctn 

 :            ð6Þ 
 

The locators  are randomly and  independently generated by 

W for R, and  are shared by all the T-claims  issued by R. 
 

4.5    Inconsistency Check 

Suppose node   W  wants to  check  a  pair  of  P-claim  and 

T-claim  against its local collections to detect  if there  is any 

inconsistency. The inconsistency check against full claims is 

trivial:  W  simply  compares the  pair  of claims  with  those 

collected.  In  the  following, we  describe the  inconsistency 

check against compactly stored claims. 
 

4.5.1   Inconsistency Check  with P-Claim 
From the P-claim node W gets: the source  node ID S, packet 

count   cp ,  timestamp  t,  and   packet   hash   H.   To  check 

inconsistency, W first  uses  S and  t to map  the  P-claim  to 

this  pair  of claims  to reduce the storage cost. If this  pair  of the  structure Ci
 (see  (4)).  Then  it  reconstructs the  hash 

claims have  been sampled for metadata exchange, they will remainder of H  using  the  locators  in Ci  . If the  bit indexed 

be  stored in  full  until  the  exchange process   ends  and  be 

compacted afterward. 

by the  packet  count  cp  is set in the  bit-vector but  the  hash 

remainder is not included in Ci  , count  reuse  is detected and 
 

4.4.1   Compact P-Claim  Storage 

Suppose  node   W  stores   a  P-claim   CCP   ¼ fS; cp ; t; H ðmÞ; 

SIGS g.  It  compacts  the   P-claim   as   follows:   using   the 

timestamp t, W gets  the  index  i of the  time  interval that  t 

belongs   to.  The  signature is  discarded since  it  has  been 

verified. The compacted P-claim  is 

S is an attacker. 

The inconsistency check based  on compact P-claims  does 

not cause false positive, since a good node  never  reuses  any 

count   value   in  different  packets   generated  in  the  same 

interval. The inconsistency check may cause false negative if 

the  two  inconsistent P-claims  have  the  same  hash  remain- 

der.  However, since the attacker does  not know  which  bits 

S 

S 

S 

S 



 
constitute  the   hash   remainder,  the   probability  of  false 

negative is  only  2   8 .  Thus,  it  has  minimal effect  on  the 

overall  detection probability. 
 

4.5.2   Inconsistency Check  with T-Claim 

From the T-claim node  W gets: the sender ID R, receiver  ID 

Q  and   transmission count   ct .  If  Q  is  W  itself  (which   is 

possible  if the T-claim has been sent out by W but returned 

by an attacker), W takes  no action.  Otherwise, it uses  R to 

map  the  T-claim  to the  structure CR  (see (6)). If there  is a 

 
 
 
 
 
 
 
 
 

 
Fig.   5.   The   Merkle   hash  tree   constructed  upon   eight   T-claims 

2-tuple  ½He 0   ; c0   in CR  that  satisfies  1) He0 is the same  as the TC1 ; . . . ; T C8 . In the  tree,  Hi   is the  hash of TCi , and  an  inner node  is 
32     t 32                                                       the hash of its child nodes. The signature of TC1  includes  H2 , H34 , H58 , 
remainder of 

R
 H , and 2) c0  ¼ ct , then the issuer  of the T-claim and  SIG. 

(i.e., ) is an attacker. 

The inconsistency check based  on compact T-claims does 

not cause  extra  false negative. False positive is possible  but 

it can be kept  low as follows:  node  W may  falsely  detect  a 

good  node  R as an attacker if it has  received two  T-claims 

generated by  R  that   satisfy   two  conditions:  1)  they   are 

generated for  two  different packets,  and  2) they  have  the 

same   hash    remainder.  For   32-bit   hash    remainder, 

the  probability  that   each  pair   of  T-claims   lead   to  false 

detection is 2   32 . In most  cases, we expect  that  the number 

of T-claims  generated by R and  received by W is not large 

due  to  the  opportunistic contacts   of  DTNs,  and  thus  the 

probability of false  detection is low.  As  W  receives  more 

T-claims  generated by  R,  it can  use  a longer  (e.g., 64-bit) 

hash   remainder  for  R  to  keep   the   probability  of  false 

detection low.  Moreover, such  false  detection is limited to 

W only, since W cannot  convince  other  nodes  to accept  the 

detection with  compact T-claim. 
 

4.6    Alarm 

Suppose in  a  contact  a  node  receives  a  claim  CCr  from  a 

forwarded  data   packet   or  from   the   metadata  exchange 

process   (see   Section   5.3)  and   it  detects   inconsistency 

between  CCr   and   a  local   claim   CCl    that   the   node   has 

collected.  CCr  is a full claim  as shown in Formula 1 (or 2), 

but  CCl   may  be  stored as  a  full  claim  or  just  a  compact 

structure shown in Formula 3 (or 5). 

If  CCl    is  a  full   claim,   the   node   can   broadcast  (via 

Epidemic routing [28]) a global alarm to all the  other  nodes 

to  speed   up   the   attacker  detection  process.   The  alarm 

includes  the  two  full  claims   CCl    and   CCr .  When   a  node 

receives  an alarm,  it verifies  the inconsistency between the 

two included claims  and  their  signatures. If the verification 

succeeds, it adds the  attacker into  its blacklist  and  broad- 

casts  the  alarm   further; otherwise, it  discards the  alarm. 

The node  also discards the alarm  if it has broadcast another 

alarm  against the  same  attacker. 

If the detecting node  stores  CCl  as a compact structure, it 

cannot  convince  other  nodes  to trust  the detection since the 

compact structure does  not  have  the  attacker’s signature. 

Thus it cannot  broadcast a global alarm.  However, since the 

attacker may  have  reused the  count  value  of CCr  to  other 

claims besides  CCl , the detecting node can disseminate a local 

alarm that only contains CCr to its contacted nodes  who have 

received those  claims. These contacted nodes  can verify  the 

inconsistency between CCr  and  their  collected  claims,  and 

also detect the attacker. If any of these nodes still stores a full 

claim  inconsistent with  CCr , it can broadcast a global  alarm 

as done  in the  previous case;  otherwise, it disseminates a 

local alarm.  As this  iterative process  proceeds, the attacker 

can  be  quickly  detected by  many  nodes.  Each  node  only 

disseminates one local alarm  for each detected attacker. 

A  local  alarm   and   a  global   alarm   against  the   same 

attacker may  be disseminated in parallel. If a node  receives 

the  global  alarm  first  and  then  receives  the  local  alarm,  it 

discards the  local alarm.  If it receives  the  local alarm  first, 

when it receives  the global  alarm  later,  it discards the local 

alarm  and  keeps  the global  alarm. 

An  attacker may  falsify  an  alarm  against a good  node. 

However, since it does  not have  the node’s  private key (as 

our  assumption), it cannot  forge  the  node’s  signatures for 

the  claims  included in  the  alarm.  Thus,  the  alarm  will  be 

discarded by other  nodes  and  this  attack  fails. 
 

4.7    Efficient T-Claim  Authentication 

The  T-claims  of  all  the  packets   transmitted in  a  contact 

should be signed by the transmitting node.  Since the contact 

may  end  at any  unpredictable time,  each  received T-claim 

must  be individually authenticated. A naive approach is to 

protect each  T-claim  with  a separate public-key signature, 

but  it  has  high  computation cost  in  signature generation 

and  verification. 

Our  scheme  uses  Merkle  hash  tree  [29] to amortize the 
computation cost  of public-key-based signature on  all the 

T-claims  that  the  node  sends  out  in a contact.  Specifically, 

after  a node  generates the  T-claims  (without signature) for 

all the packets  it want  to send, it constructs a hash tree upon 

these  partial T-claims,  and  signs  the root  of the tree with  a 

public-key-based signature. Then the signature of a T-claim 

includes this root  signature and  a few elements of the tree. 

Fig. 5 shows  the hash  tree constructed upon eight  T-claims 

and  the tree  elements included in the  signature of the  first 

T-claim.  We refer  to the  original paper [29] for details.  In 

this way, for all the T-claims sent by the sender in a contact, 

only  one  public-key based   signature is  generated by  the 

sender and  verified by the receiver. 
 

4.8    Dealing with  Different Rate Limits 

Previously we have  assumed that  all nodes  have  the  same 

rate  limit  L. When  nodes  have  different rate  limits,  for our 

detection scheme  to work  properly, each intermediate node 

that  receives  a packet  needs  to know  the rate limit L of the 

source  of the  packet,  such  that  it can  check  if the  packet 

count  is in the  correct  range  1; 2; . . . ; L. To do  so, when a 

source  node  sends   out  a  packet,   it  attaches its  rate  limit 

certificate  to the  packet.  The  intermediate nodes  receiving 

this  packet  can learn  the  node’s  authorized rate  limit  from 

the attached certificate. 
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4.9    Replica Flood Attacks in Quota-Based Routing 
Protocols 

Our   scheme   to  detect   replica   flood   attacks   can  also  be 

adapted to quota-based routing protocols [23], [19], [24]. 

Quota-based routing works  as follows:  each  node  has  a 

quota    for   each   packet    that   it   buffers,   and   the   quota 

specifies   the  number of  replicas  into  which   the  current 

packet  is allowed to be split.  When  a source  node  creates 

a packet,  its  quota  for  the  packet  is L0   replicas, where L0 

is  a  system parameter. When  the  source  contacts   a  relay 

node,  it can  split  multiple replicas to  the  relay  according 

to  the   quality  of  the   relay.   After   the   split,   the   relay’s 

quota  for  the  packet  is the  number of replicas split  to  it, 

and   the   source   node’s   quota   is  reduced  by   the   same 

amount. This  procedure  continues recursively, and   each 

node   carrying  the   packet    can   split   out   a   number   of 

replicas less  than  its  current quota   for  the  packet.   It can 

be seen  that  each  packet  can  simultaneously have  at most 

L0   replicas in  the  network. 

In quota-based routing, replica  flood  attacks  (where an 

attacker sends  out more  replicas of a packet  than  its quota) 

can be detected by our  approach as follows. 

First, we observe that quota-based routing (with the total 

quota  determined at the source)  can be emulated by single- 

copy routing if different replicas of the same  packet  appear 

different  to  intermediate  nodes   and   each  replica   is  for- 

warded in a similar  way as single-copy routing. A node  can 

split multiple replicas of a packet  to another node,  but it can 

only send  each replica  out once. For instance, if a node  has 

forwarded Replica  1 to one relay,  it must  remove Replica  1 

from its local buffer, and it cannot  forward this replica  again 

to another relay. 

To  differentiate  replicas,  the  source   assigns   a  unique 

index  to each replica  as a header field, and  signs the replica 

to  prevent intermediate nodes  from  modifying the  index. 

The  index   value   should be  in  range   ½1; L0  ,  and   replicas 

with  invalid index  will be discarded. In this  way,  a node’s 

local  quota  for  a packet  is represented by  the  number  of 

replicas (with  different indices)  that  it buffers.  Note  that  an 

intermediate  node   cannot   increase   its  quota   by  forging 

replicas since  it  does  not  have  the  source   node’s  key  to 

generate a valid  signature. 

To prevent a node  from  abusing its  quota,  we  need  to 

ensure  that   the   node   only   forwards  each   replica   once. 

T-claim can be used  to achieve  this goal. Particularly, when 

a node splits multiple replicas of a packet  to another node, it 

generates  a  T-claim   for  each   replica.   The  inconsistency 

check  (see  Section  4.5) can  be  applied here  to  detect  the 

attackers that  transmit the same  replica  more  than  once. 
 

 

5    METADATA EXCHANGE 

When   two   nodes   contact   they   exchange  their   collected 

P-claims  and  T-claims  to detect  flood  attacks.  If all claims 

are  exchanged, the  communication cost  will  be  too  high. 

Thus,  our  scheme   uses  sampling techniques to  keep  the 

communication  cost  low.  To  increase   the  probability  of 

attack  detection, one  node  also  stores  a  small  portion  of 

claims  exchanged from  its contacted node,  and  exchanges 

them  to its own  future contacts.  This is called  redirection. 

5.1    Sampling 

Since P-claims and T-claims are sampled together (i.e., when 

a P-claim  is sampled the T-claim of the same  packet  is also 

sampled), in the following we only consider P-claims. 

A node  may  receive  a number of packets  (each  with  a 

P-claim)  in  a  contact.   It  randomly  samples Z  (a  system 

parameter)  of  the  received  P-claims,   and   exchanges the 

sampled  P-claims   to  the   next   K   (a  system  parameter) 

different nodes  it will contact,  excluding the sources  of the 

P-claims  and  the  previous hop  from  which  these  P-claims 

are  received. 

However, a vulnerability to tailgating attack  should be 

addressed.  In   tailgating  attack,   one   or   more   attackers 

tailgate  a good  node  to  create  a large  number (say,  d) of 

frequent contacts  with  this  node,  and  send  Z packets  (not 

necessarily generated by the attackers) to this node  in each 

created contact.  If this  good  node  sends  the Zd P-claims  of 

these  contacts  to the  next  K  good  nodes  it contacts,  much 

effective   bandwidth  between these   good   nodes   will   be 

wasted, especially in a large network where K is not small. 

To  address this  attack,  the  node  uses  an  inter-contact 

sampling technique to determine which  P-claims  sampled 

in  historical contacts   should be  exchanged in  the  current 

contact. Let SK  denote a set of contacts.  This set includes the 

minimum number  of  most   recent   contacts   between this 

node and at least K other different nodes.  Within  this set, all 

the  contacts   with  the  same  node  are  taken  as  one  single 

contact  and  a total  of Z P-claims  are  sampled out  of these 

contacts.  This  technique is not  vulnerable to the  tailgating 

attack since the number of claims exchanged in each contact 

is bounded by a constant. 
 

5.2    Redirection 

There   is  a  stealthy attack   to  flood  attack   detection.  For 

replica  flood  attacks,  the  condition of detection is that  at 

least  two  nodes  carrying inconsistent T-claims  can contact. 

However, suppose the attacker knows that two nodes  A and 

B never  contact.  Then,  it can send  some  packets  to A, and 

invalidly replicate these  packets  to B. In this  scenario,  this 

attacker cannot  be  detected since  A and  B  never  contact. 

Similarly,   the   stealthy  attack   is  also   harmful  for  some 

routing protocols like  Spray-and-Wait [19] in  which  each 

packet  is forwarded from  the  source  to  a  relay  and  then 

directly delivered from  the relay  to the destination. 

To address the  stealthy attack,  our  idea  is to  add  one 

level  of indirection. A node  redirects the  Z  P-claims  and 

T-claims  sampled in the  current contact  to one  of the  next 

K   nodes   it  will   contact,   and   this   contacted  node   will 

exchange (but not redirect again)  these  redirected claims  in 

its own  subsequent contacts.  Look at the example in Fig. 6. 

Suppose attacker S sends  mutually inconsistent packets  to 

two  nodes  A and  B which  will  never  contact.  Suppose  A 

and  B  redirect their  sampled P-claims  to  node  C  and  D, 

respectively. Then so long as C and  B or D and  A or C and 

D can contact,  the attack  has a chance  to be detected. Thus, 

the   successful  chance   of  stealthy  attack   is  significantly 

reduced. 
 

5.3    The  Exchange Process 

Each node maintains two separate sets of P-claims (T-claims, 

respectively  in  the  following)  for  metadata  exchange, a 



 
                                                   contacted  node   can  be  any   other   node   with   the   same 

probability.  This  assumption  holds   for  mobility models 
such   as   Random  Waypoint  (RWP)   where  the   contacts 

between all  node   pairs   can  be  modeled as  i.i.d.  Poisson 

processes [30]. When  analyzing the  detection probability, 

we   assume  that   each   attacker  acts   alone.   The   case   of 

collusion is analyzed separately in Section 6.4. 
 

 
 

Fig. 6. The idea of redirection which is used to mitigate the stealthy attack. 

 
sampled set which  includes the  P-claims  sampled from  the 

most  recent   contacts   with  K  different nodes   (i.e.,  SK    in 

Section 5.1), and  a redirected set which  includes the P-claims 

redirected from those contacts.  Both sets include Z P-claims 

obtained in each of those  contacts. 

When  two nodes  A and  B contact,  they first select KZ P- 

claims   from   each   set   with   the   inter-contact  sampling 

technique (see  Section  5.1), and  then  send  these  P-claims 

to each  other.  When  A receives  a P-claim,  it checks  if this 

P-claim  is  inconsistent with  any  of  its  collected   P-claims 

using  the  method described in Section  4.5. If the  received 

P-claim  is inconsistent with  a locally  collected  one and  the 

signature of the received P-claim is valid,  A detects that the 

issuer  (or signer)  of the received P-claim  is an attacker. 

Out  of  all  the  P-claims  received from  B,  A  randomly 

selects  Z  of the  P-claims  from  the  sampled set  of B,  and 

stores them to A’s redirected set. All other P-claims received 

from  B are discarded after  inconsistency check. 
 

5.4    Metadata Deletion 

A  node   stores   the  P-claims   and   T-claims  collected   from 

received data  packets  for a certain  time  denoted by     and 

deletes  them   afterward.  It  deletes  the  claims   redirected 

from  other  nodes  immediately after  it has exchanged them 

to K  different nodes. 
 

 

6    ANALYSIS 

This section presents rigorous analysis over the security and 

cost of our  scheme,  and  discusses the optimal parameter to 

maximize the effectiveness of flood attack detection under a 

certain  amount of exchanged metadata per  contact. 
 

6.1    Detection Probability 
The following analysis assumes uniform and  independent 

contacts  between nodes,  i.e., at any  time  each  node’s  next 

6.1.1   The Basic  Attack 

First  we  consider a basic  attack  (see  Fig. 7a) in  which  an 

attacker S floods  two  sets of mutually inconsistent packets 

to  two  good  nodes   A  and  B,  respectively. Each  flooded 

packet  received by A is inconsistent with  one of the flooded 

packets  received by B. In the contacts  with  A and  B, S also 

forwards some  normal, not flooded, packets  to A and  B to 

make   the   attack   harder  to   detect.   Let   y  denote  the 

proportion of flooded packets  among those  sent  by S. For 

simplicity,  we   assume  y  is  the   same   in  both   contacts. 

Suppose A and  B redirect the claims sampled in the contact 

with  S to C and  D, respectively. 

To  consider the  worst   case  performance, suppose the 

flooded packets  are  not  forwarded from  A and  B to other 

nodes  (which  is the case in Spray-and-Wait [19]), i.e., only A 

and  B have  the  inconsistent claims.  Note  that  the  analysis 

also applies to the detection of replica  flood  attacks. 

For  convenience, we  define  node  A’s (or  B’s)  detection 

window as from  the  time  it receives  the  flooded packets  to 

the  time  it exchanges the  sampled claims  to K  nodes,  and 

node  C’s (or  D’s)  detection window as  from  the  time  it 

receives  the redirected claims to the time it exchanges them 

to K nodes.  The attacker has a chance  to be detected if node 

pairs  hA; Bi, hA; Di, hC; Bi and  hC; Di can  contact  within 

their  detection windows. Table 1 shows  the  variables used 

in the analysis. 

Lower  bound. The lower  bound of detection probability 

is obtained in the  following scenario  (see Fig. 7b): when B 

receives  the  packets  from  S, both  A and  C  have  finished 

their  detection window. Due  to the  effect of sampling, the 

attacker can be detected 
 

1.    by A if A 2 SB  and  eB  ¼ T RU E; 

2.    by A if D is a good  node,  A 2 SD  and  eB  ¼ T RU E; 

3.    by C if C is a good node, C 2 SB  and êAB  ¼ T RU E; or 

4.    by C if both  C and  D are  good  nodes,  C 2 SD   and 

êAB  ¼ T RU E. 

Since each  of A and  B exchanges the sampled claims  to 

K   nodes   other   than   itself,   and   C   (D)   exchanges  the 
 

 
 
 

 
 

 
 

Fig. 7. (a) The basic  attack  considered for detection probability analysis. Attacker  S floods packets to A and  then  to B. (b) The scenario when  the 
lower bound detection probability can be obtained : When B receives the flooded packets from S, both A and C have finished their detection window. 
(c) The scenario when the upper bound detection probability can be obtained: D receives the redirected claims from B not later than the time when C 
receives the redirected claims  from A, and  they are  the first node  that A and  B encounter after the contact with S 

 

 
 

 
 

 
 

 
  

 

       

       
 

 



 

Lemma 1. If the communication cost of metadata exchange is 

fixed at ZK  ¼ C, then Pd  is maximized at K ¼ C and Z ¼ 1. 
Z

 

selected  from  ½1; 1:6  to simulate the speed  of walking, and 

the transmission range  of each node  is 10 to simulate that of 
5

  
which means gðuÞ monotonically increases. Since gð1Þ ¼  

0; gðuÞ   0 when 0 < u     1. Therefore, P 0 ðZÞ   0, which 

Pd    monotonically  decreases  with   Z.  Thus,   to 

maximize Pd , Z should be set the minimum value 1.      tu 

Remarks.  In   this   parameter  setting,   the   lower   bound 

detection  probability  can   be  written  as   Pd  ¼ yK 1þr . 

. 

In the  simulations, 20 percent of nodes  are  deployed as 

attackers. They are randomly deployed or selectively 

deployed to  high-connectivity  nodes.   The  buffer   size  of 

each node  is 5 MB, the Drop Tail policy is used  when buffer 

overflows. The bandwidth is 2 Mbps.  Each node  generates 

packets   of 10 KB with  random destinations at  a  uniform 

Then   it   can   be   detected   after          N   
ð  þ Þ attacks.   If  the 

rate.  Parameter Z ¼ 1. 

attacker wants to  stay  undetected for  a longer  time,  it 

should maintain a  smaller   y, which   means the  attack 

effect is weaker;  if it wants to make a big attack impact,  it 

should  maintain a  high   y,  but   this  means  it  will  be 

detected in a shorter time.  From  another point  of view, 

since the attacker only  uses  y proportion its capacity  for 

flood attack, it is equivalent that the attacker can attack at 

7.2    Routing Algorithms and Metrics 

We use the following routing protocols in evaluations: 
 

. Forward. A  single-copy routing  protocol where a 

packet  is forwarded to a relay  if the relay  has more 

frequent contacts  with  the destination. 

.  SimBet  [8]. A single-copy routing protocol where a 

full  capacity  for  only        N 

  
ð  þ Þ 

can be effectively  mitigated. 
 

6.2    Collusion Analysis 

6.2.1   Packet Flood Attack 

contacts.  Thus,  the  attacks 
packet   is  forwarded to  a  relay  if  the  relay  has  a 

higher simbet  metric,  which  is calculated from  two 

social measures (similarity and  betweenness). 

. Spray-and-wait [19]. A  multicopy protocol, where 

the  source  replicates a packet  to  L0  ¼ 3 relays  and 

each  relay  directly delivers its copy  to the  destina- 

One  attacker may  send  a packet  with  a dishonest packet 
count  to its colluder, which  will  forward the  packet  to the 

network.  Certainly,  the   colluder  will   not   exchange the 

dishonest P-claim  with  its  contacted nodes.   However,  so 

long  as the  colluder forwards this  packet  to a good  node, 

this good node  has a chance  to detect  the dishonest claim as 

well  as the  attacker. Thus,  the  detection probability is not 

affected  by this  type  of collusion. 
 

6.3.  Replica  Flood Attack 

When  attackers collude,  they can inject invalid replicas of a 

packet  without being  detected, but  the  number of flooded 

replicas is effectively  limited in our  scheme.  More  specifi- 

cally, in our scheme  for a unique packet  all the M colluders 

as  a  whole   can  flood   a  total   of  M     1  invalid  replicas 

without being  detected. To the  contrast, when there  is no 

defense,  a total of N     M invalid replicas can be injected  by 

the  colluders for each  unique packet.  Since the  number of 

colluders is not  very  large,  our  scheme  can still effectively 

mitigate  the   replica   flood   attack.   This   will   be  further 

evaluated in Section 7. 
 

 

7    PERFORMANCE EVALUATIONS 

7.1    Experiment Setup 

To evaluate the  performance and  cost  of our  scheme,  we 

run   simulations  on  a  synthetic  trace   generated  by  the 

Random Waypoint [30] mobility model   and   on  the  MIT 

Reality  trace  [17] collected  from  the real world. 

In the synthetic trace, 97 nodes move in a 500    500 

square 

area  with  the  RWP model.  The moving speed  is randomly 

tion  when they  contact. 

. Spray-and-focus  [19].  It  is  similar   to  Spray-and- 

Wait, but each packet  copy is individually routed to 

the destination with  Forward. 

. Propagation. A packet  is replicated to a relay  if the 

relay has more frequent contacts with the destination. 

We use the following performance evaluation metrics: 
 

. Detection rate.  The proportion of attackers that  are 

detected out  of all the attackers. 

. Detection  delay.  From   the  time   the  first  invalid 

packet  is sent  to the time  the attacker is detected. 

. Computation cost. The average number of signature 

generations and  verifications per  contact. 

. Communication  cost.   The   number  of   P-claim/ 

T-claim  pairs   transmitted into  the  air,  normalized 

by  the  number of packets  transmitted. 

.  Storage cost. The time-averaged kilobytes  stored for 

P-claims  and  T-claims  per  node. 
 

7.3    Analysis Verification 

We  use  the  synthetic trace  to  verify  our  analysis results 

given  in Section  6, since  in this  trace  the  contacts  between 

node  pairs  are i.i.d. [30] which  conforms to our assumption 

for the analysis. We divide the trace  into 10 segments, each 

with  5    104  time  units,  and  run  simulations on each of the 

third-seventh segments three  times  with  different random 

seeds.  Each data  point  is averaged over the individual runs.  

d 

means 

N 

yK  1   r 

K  1   r 



 

 
 

 
 

Fig. 8. Verification of analysis results on the synthetic  trace.  Spray-and- 
Wait is used as  the  routing protocol.  Each  attacker launches the  basic 
attack  once. 

 
Here  we only  verify  the  detection probability for the  basic 

attack,  since  the  detection probability for the  strong  attack 

can  be  derived from  it  in  a  straightforward way.  In  this 

group  of  simulations,  each   attacker  launches  the   basic 

attack  once.  It sends  out  two  sets  of packets  to two  good 

nodes  with  10 packets  in each  set  (i.e., n ¼ 10), and  these 

two  sets contain  mutually inconsistent packets.  We first fix 

parameter y ¼ 1:0 (see  Table  1) but  change   parameter K 

from 0 to 10, and  then  we fix parameter K ¼ 10 but change 

y from  0 to 1.0. The results are  shown in Figs. 8a and  8b, 

respectively. It can  be seen  that  the  simulation results are 

between  the   analytical  lower   bound  and   upper  bound, 

which  verifies  the correctness of our  analysis. 
 

7.4    Detection Rate 

The Reality trace is used. We divide the trace into segments of 

one month, and run simulations on each of the third-seventh 

segments three times with different random seeds. Each data 

point  is averaged over the individual runs.  By default, each 

attacker launches the  basic  attack  once,  and  it floods  one 

packet   out  (i.e.,  n ¼ 1,  y ¼ 1:0). By default, attackers are 

selectively  deployed to high-connectivity nodes. 

Fig.  9a  shows   the  effect  of  parameter K  in  different 

routing protocols. Generally speaking, when K  increases, 

the  detection rate  also  increases because   the  inconsistent 

packets   are   exchanged  to  more   nodes   and   have   more 

chances  to be detected. When  K ¼ 0, no attacker is detected 

in Spray-and-Wait, since no metadata is exchanged for 

detection. However, attackers can  still  be  detected in  the 

other  three  algorithms, because  the inconsistent packets  are 

forwarded to multiple nodes  and  the node  that receives  two 

inconsistent packets  can  detect  the  attacker. Among these 

protocols, Propagation achieves the  highest detection rate 

since  it replicates inconsistent packets  the  most  number of 

times.   Between   the   two   single-copy  routing  protocols, 

SimBet  has  a higher detection rate  than  Forward. This  is 

because   SimBet  tends   to  forward  packets   to  the   more 

socially  connected nodes   and  thus  these  nodes   are  more 

likely to collect inconsistent packets. 

Fig. 9b shows  the results when each attacker launches the 

basic  attack  independently for a varying number of times. 

As  the  attackers launch more  attacks,   the  detection rate 

quickly  increases for obvious reasons. 

Fig. 9c shows  the effect of the number of packets  that  an 

attacker  floods   in   each   contact   (i.e.,  parameter  n).  As 

an   attacker  floods   more   packets   in   each   contact,   the 

detection rate decreases in Spray-and-Wait and  SimBet, 

increases in Forward and  does  not  change  much  in Spray- 

and-focus and  Propagation. The opposite trends are due  to 

two  factors  that  affect  the  detection rate  reversely. On  the 

one hand, sampling decreases detection rate. To explain  this 

more   clearly,  let  us  look  at  the  basic  attack   scenario   in 

Fig. 7a for Spray-and-Wait. Since Z ¼ 1, A (B, respectively) 

only samples one packet  out of all the packets  received from 

the  attacker and  redirects it to  C  (D,  respectively). When 

n ¼ 1, C and  D  will  receive  mutually inconsistent claims, 

which  means in (7) Povp  ¼ 1:0. However, when n is larger 

than   1, C  and  D  may  not  receive  a  pair  of  inconsistent 

claims  due  to the  independent sampling by  A and  B. As 

n increases, Povp  decreases and  thus  the  detection rate  also 

decreases. On  the  other   hand, for  the  routing  protocols 

where each packet  is forwarded in multiple hops,  when an 

attacker sends   more  attack  packets   in  each  contact,   it  is 

more   likely   that   one   pair   of  inconsistent  packets  are 

forwarded  to  the   same   intermediate  node   and   lead   to 

detection. 

Fig. 9d shows  the effect of attacker deployment. The 

detection  rate   is  lower   when   attackers  are   selectively 

deployed to high-connectivity nodes.  This is because  when 

attackers are selectively  deployed they  have  more  contacts 

with   good   nodes.   The   probability  that   a   good   node 

exchanges its  sampled claims  to  attackers rather than  to 

other   good   nodes   is  higher,  but   attackers  do   not   run 

detection against each other. 
 

7.5    Detection Delay 
Fig. 10 shows  the CDF of detection delay  when Propagation 

is  used   as  the  routing protocol on  the  Reality  trace.  For 

comparison, the CDF of routing delay  (i.e., from  the time  a 

packet   is  generated  to  the  time   it  is  delivered)  is  also 

plotted. Here,  no lifetime  is set for packets.  It can  be seen 

that 90 percent of the attacks  can be detected by our scheme 

 
 

 
 

 
 

Fig. 9. The detection rate  under  different conditions.  In (d), Forward  is used as  the routing protocol. 

 
 

 
 

 
 

 
 



 

 

 
 

Fig.  10.   The   detection  delay   compared  with  the   routing   delay   of 
Propagation. 

 
within  10  days.   On   the   contrary,  within  10  days   only 

60 percent of data  packets  can be delivered by the  routing 

protocol. Hence,  the detection delay  of our scheme  is much 

lower  than  the routing delay. 
 

7.6    Undetected Flooded Replicas under Collusion 

As mentioned in Section  6.4.2, colluders can flood  a small 

number of  replicas without  being   detected.  To  evaluate 

their effect, we run simulations on the Reality trace when all 

attackers collude.  The simulation settings are the same as in 

Section  2.2. We  compare our  scheme  with  the  case  of no 

defense.   As  shown in  Fig.  11,  even  when 20  percent  of 

nodes  are  attackers and  collude,  our  scheme  can still limit 

the  percentage of  wasted  transmissions to  14 percent in 

single-copy routing  (SimBet)  and  6 percent in  multicopy 

routing  (Spray-and-Focus), which   is  only  1/7-1/5 of  the 

wasted transmissions when there  is no defense. 
 

7.7    Cost 

To evaluate the cost of our scheme  in a steady state (i.e., all 

attackers have  been  detected), no attackers are deployed in 

this group of simulations. The Reality trace is used.  Packets 

are generated between the  61st and  120th day  of the  trace, 

and statistics are collected from the 91th day. By default, each 

node  generates two  packets  per  day,  parameter    (i.e., the 

time a claim is stored) is 30 days  and  K is 10. In a contact,  a 

node  may  receive  some  packets  but then  immediately drop 

them  due to buffer overflow. In such cases, the transmission 

of the  claims  attached to these  packets  is counted into  the 

communication overhead, and  the signature generations for 

these  claims  are  counted into  the  computation overhead. 

Since the receiver  does  not buffer  these  packets,  it does  not 

store  these  claims or verify their  signatures. 

We  first  evaluate the  computation cost  of our  scheme, 

and  Fig. 12 shows  the results. When  Forward is used  as the 
 
 

 
 

Fig. 11. The effect of undetected replicas  on wasted transmissions when 
attackers collude  to launch  replica  flood attacks. 

Fig. 12. The computation cost  of our scheme. 

 
routing protocol (see Fig. 12a), as the packet  generation rate 

increases, the  computation cost  also  increases since  more 

packets  need  to be signed and  verified. But the cost is still 

low,  less  than  20 signature generations and  verifications, 

when each  node  generates 10 packets  per  day.  Also, it can 

be  seen   that   there   are   less   signature generations than 

verifications. This  is  because   in  each  contact  our  scheme 

only signs P-claims  for the newly  generated packets  (which 

constitute a very  small  portion of the packets  transmitted), 

and  it generates only one signature in total for the T-claims 

of all  forwarded packets  due  to the  use  of authentication 

tree. When  Propagation is used  as the routing protocol (see 

Fig. 12b), similar  trends hold.  When  the  packet  generation 

rates   crosses   1,  the   signature  verification cost  turns  to 

decrease. This is because  when the traffic load is high many 

received packets  are dropped due  to buffer  overflow. 

Then  we evaluate the communication cost. The commu- 

nication overhead  mainly  comes   from   two   sources,   the 

transmission of  claims  attached to  data  packets,   and  the 

transmission  of  claims   in  metadata  exchange. The  total 

communication cost and  the two components are shown in 

Fig. 13. When  K  increases from  2 to 10 (see Fig. 13a), the 

communication  cost  caused  by  meta   data   exchange  in- 

creases   linearly since  each  sampled claim  is  transmitted 

more times. The communication cost caused by the 

transmission of claims  attached to packets  is always 1 due 

to   the   normalization.  In   total,   less   than   two   pairs   of 

P-claim/T-claim are  transmitted per  transmission of data 

packet.   When   the   packet   generation  rate   increases  (see 

Fig.  13b),  the   total   normalized  communication cost  de- 

creases,  because  more  data  packets  are transmitted in each 

contact  but  the  number of claims  transmitted for metadata 

exchange in each  contact  does  not  change  with  the  traffic 

load.  When  the  packet  generation rate  is larger  than  1, the 

communication cost  is  smaller   than   3.  When   the  packet 
 
 

 
 
 
Fig. 13. The communication cost  of our scheme. 

 
  

 



 
 

TABLE 2 
The Storage (KB) Used  for Claims  and  Data  Packets 

 
 
 
 
 
 
 
 
 

generation rate  is  0.5,  the  communication cost  is  higher 

(i.e., 10). However, at this point  the number of packet 

transmissions is very  small,  and  hence  the  communication 

overhead is  not  an  issue.  Moreover, since  the  claims  are 

small  in size, they  can be attached to and  transmitted with 

data  packets  and  will  not  incur  extra  transmissions. Thus, 

the communication overhead is low. 

Finally,   we  evaluate  the   storage  cost  of  our   scheme 

against two factors, the time a claim is stored (parameter  ) 

and  the  packet  generation rate.  The  results are  shown in 

Table 2. We can see that the storage space used  for claims is 

low, only less than  150 kilobytes  per node.  This is due to the 

compact structures we  use  to store  P-claims  and  T-claims. 

We noticed that  the storage cost does  not increase  after  the 

packet  generation rate  reaches   two  packets   per  node  per 

day,  because  when the  traffic  load  is high  many  received 

packets  are dropped due  to buffer  overflow. 
 

 

8    RELATED  WORK 

Our   scheme   bears   some   similarity  with   previous  ap- 

proaches (e.g., [33]) that  detect  node  clone attacks  in sensor 

networks.  Both  rely  on  the  identification  of  some   kind 

of inconsistency to detect  the  attacker. However, their 

approaches assumes consistent connectivity between nodes 

which  is unavailable in DTNs. Also, they do not handle the 

long  delays  of detection. 

A few recent works [10], [25], [12], [11], [13] also address 
Security issues in DTNs.  Li et al. [10] studied the blackhole 

attack i n  which m a l i c i o u s  nodes f o r g e   routing metrics  

to attract    packets    and   drop  all   received  packets.    

Their approach uses  a primitive called  encounter ticket  to 

prove the existence  of contacts  and  prevent the forgery  of 

routing metrics,   but  encounter ticket  cannot   be  used   to  

address flood  attacks.  Li and  Cao  [13] also  proposed a 

distributed scheme  to  mitigate packet   drop attacks,  which  

works   no matter if the attackers forge routing metrics  or not. 

Ren et al. [11] studied wormhole attacks i n  DTNs.  Chen  

and  Choon [25] proposed a credit-based approach and  

Shevade et al. proposed  a  gaming-based approach  [12]  

to  provide  in- centives  for packet  forwarding. Privacy 

issues have also be addressed [38], [39],. However, these 

works do not address flood attacks.  Other works (e.g., Sprite 

[34]) deter abuse by correlating the amount of network 

resources that a node can use with the node’s contributions 

to the network in terms of forwarding. This approach has 

been proposed for mobile ad hoc networks, but it is still not 

clear how the approach can be applied to DTNs, where 

nodes are disconnected most of the time. Another recent 

work [14] proposed a batch authentication protocol for 

DTNs, which  v e r i f i e s  m u l t i p l e  packet signatures in an 

aggregated way to save the computation cost.  This w o r k    

is complementary to  ours, 

and  their protocol can also be used  in our scheme  to further 

reduce the computation cost of authentication. 

Parallel  to our work,  Natarajan et al. [35] also proposed a 
scheme  to detect  resource misuse in DTNs. In their scheme, 

the gateway of a DTN monitors the activities  of nodes  and 

detects an attack if there is deviation from expected behavior. 

Different  from their work that requires a special gateway for 

counting, our scheme  works  in a totally  distributed manner 

and  requires no special  nodes. 
 

 

9    CONCLUSIONS 

In this  paper, we  employed rate  limiting to mitigate flood 

attacks  in  DTNs,  and  proposed a  scheme  which  exploits 

claim-carry-and-check to probabilistically detect  the violation 

of  rate   limit   in  DTN   environments.  Our   scheme   uses 

efficient  constructions to  keep  the  computation,  commu- 

nication and  storage cost low. Also, we analyzed the lower 

bound and  upper bound of detection probability. Extensive 

trace-driven simulations showed that our scheme is effective 

to detect  flood  attacks  and  it achieves such  effectiveness in 

an efficient way. Our scheme works  in a distributed manner, 

not relying  on any online central  authority or infrastructure, 

which  well  fits  the  environment of DTNs.  Besides,  it can 

tolerate  a small  number of attackers to collude. 
 

 

ACKNOWLEDGMENTS 

This work  was  supported in part  by Army  Research  Office 

under MURI grant  W911NF-07-1-0318. 
 

 

REFERENCES 

[1]    K. Fall, “A Delay-Tolerant Network Architecture for Challenged 
Internets,” Proc. ACM SIGCOMM, pp.  27-34, 2003. 

[2]    P. Hui,  A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and  C. Diot, 
“Pocket  Switched Networks and  Human Mobility  in Conference 
Environments,” Proc. ACM SIGCOMM, 2005. 

[3]  M. Motani,  V. Srinivasan, and  P. Nuggehalli, “PeopleNet: 
Engineering a Wireless  Virtual  Social Network,” Proc. MobiCom, 
pp.  243-257, 2005. 

[4]    J. Burgess,   B. Gallagher, D.  Jensen,  and   B. Levine,  “Maxprop: 
Routing for  Vehicle-Based  Disruption-Tolerant Networks,” Proc. 
IEEE INFOCOM,  2006. 

[5]    S.J.T.U.Grid   Computing  Center,   “Shanghai  Taxi  Trace   Data,” 
http://wirelesslab.sjtu.edu.cn/, 2012. 

[6]    J. Mirkovic,  S. Dietrich,  D. Dittrich,  and P. Reiher, Internet Denial of 
Service: Attack and Defense Mechanisms. Prentice  Hall,  2005. 

[7]    C.  Karlof  and  D.  Wagner, “Secure  Routing in  Wireless   Sensor 
Networks: Attacks  and  Countermeasures,” Proc. IEEE First  Int’l 
Workshop Sensor Network Protocols and Applications, 2003. 

[8]    E. Daly  and  M. Haahr, “Social Network Analysis for Routing in 
Disconnected Delay-Tolerant MANETs,”  Proc. MobiHoc, pp. 32-40, 
2007. 

[9]    W.  Gao,  Q.  Li,  B. Zhao,   and   G.  Cao,  “Multicasting  in  Delay 
Tolerant Networks: A  Social  Network Perspective,” Proc. ACM 
MobiHoc, 2009. 

[10]  F. Li, A. Srinivasan, and  J. Wu,  “Thwarting Blackhole  Attacks  in 
Distruption-Tolerant Networks Using  Encounter Tickets,”  Proc. 
IEEE INFOCOM,  2009. 

[11]  Y. Ren, M.C. Chuah, J. Yang, and  Y. Chen,  “Detecting Wormhole 
Attacks  in Delay  Tolerant Networks,” IEEE Wireless Comm. 
Magazine, vol. 17, no. 5, pp.  36-42, Oct. 2010. 

[12]  U.  Shevade, H.  Song,  L. Qiu,  and  Y. Zhang, “Incentive-Aware 
Routing  in   DTNS,”   Proc.  IEEE  Int’l  Conf.  Network  Protocols 
(ICNP ’08), 2008. 

[13]  Q. Li and  G. Cao, “Mitigating Routing Misbehavior in Disruption 
Tolerant Networks,” IEEE Trans. Information Forensics and Security, 
vol. 7, no. 2, pp.  664-675, Apr.  2012. 

 

 
  
 

 
 

 
 

 
 

http://wirelesslab.sjtu.edu.cn/


[14]  H.  Zhu,   X. Lin,  R.  Lu,  X.S. Shen,  D.  Xing,  and   
Z.  Cao,  “An Opportunistic Batch  Bundle  
Authentication Scheme  for  Energy Constrained 
DTNS,” Proc. IEEE INFOCOM,  2010. 

[15]  B. Raghavan, K. Vishwanath, S. Ramabhadran, K. 
Yocum, and  A. 

Snoeren,  “Cloud Control with  Distributed Rate  
Limiting,” Proc. ACM SIGCOMM, 2007. 

[16] F-SECURE, “F-Secure Malware Information Pages: 
Smsworm:- Symbos/Feak,” http://www.f-
secure.com/v-descs/smsworm symbos feak.shtml, 
2012. 

[17]  N.  Eagle  and   A.  Pentland, “Reality   Mining:   
Sensing   Complex 

Social Systems,”  Personal and Ubiquitous Computing, 
vol. 10, no. 4, pp.  255-268, 2006. 

[18]  Q.  Li,  S. Zhu,  and   G.  Cao,  “Routing in  Socially  
Selfish  Delay 

Tolerant Networks,” Proc. IEEE INFOCOM,  2010. 
[19] T. Spyropoulos, K. Psounis, and  C.S. Raghavendra, 

“Efficient Routing in Intermittently Connected 
Mobile Networks: The Multiple-Copy  Case,”   
IEEE/ACM  Trans.   Networking,  vol.   16, no. 1, pp.  
77-90, Feb. 2008. 

[20]  A. Lindgren, A. Doria,  and  O. Schelen,  
“Probabilistic Routing in Intermittently  Connected 
Networks,”  ACM  SIGMOBILE  Mobile Computing 
and Comm. Rev., vol. 7, no. 3, pp.  19-20, 2003. 

[21]  W. Gao and G. Cao, “On Exploiting Transient 
Contact  Patterns for Data  Forwarding in  Delay  
Tolerant Networks,” Proc. IEEE 18th Int’l Conf. 
Networks Protocols (ICNP), 2010. 

[22]  J. Burgess,  G.D. Bissias, M. Corner, and  B.N. 
Levine,  “Surviving Attacks   on  Disruption-Tolerant 
Networks without  Authentica- tion,”  Proc. ACM 
MobiHoc, 2007. 

[23]  S.C. Nelson, M. Bakht, and  R. Kravets,  “Encounter-
Based Routing in Dtns,”  Proc. IEEE INFOCOM,  pp.  
846-854, 2009. 

[24]  T.  Spyropoulos,  K.  Psounis, and   C.  Raghavendra, 
“Spray   and 

Wait:  An  Efficient  Routing Scheme  for 
Intermittently Connected 
Mobile  Networks,” Proc. ACM SIGCOMM, pp.  252-
259, 2005. 

[25]  B.  Chen   and   C.  Choon,   “Mobicent:  A  Credit-
Based  Incentive 

System  for Disruption Tolerant Network,” Proc. 
IEEE INFOCOM, 
2010. 

[26]  C. Gentry  and  A. Silverberg, “Hierarchical Id-Based  
Cryptogra- phy,”  Proc. Int’l Conf. Theory and 
Application of Cryptography and 
Information Security EUROCRYPT, 2002. 

[27]  A. Seth, D. Kroeker,  M. Zaharia, S. Guo, and  S. 
Keshav,  “Lowcost Communication for Rural 
Internet Kiosks Using Mechanical Backhaul,” Proc. 
ACM Mobicom, 2006. 

[28]  A.  Vahdat  and   D.  Becker,   “Epidemic  Routing  
for   Partially Connected Ad Hoc Networks,” 
Technical  Report  CS-200006, Duke Univ.,  2000. 

[29]  R. Merkle,  “Protocols for Public  Key 
Cryptosystems,” Proc. IEEE Symp. Security and 
Privacy, 1980. 

[30]  R. Groenevelt, “Stochastic Models  in Mobile  Ad 
Hoc Networks,” 

technical report, Univ.  of Nice, Sophia  Antipolis, 
INRIA, 2006. 

[31]  A.  Chaintreau,  A.  Mtibaa,   L.  Massoulie,  and   
C.  Diot,   “The 

Diameter   of   Opportunistic   Mobile    Networks,”   
Proc.   ACM CoNEXT Conf., 2007. 

[32]  P. Hui,  J. Crowcroft, and  E. Yoneki,  “Bubble  RAP: 
Social-Based 

Forwarding in Delay Tolerant Networks,” Proc. 
MobiHoc, pp. 241- 
250, 2008. 

[33]  B. Parno,  A. Perrig,  and  V. Gligor, “Distributed 
Detection of Node 

Replication  Attacks   in   Sensor   Networks,”  Proc.  
IEEE  Symp. Security and Privacy, 2005. 

[34]  S. Zhong,  J. Chen,  and  Y.R. Yang, “Sprite:  A Simple,  
Cheat-Proof, Credit-Based System  for  Mobile  Ad-
Hoc  Networks,” Proc. IEEE INFOCOM,  vol. 3, pp.  
1987-1997, 2003. 

[35]  V.  Natarajan,  Y.  Yang,  and   S.  Zhu,   “Resource-
Misuse Attack Detection  in  Delay-Tolerant 
Networks,”  Proc.  Int’l  Performance Computing and 
Comm. Conf. (IPCCC), 2011. 

 

 

 

 

http://www.f-secure.com/v-descs/smsworm
http://www.f-secure.com/v-descs/smsworm

