

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 10 October, 2013 Page No. 3082-3095

Denial of Service Flood Attacks in Disruption Tolerant Networks
K.Ramaraj,

 1
Dr.J.Vellingiri

2
 C.Saravanabhavan

3
 A.Illayarajaa

4

ramaraj786@yahoo.com, profbhavan@gmail.com, arumugamrajaa@gmail.com

1
M.E-Student, Department of CSE, Kongunadu College of Engineering and Technology, Tamil Nadu, India.

2
Professor & Dean (Academic), Department of CSE, Kongunadu College of Engineering and Technology, Tamil Nadu, India.

3
Research Scholar & Asst. Professor, Department of CSE, Kongunadu College of Engineering and Technology, Tamil Nadu, India.

4
Asst. Professor, Department of CSE, Annai Mathammal Sheela Engineering College, Tamil Nadu, India.

Abstract—Disruption Tolerant Networks (DTNs) utilize the mobility of nodes and the opportunistic contacts among n o d e s for data communications.
Due to the limitation in network resources such as contact opportunity and buffer space, DTNs are vulnerable to flood attacks in which attackers send
as many packets or packet replicas as possible to the network, in order to deplete or overuse the limited network resources. In this paper, we employ
rate limiting to defend against flood attacks in DTNs, such that each node has a limit over the number of packets that it can generate in each time
interval and a limit over the number of replicas that it can generate for each packet. We propose a distributed scheme to detect if a node has violated its
rate limits. To address the challenge that it is difficult to count all the packets or replicas sent by a node due to lack of communication infrastructure,
our detection adopts claim-carry-and- check: each node itself counts the number of packets or replicas that it has sent and claims the count to
other nodes; the receiving nodes carry the claims when they move, and cross-check if their carried claims are inconsistent when they contact. The claim
structure uses the pigeonhole principle to guarantee that an attacker will make incons istent claims which may lead to detection. We provide
rigorous analysis on the probability of detection, and evaluate the effectiveness and efficiency of our scheme with extensive trace- driven simulations.

Index Terms—DTN, security, f lood attack, d et ec t ion

1INTRODUCTION

ISRUPTION Tolerant Networks (DTNs) [1] c o n s i s t

of mobile nodes carried by human beings [2], [3],

vehicles

[4], [5], etc. DTNs enable data transfer when mobile

nodes are only intermittently connected, making them

appropriate for applications where no communication

infrastructure is available such as military scenarios and

rural areas. Due to lack of consistent connectivity,

two nodes can only exchange data when they move

into the transmission range of each other (which is

called a contact between them). DTNs employ such

contact opportunity for data forwarding with “store-

carry-and-forward”; i.e., when a node receives some

packets, it stores these packets in its buffer, carries

them around until it contacts another node, and

then forwards them. Since the contacts between nodes

are opportunistic and the duration of a contact may be

short because of mobility, the usable bandwidth which

is only available during the opportunistic contacts is

a limited resource. Also, mobile nodes may have limited

buffer space.

Due t o the l i m i t a t i o n in bandwidth and b u f f e r

s p a c e , DTNs are v u l n e r a b l e to f l o o d attacks. In

f l o o d attacks, maliciously or selfishly motivated

attackers inject as many packets as possible into the

network, or instead of injecting different packets the

attacker’s forward replicas of the same packet to as many

nodes as possible. For convenience, we call the two types

o f attack p a c k e t flood attack and r e p l i c a flood attack,

respectively. Flooded packets and replicas can waste the

precious bandwidth and buffer resources, prevent benign

packets from being forwarded and thus degrade the

network service p r o v i d e d to good n o d e s . Moreover,

mobile n o d e s spend much energy on

transmitting/receiving flooded packets a n d r e p l i c a s

which m a y shor ten their ba t te r y life. Therefore, it is

urgent to secure DTNs against flood attacks.

Although many s ch emes have been proposed to defend

against flood attacks on the Internet [6] and in

wireless sensor networks [7], they assume persistent

connectivity and cannot be directly applied to

DTNs that have intermittent connectivity. In DTNs,

little work has been done on flood attacks, despite the

many works on routing [8], [4], [36], data dissemination

[9], [37], black hole attack [10], wormhole attack [11], and

selfish dropping behaviour [12], [13]. We noted that the

packets flooded by outsider attackers (i.e., the

attackers without valid cryptographic

with valid signatures. Thus, it is still an open problem is to

against flood attacks in DTNs. In our approach, each node

has a limit over the number of packets that it, as a source

node, can send to the network in each time interval.

Each node also has a limit over the number of replicas that

it can

D

http://www.ijecs.in/
mailto:ramaraj786@yahoo.com
mailto:profbhavan@gmail.com

generate for each packet (i.e., the number of nodes that it

can forward each packet to). The two limits are used to

mitigate packet flood and replica flood attacks, respectively.

If a node violates its rate limits, it will be detected and its

data traffic will be filtered. In this way, the amount of

flooded traffic can be controlled.

Our main contribution is a technique to detect if a node

has violated its rate limits. Although it is easy to detect the

violation of rate limit on the Internet and in telecommuni-

cation networks where the egress router and base station

can account each user’s traffic, it is challenging in DTNs due

to lack of communication infrastructure and consistent

connectivity. Since a node moves around and may send

data to any contacted node, it is very difficult to count the

number of packets or replicas sent out by this node. Our

basic idea of detection is claim-carry-and-check. Each node

itself counts the number of packets or replicas that it has

sent out, and claims the count to other nodes; the receiving

nodes carry the claims around when they move, exchange

some claims when they contact, and cross-check if these

claims are inconsistent. If an attacker floods more packets or

replicas than its limit, it has to use the same count in more

than one claim according to the pigeonhole principle,1 and

this inconsistency may lead to detection. Based on this idea,

we use different cryptographic constructions to detect

packet flood and replica flood attacks.

Because the contacts in DTNs are opportunistic in

nature, our approach provides probabilistic detection. The

more traffic an attacker floods, the more likely it will be

detected. The detection probability can be flexibly adjusted

by system parameters that control the amount of claims

exchanged in a contact. We provide a lower and upper

bound of detection probability and investigate the problem

of parameter selection to maximize detection probability

under a certain amount of exchanged claims. The effective-

ness and efficiency of our scheme are evaluated with

extensive trace-driven simulations.

This paper is structured as follows. Section 2 motivates

our work. Section 3 presents our models and basic ideas.

Sections 4 and 5 present our scheme. Section 6 presents

security and cost analysis. Section 7 presents simulation

results. The last two sections present related work and

conclusions, respectively.

2 MOTIVATION

2.1 The Potential Prevalence of Flood Attacks

Many nodes may launch flood attacks for malicious or

selfish purposes. Malicious nodes, which can be the nodes

deliberately deployed by the adversary or subverted by the

adversary via mobile phone worms [16], launch attacks to

congest the network and waste the resources of other nodes.

Selfish nodes may also exploit flood attacks to increase

their communication throughput. In DTNs, a single packet

usually can only be delivered to the destination with a

probability smaller than 1 due to the opportunistic con-

nectivity. If a selfish node floods many replicas of its own

packet, it can increase the likelihood of its packet being

delivered, since the delivery of any replica means successful

1. The pigeonhole principle states that if items are put into

pigeonholes with > , then at least one pigeonhole must contain more
than one item.

delivery of the packet. With packet flood attacks, selfish

nodes can also increase their throughput, albeit in a subtler

manner. For example, suppose Alice wants to send a packet

to Bob. Alice can construct 100 variants of the original

packet which only differ in one unimportant padding byte,

and send the 100 variants to Bob independently. When Bob

receives any one of the 100 variants, he throws away the

padding byte and gets the original packet.

2.2 The Effect of Flood Attacks

To study the effect of flood attacks on DTN routing and

motivate our work, we run simulations on the MIT Reality

trace [17] (see more details about this trace in Section 7).

We consider three general routing strategies in DTNs.

1) Single-copy routing (e.g., [18], [8]): after forwarding a packet

out, a node deletes its own copy of the packet. Thus, each

packet only has one copy in the network. 2) Multicopy routing

(e.g., [19]): the source node of a packet sprays a certain

number of copies of the packet to other nodes and each copy

is individually routed using the single-copy strategy. The

maximum number of copies that each packet can have is

fixed. 3) Propagation routing (e.g., [17], [20], [21]): when a

node finds it appropriate (according to the routing algo-

rithm) to forward a packet to another encountered node, it

replicates that packet to the encountered node and keeps its

own copy. There is no preset limit over the number of copies

a packet can have. In our simulations, SimBet [8], Spray-and-

Focus [19] (three copies allowed for each packet) and

Propagation are used as representatives of the three routing

strategies, respectively. In Propagation, a node replicates a

packet to another encountered node if the latter has more

frequent contacts with the destination of the packet.

Two metrics are used, The first metric is packet delivery

ratio, which is defined as the fraction of packets delivered to

their destinations out of all the unique packets generated.

The second metric is the fraction of wasted transmissions

(i.e., the transmissions made by good nodes for flooded

packets). The higher fraction of wasted transmissions, the

more network resources are wasted. We noticed that the

effect of packet flood attacks on packet delivery ratio has

been studied by Burgess et al. [22] using a different trace [4].

Their simulations show that packet flood attacks signifi-

cantly reduce the packet delivery ratio of single-copy

routing but do not affect propagation routing much.

However, they do not study replica flood attacks and the

effect of packet flood attacks on wasted transmissions.

In our simulations, a packet flood attacker floods packets

destined to random good nodes in each contact until the

contact ends or the contacted node’s buffer is full. A replica

flood attacker replicates the packets it has generated to

every encountered node that does not have a copy. Each

good node generates thirty packets on the 121st day of the

Reality trace, and each attacker does the same in replica

flood attacks. Each packet expires in 60 days. The buffer size

of each node is 5 MB, bandwidth is 2 Mbps and packet

size is 10 KB.

Fig. 1 shows the effect of flood attacks on packet delivery

ratio. Packet flood attack can dramatically reduce the

packet delivery ratio of all three types of routing. When

the fraction of attackers is high, replica flood attack can

significantly decrease the packet delivery ratio of single-

copy and multicopy routing, but it does not have much

effect on propagation routing.

Fig. 1. The effect of flood attacks on packet delivery ratio. In absent node, attackers are simply removed from the network. Attackers are selectively
deployed to high-connectivity nodes.

Fig. 2 shows the effect of flood attacks on wasted

transmission. Packet flood attack can waste more than

80 percent of the transmissions made by good nodes in all

routing strategies when the fraction of attackers is higher

than 5 percent. When 20 percent of nodes are attackers,

replica flood attack can waste 68 and 44 percent of

transmissions in single-copy and multicopy routing, re-

spectively. However, replica flood attack only wastes

17 percent of transmissions in propagation routing. This is

because each good packet is also replicated many times.

Remarks. The results show that all the three types of

routing are vulnerable to packet flood attack. Single-copy

and multicopy routing are also vulnerable to replica

flood attack, but propagation routing is much more

resistant to replica flood. Motivated by these results, this

paper addresses packet flood attack without assuming any

specific routing strategy, and addresses replica flood attack for

single-copy and multicopy routing only.

3 OVERVIEW

3.1 Problem Definition

3.1.1 Defense against Packet Flood Attacks

We consider a scenario where each node has a rate limit L

on the number of unique packets that it as a source can

generate and send into the network within each time

interval T . The time intervals start from time 0, T , 2T , etc.

The packets generated within the rate limit are deemed

legitimate, but the packets generated beyond the limit are

deemed flooded by this node. To defend against packet

flood attacks, our goal is to detect if a node as a source has

generated and sent more unique packets into the network

than its rate limit L per time interval.

A node’s rate limit L does not depend on any specific

routing protocol, but it can be determined by a service

Fig. 2. The effect of flood attacks on the fraction of wasted transmission.
Attackers are randomly deployed.

contract between the node and the network operator as

discussed in Section 3.1.3. Different nodes can have different

rate limits and their rate limits can be dynamically adjusted.

The length of time interval should be set appropriately. If

the interval is too long, rate limiting may not be very

effective against packet flood attacks. If the interval is too

short, the number of contacts that each node has during one

interval may be too nondeterministic and thus it is difficult

to set an appropriate rate limit. Generally speaking, the

interval should be short under the condition that most

nodes can have a significant number of contacts with other

nodes within one interval, but the appropriate length

depends on the contact patterns between nodes in the

specific deployment scenario.

3.1.2 Defense against Replica Flood Attacks

As motivated in Section 2, the defense against replica flood

considers single-copy and multicopy routing protocols.

These protocols require that, for each packet that a node

buffers no matter if this packet has been generated by the

node or forwarded to it, there is a limit l on the number of

times that the node can forward this packet to other nodes.

The values of l may be different for different buffered

packets. Our goal is to detect if a node has violated the

routing protocol and forwarded a packet more times than

its limit l for the packet.

A node’s limit l for a buffered packet is determined by

the routing protocol. In multicopy routing, l ¼ L0 (where L0

is a parameter of routing) if the node is the source of the

packet, and l ¼ 1 if the node is an intermediate hop (i.e., it

received the packet from another node). In single-copy

routing, l ¼ 1 no matter if the node is the source or an

intermediate hop. Note that the two limits L and l do not

depend on each other.

We discuss how to defend against replica flood attacks

for quota-based routing [23], [19], [24] in Section 4.9.

3.1.3 Setting the Rate Limit L

One possible method is to set L in a request-approve style.

When a user joins the network, she requests for a rate limit

from a trusted authority which acts as the network operator.

In the request, this user specifies an appropriate value of

L based on prediction of her traffic demand. If the trusted

authority approves this request, it issues a rate limit

certificate to this user, which can be used by the user to

prove to other nodes the legitimacy of her rate limit. To

prevent users from requesting unreasonably large rate

limits, a user pays an appropriate amount of money or

Fig. 3. The basic idea of flood attack detection. cp and ct are packet count and transmission count, respectively. The arrows mean the transmission
of packet or metadata which happens when the two end nodes contact.

virtual currency (e.g., the credits that she earns by

forwarding data for other users [25]) for her rate limit.

When a user predicts an increase (decrease) of her demand,

she can request for a higher (lower) rate limit. The request

and approval of rate limit may be done offline. The

flexibility of rate limit leaves legitimate users’ usage of the

network unhindered. This process can be similar to signing

a contract between a smartphone user and a 3G service

provider: the user selects a data plan (e.g., 200 MB/month)

and pays for it; she can upgrade or downgrade the plan

when needed.

3.2 Models and Assumptions

3.2.1 Network Model

In DTNs, since contact durations may be short, a large data

item is usually split into smaller packets (or fragments) to

facilitate data transfer. For simplicity, we assume that all

packets have the same predefined size. Although in DTNs

the allowed delay of packet delivery is usually long, it is

still impractical to allow unlimited delays. Thus, we assume

that each packet has a lifetime. The packet becomes

meaningless after its lifetime ends and will be discarded.

We assume that every packet generated by nodes is

unique. This can be implemented by including the source

node ID and a locally unique sequence number, which is

assigned by the source for this packet, in the packet header.

We also assume that time is loosely synchronized, such

that any two nodes are in the same time slot at any time.

Since the intercontact time in DTNs is usually at the scale

of minutes or hours, the time slot can be at the scale of

one minute. Such loose time synchronization is not hard

to achieve.

3.2.2 Adversary Model

There are a number of attackers in the network. An attacker

can flood packets and/or replicas. When flooding packets,

the attacker acts as a source node. It creates and injects more

packets into the network than its rate limit L. When flooding

replicas, the attacker forwards its buffered packets (which

can be generated by itself or received from other nodes)

more times than its limit l for them. The attackers may be

insiders with valid cryptographic keys. Some attackers may

collude and communicate via out-band channels.

3.2.3 Trust Model

We assume that a public-key cryptography system is

available. For example, Identity-Based Cryptography (IBC)

[26] has been shown to be practical for DTNs [27]. In IBC,

only an offline Key Generation Center (KGC) is needed.

KGC generates a private key for each node based on the

node’s id, and publishes a small set of public security

parameters to the node. Except the KGC, no party can

generate the private key for a node id. With such a system,

an attacker cannot forge a node id and private key pair.

Also, attackers do not know the private key of a good node

(not attacker).

Each node has a rate limit certificate obtained from a

trusted authority. The certificate includes the node’s ID, its

approved rate limit L, the validation time of this certificate

and the trusted authority’s signature. The rate limit

certificate can be merged into the public key certificate or

stand alone.

3.3 Basic Idea: Claim-Carry-and-Check

3.3.1 Packet Flood Detection
To detect the attackers that violate their rate limit L, we

must count the number of unique packets that each node as

a source has generated and sent to the network in the

current interval. However, since the node may send its

packets to any node it contacts at any time and place, no

other node can monitor all of its sending activities. To

address this challenge, our idea is to let the node itself count

the number of unique packets that it, as a source, has sent

out, and claim the up-to-date packet count (together with a

little auxiliary information such as its ID and a timestamp)

in each packet sent out. The node’s rate limit certificate is

also attached to the packet, such that other nodes receiving

the packet can learn its authorized rate limit L. If an attacker

is flooding more packets than its rate limit, it has to

dishonestly claim a count smaller than the real value in the

flooded packet, since the real value is larger than its rate

limit and thus a clear indicator of attack. The claimed count

must have been used before by the attacker in another

claim, which is guaranteed by the pigeonhole principle, and

these two claims are inconsistent. The nodes which have

received packets from the attacker carry the claims included

in those packets when they move around. When two of

them contact, they check if there is any inconsistency

between their collected claims. The attacker is detected

when an inconsistency is found.

Let us look at an example in Fig. 3a. S is an attacker that

successively sends out four packets to A, B, C, and D,

respectively. Since L ¼ 3, if S claims the true count 4 in the

fourth packet m4, this packet will be discarded by D. Thus,

S dishonestly claims the count to be 3, which has already

been claimed in the third packet m3. m3 (including the

claim) is further forwarded to node E. When D and E

Fig. 4. The conceptual structure of a packet and the changes made at
each hop of the forwarding path.

contact, they exchange the count claims included in m3 and

m4, and check that S has used the same count value in two

different packets. Thus, they detect that S as an attacker.

3.3.2 Replica Flood Detection

Claim-carry-and-check can also be used to detect the

attacker that forwards a buffered packet more times than

its limit l. Specifically, when the source node of a packet or

an intermediate hop transmits the packet to its next hop, it

claims a transmission count which means the number of

times it has transmitted this packet (including the current

transmission). Based on if the node is the source or an

intermediate node and which routing protocol is used, the

next hop can know the node’s limit l for the packet, and

ensure that the claimed count is within the correct range

½1; l . Thus, if an attacker wants to transmit the packet

more than l times, it must claim a false count which has

been used before. Similarly as in packet flood attacks, the

attacker can be detected. Examples are given in Figs. 3b

and 3c.

4 OUR SCHEME

Our scheme uses two different cryptographic construc-

tions to detect packet flood and replica flood attacks

independently. When our scheme is deployed to propaga-

tion routing protocols, the detection of replica flood

attacks is deactivated.

The detection of packet flood attacks works indepen-

dently for each time interval. Without loss of generality, we

only consider one time interval when describing our scheme.

For convenience, we first describe our scheme assuming that

all nodes have the same rate limit L, and relax this

assumption in Section 4.8. In the following, we use SIGi ð Þ

to denote node i’s signature over the content in the brackets.

4.1 Claim Construction

Two pieces of metadata are added to each packet (see

Fig. 4), Packet Count Claim (P-claim) and Transmission

Count Claim (T-claim). P-claim and T-claim are used to

detect packet flood and replica flood attacks, respectively.

4.1.1 P-Claim

When a source node S sends a new packet m (which has

been generated by S and not sent out before) to a contacted

node, it generates a P-claim as follows:

P-claim: S; cp ; t; HðmÞ; SI GS ðH ðH ðmÞjSjcp jtÞÞ: ð1Þ

Here, t is the current time. cp (cp 2 ½1; L) is the packet count

of S, which means that this is the cth new packet S has

created and sent to the network in the current time interval.

S increases cp by one after sending m out.

The P-claim is attached to packet m as a header field, and

will always be forwarded along with the packet to later

hops. When the contacted node receives this packet, it

verifies the signature in the P-claim, and checks the value of

cp . If cp is larger than L, it discards this packet; otherwise, it

stores this packet and the P-claim.

4.1.2 T-Claim

When node A transmits a packet m to node B, it appends a

T-claim to m. The T-claim includes A’s current transmission

count ct for m (i.e., the number of times it has transmitted m

out) and the current time t. The T-claim is

T-claim: A; B; H ðmÞ; ct ; t; SIGA ðHðAjBjH ðmÞjct jtÞÞ: ð2Þ

B checks if ct is in the correct range based on if A is the

source of m. If ct has a valid value, B stores this T-claim.

In single-copy and multicopy routing, after forwarding

m for enough times, A deletes its own copy of m and will

not forward m again.

4.2 Inconsistency Caused by Attack

In a dishonest P-claim, an attacker uses a smaller packet

count than the real value. (We do not consider the case

where the attacker uses a larger packet count than the real

value, since it makes no sense for the attacker.) However,

this packet count must have been used in another P-claim

generated earlier. This causes an inconsistency called count

reuse, which means the use of the same count in two

different P-claims generated by the same node. For example

in Fig. 3a the count value 3 is reused in the P-claims of

packet m3 and m4. Similarly, count reuse is also caused by

dishonest T-claims.

4.3 Protocol

Suppose two nodes contact and they have a number of

packets to forward to each other. Then our protocol is

sketched in Algorithm 1.

Algorithm 1. The protocol run by each node in a contact

1: Metadata (P-claim and T-claim) exchange and attack

detection

2: if Have packets to send then

P-claim is added by the source and transmitted to later 3: For each new packet, generate a P-claim;
hops along with the packet. T-claim is generated and 4: For all packets, generate their T-claims and sign
processed hop-by-hop. Specifically, the source generates a

T-claim and appends it to the packet. When the first hop

5:
them with a hash tree;

Send every packet with the P-claim and T-claim
receives this packet, it peels off the T-claim; when it attached;
forwards the packet out, it appends a new T-claim to the

packet. This process continues in later hops. Each hop keeps

the P-claim of the source and the T-claim of its previous hop

to detect attacks.

6: end if

7: if Receive a packet then

8: if Signature verification fails or the count value in its

P-claim or T-claim is invalid then

p

 9: Discard this packet;

10: end if

11: Check the P-claim against those locally collected and

generated in the same time interval to detect

inconsistency;

12: Check the T-claim against those locally collected for

inconsistency;

13: if Inconsistency is detected then

14: Tag the signer of the P-claim (T-claim, respec-

tively) as an attacker and add it into a blacklist;

15: Disseminate an alarm against the attacker to the

network;

16: else

17: Store the new P-claim (T-claim, respectively);

18: end if

19: end if

S; i; cp ; He8 ; ð3Þ

where He8 is a 8-bit string called hash remainder. It is obtained

by concatenating 8 random bits of the packet hash H ðmÞ.

The indices of these 8 bits in the hash are determined by

eight locators. The locators are randomly and indepen-

dently generated by W for S at the beginning of the

ith interval, and are shared by all the P-claims issued by S

in the ith interval. Each locator only has log2 h bits where h

denotes the size of a hash (e.g., 256 for SHA-256). W keeps

these locators secret.

Suppose node W has collected n P-claims generated by

S in interval i. For all these claims, only one source node ID

and interval index is stored. Also, instead of directly

storing the packet count values cp included in these

P-claims, the compact structure uses a L-bit long bit vector

to store them. If value c appears in these P-claims, the

When a node forwards a packet, it attaches a T-claim to

the packet. Since many packets may be forwarded in a

cth bit of the vector is set. Let Ci

structure of these P-claims. Then

denote the compact

contact and it is expensive to sign each T-claim separately, Ci

e e e

an efficient signature construction is proposed in Section 4.7.

The node also attaches a P-claim to the packets that are

generated by itself and have not been sent to other nodes

before (called new packet in line 3, Algorithm 1).

When a node receives a packet, it gets the P-claim and

T-claim included in the packet. It checks them against the

claims that it has already collected to detect if there is any

inconsistency (see Section 4.5). Only the P-claims generated

in the same time interval (which can be determined by the

time tag) are cross-checked. If no inconsistency is detected,

this node stores the P-claim and T-claim locally (see

Section 4.4).

To better detect flood attacks, the two nodes also exchange

a small number of the recently collected P-claims and

T-claims and check them for inconsistency. This metadata

exchange process is separately presented in Section 5.

When a node detects an attacker, it adds the attacker into

a blacklist and will not accept packets originated from or

forwarded by the attacker. The node also disseminates an

alarm against the attacker to other nodes (see Section 4.6).

4.4 Local Data Structures

Each node collects P-claims and T-claims from the packets

that it has received and stores them locally to detect flood

attacks. Let us look at a received packet m and the P-claim

and T-claim included in this packet. Initially, this pair of

P-claim and T-claim are stored in full with all the

components shown in Formulas 1 and 2. When this node

removes m from its buffer (e.g., after m is delivered to

the destination or dropped due to expiration), it compacts

S ¼ S; i; bit-vector; locators; ½H81
; H82

; . . . ; H8n
 : ð4Þ

4.4.2 Compact T-Claim Storage

Suppose node W stores a T-claim CCT ¼ fR; W ; H ðmÞ; ct ; t;

SIGR g issued by node R. The signature is discarded since it

has been verified. W does not need to store its own ID and t

is not useful for inconsistency check. Then the compacted T-

claim is

R; ct ; He32 ; ð5Þ

where He32 is a 32-bit hash remainder defined similarly as

He8 . Suppose W has collected n T-claims generated by R.

Then the compact structure of these T-claims is

CR ¼ R; locators; ½He321
; ct1

 ; . . . ; ½He32n
; ctn

 : ð6Þ

The locators are randomly and independently generated by

W for R, and are shared by all the T-claims issued by R.

4.5 Inconsistency Check

Suppose node W wants to check a pair of P-claim and

T-claim against its local collections to detect if there is any

inconsistency. The inconsistency check against full claims is

trivial: W simply compares the pair of claims with those

collected. In the following, we describe the inconsistency

check against compactly stored claims.

4.5.1 Inconsistency Check with P-Claim
From the P-claim node W gets: the source node ID S, packet

count cp , timestamp t, and packet hash H. To check

inconsistency, W first uses S and t to map the P-claim to

this pair of claims to reduce the storage cost. If this pair of the structure Ci
 (see (4)). Then it reconstructs the hash

claims have been sampled for metadata exchange, they will remainder of H using the locators in Ci . If the bit indexed

be stored in full until the exchange process ends and be

compacted afterward.

by the packet count cp is set in the bit-vector but the hash

remainder is not included in Ci , count reuse is detected and

4.4.1 Compact P-Claim Storage

Suppose node W stores a P-claim CCP ¼ fS; cp ; t; H ðmÞ;

SIGS g. It compacts the P-claim as follows: using the

timestamp t, W gets the index i of the time interval that t

belongs to. The signature is discarded since it has been

verified. The compacted P-claim is

S is an attacker.

The inconsistency check based on compact P-claims does

not cause false positive, since a good node never reuses any

count value in different packets generated in the same

interval. The inconsistency check may cause false negative if

the two inconsistent P-claims have the same hash remain-

der. However, since the attacker does not know which bits

S

S

S

S

constitute the hash remainder, the probability of false

negative is only 2 8 . Thus, it has minimal effect on the

overall detection probability.

4.5.2 Inconsistency Check with T-Claim

From the T-claim node W gets: the sender ID R, receiver ID

Q and transmission count ct . If Q is W itself (which is

possible if the T-claim has been sent out by W but returned

by an attacker), W takes no action. Otherwise, it uses R to

map the T-claim to the structure CR (see (6)). If there is a

Fig. 5. The Merkle hash tree constructed upon eight T-claims

2-tuple ½He 0 ; c0 in CR that satisfies 1) He0 is the same as the TC1 ; . . . ; T C8 . In the tree, Hi is the hash of TCi , and an inner node is
32 t 32 the hash of its child nodes. The signature of TC1 includes H2 , H34 , H58 ,
remainder of

R
 H , and 2) c0 ¼ ct , then the issuer of the T-claim and SIG.

(i.e.,) is an attacker.

The inconsistency check based on compact T-claims does

not cause extra false negative. False positive is possible but

it can be kept low as follows: node W may falsely detect a

good node R as an attacker if it has received two T-claims

generated by R that satisfy two conditions: 1) they are

generated for two different packets, and 2) they have the

same hash remainder. For 32-bit hash remainder,

the probability that each pair of T-claims lead to false

detection is 2 32 . In most cases, we expect that the number

of T-claims generated by R and received by W is not large

due to the opportunistic contacts of DTNs, and thus the

probability of false detection is low. As W receives more

T-claims generated by R, it can use a longer (e.g., 64-bit)

hash remainder for R to keep the probability of false

detection low. Moreover, such false detection is limited to

W only, since W cannot convince other nodes to accept the

detection with compact T-claim.

4.6 Alarm

Suppose in a contact a node receives a claim CCr from a

forwarded data packet or from the metadata exchange

process (see Section 5.3) and it detects inconsistency

between CCr and a local claim CCl that the node has

collected. CCr is a full claim as shown in Formula 1 (or 2),

but CCl may be stored as a full claim or just a compact

structure shown in Formula 3 (or 5).

If CCl is a full claim, the node can broadcast (via

Epidemic routing [28]) a global alarm to all the other nodes

to speed up the attacker detection process. The alarm

includes the two full claims CCl and CCr . When a node

receives an alarm, it verifies the inconsistency between the

two included claims and their signatures. If the verification

succeeds, it adds the attacker into its blacklist and broad-

casts the alarm further; otherwise, it discards the alarm.

The node also discards the alarm if it has broadcast another

alarm against the same attacker.

If the detecting node stores CCl as a compact structure, it

cannot convince other nodes to trust the detection since the

compact structure does not have the attacker’s signature.

Thus it cannot broadcast a global alarm. However, since the

attacker may have reused the count value of CCr to other

claims besides CCl , the detecting node can disseminate a local

alarm that only contains CCr to its contacted nodes who have

received those claims. These contacted nodes can verify the

inconsistency between CCr and their collected claims, and

also detect the attacker. If any of these nodes still stores a full

claim inconsistent with CCr , it can broadcast a global alarm

as done in the previous case; otherwise, it disseminates a

local alarm. As this iterative process proceeds, the attacker

can be quickly detected by many nodes. Each node only

disseminates one local alarm for each detected attacker.

A local alarm and a global alarm against the same

attacker may be disseminated in parallel. If a node receives

the global alarm first and then receives the local alarm, it

discards the local alarm. If it receives the local alarm first,

when it receives the global alarm later, it discards the local

alarm and keeps the global alarm.

An attacker may falsify an alarm against a good node.

However, since it does not have the node’s private key (as

our assumption), it cannot forge the node’s signatures for

the claims included in the alarm. Thus, the alarm will be

discarded by other nodes and this attack fails.

4.7 Efficient T-Claim Authentication

The T-claims of all the packets transmitted in a contact

should be signed by the transmitting node. Since the contact

may end at any unpredictable time, each received T-claim

must be individually authenticated. A naive approach is to

protect each T-claim with a separate public-key signature,

but it has high computation cost in signature generation

and verification.

Our scheme uses Merkle hash tree [29] to amortize the
computation cost of public-key-based signature on all the

T-claims that the node sends out in a contact. Specifically,

after a node generates the T-claims (without signature) for

all the packets it want to send, it constructs a hash tree upon

these partial T-claims, and signs the root of the tree with a

public-key-based signature. Then the signature of a T-claim

includes this root signature and a few elements of the tree.

Fig. 5 shows the hash tree constructed upon eight T-claims

and the tree elements included in the signature of the first

T-claim. We refer to the original paper [29] for details. In

this way, for all the T-claims sent by the sender in a contact,

only one public-key based signature is generated by the

sender and verified by the receiver.

4.8 Dealing with Different Rate Limits

Previously we have assumed that all nodes have the same

rate limit L. When nodes have different rate limits, for our

detection scheme to work properly, each intermediate node

that receives a packet needs to know the rate limit L of the

source of the packet, such that it can check if the packet

count is in the correct range 1; 2; . . . ; L. To do so, when a

source node sends out a packet, it attaches its rate limit

certificate to the packet. The intermediate nodes receiving

this packet can learn the node’s authorized rate limit from

the attached certificate.

t

4.9 Replica Flood Attacks in Quota-Based Routing
Protocols

Our scheme to detect replica flood attacks can also be

adapted to quota-based routing protocols [23], [19], [24].

Quota-based routing works as follows: each node has a

quota for each packet that it buffers, and the quota

specifies the number of replicas into which the current

packet is allowed to be split. When a source node creates

a packet, its quota for the packet is L0 replicas, where L0

is a system parameter. When the source contacts a relay

node, it can split multiple replicas to the relay according

to the quality of the relay. After the split, the relay’s

quota for the packet is the number of replicas split to it,

and the source node’s quota is reduced by the same

amount. This procedure continues recursively, and each

node carrying the packet can split out a number of

replicas less than its current quota for the packet. It can

be seen that each packet can simultaneously have at most

L0 replicas in the network.

In quota-based routing, replica flood attacks (where an

attacker sends out more replicas of a packet than its quota)

can be detected by our approach as follows.

First, we observe that quota-based routing (with the total

quota determined at the source) can be emulated by single-

copy routing if different replicas of the same packet appear

different to intermediate nodes and each replica is for-

warded in a similar way as single-copy routing. A node can

split multiple replicas of a packet to another node, but it can

only send each replica out once. For instance, if a node has

forwarded Replica 1 to one relay, it must remove Replica 1

from its local buffer, and it cannot forward this replica again

to another relay.

To differentiate replicas, the source assigns a unique

index to each replica as a header field, and signs the replica

to prevent intermediate nodes from modifying the index.

The index value should be in range ½1; L0 , and replicas

with invalid index will be discarded. In this way, a node’s

local quota for a packet is represented by the number of

replicas (with different indices) that it buffers. Note that an

intermediate node cannot increase its quota by forging

replicas since it does not have the source node’s key to

generate a valid signature.

To prevent a node from abusing its quota, we need to

ensure that the node only forwards each replica once.

T-claim can be used to achieve this goal. Particularly, when

a node splits multiple replicas of a packet to another node, it

generates a T-claim for each replica. The inconsistency

check (see Section 4.5) can be applied here to detect the

attackers that transmit the same replica more than once.

5 METADATA EXCHANGE

When two nodes contact they exchange their collected

P-claims and T-claims to detect flood attacks. If all claims

are exchanged, the communication cost will be too high.

Thus, our scheme uses sampling techniques to keep the

communication cost low. To increase the probability of

attack detection, one node also stores a small portion of

claims exchanged from its contacted node, and exchanges

them to its own future contacts. This is called redirection.

5.1 Sampling

Since P-claims and T-claims are sampled together (i.e., when

a P-claim is sampled the T-claim of the same packet is also

sampled), in the following we only consider P-claims.

A node may receive a number of packets (each with a

P-claim) in a contact. It randomly samples Z (a system

parameter) of the received P-claims, and exchanges the

sampled P-claims to the next K (a system parameter)

different nodes it will contact, excluding the sources of the

P-claims and the previous hop from which these P-claims

are received.

However, a vulnerability to tailgating attack should be

addressed. In tailgating attack, one or more attackers

tailgate a good node to create a large number (say, d) of

frequent contacts with this node, and send Z packets (not

necessarily generated by the attackers) to this node in each

created contact. If this good node sends the Zd P-claims of

these contacts to the next K good nodes it contacts, much

effective bandwidth between these good nodes will be

wasted, especially in a large network where K is not small.

To address this attack, the node uses an inter-contact

sampling technique to determine which P-claims sampled

in historical contacts should be exchanged in the current

contact. Let SK denote a set of contacts. This set includes the

minimum number of most recent contacts between this

node and at least K other different nodes. Within this set, all

the contacts with the same node are taken as one single

contact and a total of Z P-claims are sampled out of these

contacts. This technique is not vulnerable to the tailgating

attack since the number of claims exchanged in each contact

is bounded by a constant.

5.2 Redirection

There is a stealthy attack to flood attack detection. For

replica flood attacks, the condition of detection is that at

least two nodes carrying inconsistent T-claims can contact.

However, suppose the attacker knows that two nodes A and

B never contact. Then, it can send some packets to A, and

invalidly replicate these packets to B. In this scenario, this

attacker cannot be detected since A and B never contact.

Similarly, the stealthy attack is also harmful for some

routing protocols like Spray-and-Wait [19] in which each

packet is forwarded from the source to a relay and then

directly delivered from the relay to the destination.

To address the stealthy attack, our idea is to add one

level of indirection. A node redirects the Z P-claims and

T-claims sampled in the current contact to one of the next

K nodes it will contact, and this contacted node will

exchange (but not redirect again) these redirected claims in

its own subsequent contacts. Look at the example in Fig. 6.

Suppose attacker S sends mutually inconsistent packets to

two nodes A and B which will never contact. Suppose A

and B redirect their sampled P-claims to node C and D,

respectively. Then so long as C and B or D and A or C and

D can contact, the attack has a chance to be detected. Thus,

the successful chance of stealthy attack is significantly

reduced.

5.3 The Exchange Process

Each node maintains two separate sets of P-claims (T-claims,

respectively in the following) for metadata exchange, a

 contacted node can be any other node with the same

probability. This assumption holds for mobility models
such as Random Waypoint (RWP) where the contacts

between all node pairs can be modeled as i.i.d. Poisson

processes [30]. When analyzing the detection probability,

we assume that each attacker acts alone. The case of

collusion is analyzed separately in Section 6.4.

Fig. 6. The idea of redirection which is used to mitigate the stealthy attack.

sampled set which includes the P-claims sampled from the

most recent contacts with K different nodes (i.e., SK in

Section 5.1), and a redirected set which includes the P-claims

redirected from those contacts. Both sets include Z P-claims

obtained in each of those contacts.

When two nodes A and B contact, they first select KZ P-

claims from each set with the inter-contact sampling

technique (see Section 5.1), and then send these P-claims

to each other. When A receives a P-claim, it checks if this

P-claim is inconsistent with any of its collected P-claims

using the method described in Section 4.5. If the received

P-claim is inconsistent with a locally collected one and the

signature of the received P-claim is valid, A detects that the

issuer (or signer) of the received P-claim is an attacker.

Out of all the P-claims received from B, A randomly

selects Z of the P-claims from the sampled set of B, and

stores them to A’s redirected set. All other P-claims received

from B are discarded after inconsistency check.

5.4 Metadata Deletion

A node stores the P-claims and T-claims collected from

received data packets for a certain time denoted by and

deletes them afterward. It deletes the claims redirected

from other nodes immediately after it has exchanged them

to K different nodes.

6 ANALYSIS

This section presents rigorous analysis over the security and

cost of our scheme, and discusses the optimal parameter to

maximize the effectiveness of flood attack detection under a

certain amount of exchanged metadata per contact.

6.1 Detection Probability
The following analysis assumes uniform and independent

contacts between nodes, i.e., at any time each node’s next

6.1.1 The Basic Attack

First we consider a basic attack (see Fig. 7a) in which an

attacker S floods two sets of mutually inconsistent packets

to two good nodes A and B, respectively. Each flooded

packet received by A is inconsistent with one of the flooded

packets received by B. In the contacts with A and B, S also

forwards some normal, not flooded, packets to A and B to

make the attack harder to detect. Let y denote the

proportion of flooded packets among those sent by S. For

simplicity, we assume y is the same in both contacts.

Suppose A and B redirect the claims sampled in the contact

with S to C and D, respectively.

To consider the worst case performance, suppose the

flooded packets are not forwarded from A and B to other

nodes (which is the case in Spray-and-Wait [19]), i.e., only A

and B have the inconsistent claims. Note that the analysis

also applies to the detection of replica flood attacks.

For convenience, we define node A’s (or B’s) detection

window as from the time it receives the flooded packets to

the time it exchanges the sampled claims to K nodes, and

node C’s (or D’s) detection window as from the time it

receives the redirected claims to the time it exchanges them

to K nodes. The attacker has a chance to be detected if node

pairs hA; Bi, hA; Di, hC; Bi and hC; Di can contact within

their detection windows. Table 1 shows the variables used

in the analysis.

Lower bound. The lower bound of detection probability

is obtained in the following scenario (see Fig. 7b): when B

receives the packets from S, both A and C have finished

their detection window. Due to the effect of sampling, the

attacker can be detected

1. by A if A 2 SB and eB ¼ T RU E;

2. by A if D is a good node, A 2 SD and eB ¼ T RU E;

3. by C if C is a good node, C 2 SB and êAB ¼ T RU E; or

4. by C if both C and D are good nodes, C 2 SD and

êAB ¼ T RU E.

Since each of A and B exchanges the sampled claims to

K nodes other than itself, and C (D) exchanges the

Fig. 7. (a) The basic attack considered for detection probability analysis. Attacker S floods packets to A and then to B. (b) The scenario when the
lower bound detection probability can be obtained : When B receives the flooded packets from S, both A and C have finished their detection window.
(c) The scenario when the upper bound detection probability can be obtained: D receives the redirected claims from B not later than the time when C
receives the redirected claims from A, and they are the first node that A and B encounter after the contact with S

Lemma 1. If the communication cost of metadata exchange is

fixed at ZK ¼ C, then Pd is maximized at K ¼ C and Z ¼ 1.
Z

selected from ½1; 1:6 to simulate the speed of walking, and

the transmission range of each node is 10 to simulate that of
5

which means gðuÞ monotonically increases. Since gð1Þ ¼

0; gðuÞ 0 when 0 < u 1. Therefore, P 0 ðZÞ 0, which

Pd monotonically decreases with Z. Thus, to

maximize Pd , Z should be set the minimum value 1. tu

Remarks. In this parameter setting, the lower bound

detection probability can be written as Pd ¼ yK 1þr .

.

In the simulations, 20 percent of nodes are deployed as

attackers. They are randomly deployed or selectively

deployed to high-connectivity nodes. The buffer size of

each node is 5 MB, the Drop Tail policy is used when buffer

overflows. The bandwidth is 2 Mbps. Each node generates

packets of 10 KB with random destinations at a uniform

Then it can be detected after N
ð þ Þ attacks. If the

rate. Parameter Z ¼ 1.

attacker wants to stay undetected for a longer time, it

should maintain a smaller y, which means the attack

effect is weaker; if it wants to make a big attack impact, it

should maintain a high y, but this means it will be

detected in a shorter time. From another point of view,

since the attacker only uses y proportion its capacity for

flood attack, it is equivalent that the attacker can attack at

7.2 Routing Algorithms and Metrics

We use the following routing protocols in evaluations:

. Forward. A single-copy routing protocol where a

packet is forwarded to a relay if the relay has more

frequent contacts with the destination.

. SimBet [8]. A single-copy routing protocol where a

full capacity for only N

ð þ Þ

can be effectively mitigated.

6.2 Collusion Analysis

6.2.1 Packet Flood Attack

contacts. Thus, the attacks
packet is forwarded to a relay if the relay has a

higher simbet metric, which is calculated from two

social measures (similarity and betweenness).

. Spray-and-wait [19]. A multicopy protocol, where

the source replicates a packet to L0 ¼ 3 relays and

each relay directly delivers its copy to the destina-

One attacker may send a packet with a dishonest packet
count to its colluder, which will forward the packet to the

network. Certainly, the colluder will not exchange the

dishonest P-claim with its contacted nodes. However, so

long as the colluder forwards this packet to a good node,

this good node has a chance to detect the dishonest claim as

well as the attacker. Thus, the detection probability is not

affected by this type of collusion.

6.3. Replica Flood Attack

When attackers collude, they can inject invalid replicas of a

packet without being detected, but the number of flooded

replicas is effectively limited in our scheme. More specifi-

cally, in our scheme for a unique packet all the M colluders

as a whole can flood a total of M 1 invalid replicas

without being detected. To the contrast, when there is no

defense, a total of N M invalid replicas can be injected by

the colluders for each unique packet. Since the number of

colluders is not very large, our scheme can still effectively

mitigate the replica flood attack. This will be further

evaluated in Section 7.

7 PERFORMANCE EVALUATIONS

7.1 Experiment Setup

To evaluate the performance and cost of our scheme, we

run simulations on a synthetic trace generated by the

Random Waypoint [30] mobility model and on the MIT

Reality trace [17] collected from the real world.

In the synthetic trace, 97 nodes move in a 500 500

square

area with the RWP model. The moving speed is randomly

tion when they contact.

. Spray-and-focus [19]. It is similar to Spray-and-

Wait, but each packet copy is individually routed to

the destination with Forward.

. Propagation. A packet is replicated to a relay if the

relay has more frequent contacts with the destination.

We use the following performance evaluation metrics:

. Detection rate. The proportion of attackers that are

detected out of all the attackers.

. Detection delay. From the time the first invalid

packet is sent to the time the attacker is detected.

. Computation cost. The average number of signature

generations and verifications per contact.

. Communication cost. The number of P-claim/

T-claim pairs transmitted into the air, normalized

by the number of packets transmitted.

. Storage cost. The time-averaged kilobytes stored for

P-claims and T-claims per node.

7.3 Analysis Verification

We use the synthetic trace to verify our analysis results

given in Section 6, since in this trace the contacts between

node pairs are i.i.d. [30] which conforms to our assumption

for the analysis. We divide the trace into 10 segments, each

with 5 104 time units, and run simulations on each of the

third-seventh segments three times with different random

seeds. Each data point is averaged over the individual runs.

d

means

N

yK 1 r

K 1 r

Fig. 8. Verification of analysis results on the synthetic trace. Spray-and-
Wait is used as the routing protocol. Each attacker launches the basic
attack once.

Here we only verify the detection probability for the basic

attack, since the detection probability for the strong attack

can be derived from it in a straightforward way. In this

group of simulations, each attacker launches the basic

attack once. It sends out two sets of packets to two good

nodes with 10 packets in each set (i.e., n ¼ 10), and these

two sets contain mutually inconsistent packets. We first fix

parameter y ¼ 1:0 (see Table 1) but change parameter K

from 0 to 10, and then we fix parameter K ¼ 10 but change

y from 0 to 1.0. The results are shown in Figs. 8a and 8b,

respectively. It can be seen that the simulation results are

between the analytical lower bound and upper bound,

which verifies the correctness of our analysis.

7.4 Detection Rate

The Reality trace is used. We divide the trace into segments of

one month, and run simulations on each of the third-seventh

segments three times with different random seeds. Each data

point is averaged over the individual runs. By default, each

attacker launches the basic attack once, and it floods one

packet out (i.e., n ¼ 1, y ¼ 1:0). By default, attackers are

selectively deployed to high-connectivity nodes.

Fig. 9a shows the effect of parameter K in different

routing protocols. Generally speaking, when K increases,

the detection rate also increases because the inconsistent

packets are exchanged to more nodes and have more

chances to be detected. When K ¼ 0, no attacker is detected

in Spray-and-Wait, since no metadata is exchanged for

detection. However, attackers can still be detected in the

other three algorithms, because the inconsistent packets are

forwarded to multiple nodes and the node that receives two

inconsistent packets can detect the attacker. Among these

protocols, Propagation achieves the highest detection rate

since it replicates inconsistent packets the most number of

times. Between the two single-copy routing protocols,

SimBet has a higher detection rate than Forward. This is

because SimBet tends to forward packets to the more

socially connected nodes and thus these nodes are more

likely to collect inconsistent packets.

Fig. 9b shows the results when each attacker launches the

basic attack independently for a varying number of times.

As the attackers launch more attacks, the detection rate

quickly increases for obvious reasons.

Fig. 9c shows the effect of the number of packets that an

attacker floods in each contact (i.e., parameter n). As

an attacker floods more packets in each contact, the

detection rate decreases in Spray-and-Wait and SimBet,

increases in Forward and does not change much in Spray-

and-focus and Propagation. The opposite trends are due to

two factors that affect the detection rate reversely. On the

one hand, sampling decreases detection rate. To explain this

more clearly, let us look at the basic attack scenario in

Fig. 7a for Spray-and-Wait. Since Z ¼ 1, A (B, respectively)

only samples one packet out of all the packets received from

the attacker and redirects it to C (D, respectively). When

n ¼ 1, C and D will receive mutually inconsistent claims,

which means in (7) Povp ¼ 1:0. However, when n is larger

than 1, C and D may not receive a pair of inconsistent

claims due to the independent sampling by A and B. As

n increases, Povp decreases and thus the detection rate also

decreases. On the other hand, for the routing protocols

where each packet is forwarded in multiple hops, when an

attacker sends more attack packets in each contact, it is

more likely that one pair of inconsistent packets are

forwarded to the same intermediate node and lead to

detection.

Fig. 9d shows the effect of attacker deployment. The

detection rate is lower when attackers are selectively

deployed to high-connectivity nodes. This is because when

attackers are selectively deployed they have more contacts

with good nodes. The probability that a good node

exchanges its sampled claims to attackers rather than to

other good nodes is higher, but attackers do not run

detection against each other.

7.5 Detection Delay
Fig. 10 shows the CDF of detection delay when Propagation

is used as the routing protocol on the Reality trace. For

comparison, the CDF of routing delay (i.e., from the time a

packet is generated to the time it is delivered) is also

plotted. Here, no lifetime is set for packets. It can be seen

that 90 percent of the attacks can be detected by our scheme

Fig. 9. The detection rate under different conditions. In (d), Forward is used as the routing protocol.

Fig. 10. The detection delay compared with the routing delay of
Propagation.

within 10 days. On the contrary, within 10 days only

60 percent of data packets can be delivered by the routing

protocol. Hence, the detection delay of our scheme is much

lower than the routing delay.

7.6 Undetected Flooded Replicas under Collusion

As mentioned in Section 6.4.2, colluders can flood a small

number of replicas without being detected. To evaluate

their effect, we run simulations on the Reality trace when all

attackers collude. The simulation settings are the same as in

Section 2.2. We compare our scheme with the case of no

defense. As shown in Fig. 11, even when 20 percent of

nodes are attackers and collude, our scheme can still limit

the percentage of wasted transmissions to 14 percent in

single-copy routing (SimBet) and 6 percent in multicopy

routing (Spray-and-Focus), which is only 1/7-1/5 of the

wasted transmissions when there is no defense.

7.7 Cost

To evaluate the cost of our scheme in a steady state (i.e., all

attackers have been detected), no attackers are deployed in

this group of simulations. The Reality trace is used. Packets

are generated between the 61st and 120th day of the trace,

and statistics are collected from the 91th day. By default, each

node generates two packets per day, parameter (i.e., the

time a claim is stored) is 30 days and K is 10. In a contact, a

node may receive some packets but then immediately drop

them due to buffer overflow. In such cases, the transmission

of the claims attached to these packets is counted into the

communication overhead, and the signature generations for

these claims are counted into the computation overhead.

Since the receiver does not buffer these packets, it does not

store these claims or verify their signatures.

We first evaluate the computation cost of our scheme,

and Fig. 12 shows the results. When Forward is used as the

Fig. 11. The effect of undetected replicas on wasted transmissions when
attackers collude to launch replica flood attacks.

Fig. 12. The computation cost of our scheme.

routing protocol (see Fig. 12a), as the packet generation rate

increases, the computation cost also increases since more

packets need to be signed and verified. But the cost is still

low, less than 20 signature generations and verifications,

when each node generates 10 packets per day. Also, it can

be seen that there are less signature generations than

verifications. This is because in each contact our scheme

only signs P-claims for the newly generated packets (which

constitute a very small portion of the packets transmitted),

and it generates only one signature in total for the T-claims

of all forwarded packets due to the use of authentication

tree. When Propagation is used as the routing protocol (see

Fig. 12b), similar trends hold. When the packet generation

rates crosses 1, the signature verification cost turns to

decrease. This is because when the traffic load is high many

received packets are dropped due to buffer overflow.

Then we evaluate the communication cost. The commu-

nication overhead mainly comes from two sources, the

transmission of claims attached to data packets, and the

transmission of claims in metadata exchange. The total

communication cost and the two components are shown in

Fig. 13. When K increases from 2 to 10 (see Fig. 13a), the

communication cost caused by meta data exchange in-

creases linearly since each sampled claim is transmitted

more times. The communication cost caused by the

transmission of claims attached to packets is always 1 due

to the normalization. In total, less than two pairs of

P-claim/T-claim are transmitted per transmission of data

packet. When the packet generation rate increases (see

Fig. 13b), the total normalized communication cost de-

creases, because more data packets are transmitted in each

contact but the number of claims transmitted for metadata

exchange in each contact does not change with the traffic

load. When the packet generation rate is larger than 1, the

communication cost is smaller than 3. When the packet

Fig. 13. The communication cost of our scheme.

TABLE 2
The Storage (KB) Used for Claims and Data Packets

generation rate is 0.5, the communication cost is higher

(i.e., 10). However, at this point the number of packet

transmissions is very small, and hence the communication

overhead is not an issue. Moreover, since the claims are

small in size, they can be attached to and transmitted with

data packets and will not incur extra transmissions. Thus,

the communication overhead is low.

Finally, we evaluate the storage cost of our scheme

against two factors, the time a claim is stored (parameter)

and the packet generation rate. The results are shown in

Table 2. We can see that the storage space used for claims is

low, only less than 150 kilobytes per node. This is due to the

compact structures we use to store P-claims and T-claims.

We noticed that the storage cost does not increase after the

packet generation rate reaches two packets per node per

day, because when the traffic load is high many received

packets are dropped due to buffer overflow.

8 RELATED WORK

Our scheme bears some similarity with previous ap-

proaches (e.g., [33]) that detect node clone attacks in sensor

networks. Both rely on the identification of some kind

of inconsistency to detect the attacker. However, their

approaches assumes consistent connectivity between nodes

which is unavailable in DTNs. Also, they do not handle the

long delays of detection.

A few recent works [10], [25], [12], [11], [13] also address
Security issues in DTNs. Li et al. [10] studied the blackhole

attack i n which m a l i c i o u s nodes f o r g e routing metrics

to attract packets and drop all received packets.

Their approach uses a primitive called encounter ticket to

prove the existence of contacts and prevent the forgery of

routing metrics, but encounter ticket cannot be used to

address flood attacks. Li and Cao [13] also proposed a

distributed scheme to mitigate packet drop attacks, which

works no matter if the attackers forge routing metrics or not.

Ren et al. [11] studied wormhole attacks i n DTNs. Chen

and Choon [25] proposed a credit-based approach and

Shevade et al. proposed a gaming-based approach [12]

to provide in- centives for packet forwarding. Privacy

issues have also be addressed [38], [39],. However, these

works do not address flood attacks. Other works (e.g., Sprite

[34]) deter abuse by correlating the amount of network

resources that a node can use with the node’s contributions

to the network in terms of forwarding. This approach has

been proposed for mobile ad hoc networks, but it is still not

clear how the approach can be applied to DTNs, where

nodes are disconnected most of the time. Another recent

work [14] proposed a batch authentication protocol for

DTNs, which v e r i f i e s m u l t i p l e packet signatures in an

aggregated way to save the computation cost. This w o r k

is complementary to ours,

and their protocol can also be used in our scheme to further

reduce the computation cost of authentication.

Parallel to our work, Natarajan et al. [35] also proposed a
scheme to detect resource misuse in DTNs. In their scheme,

the gateway of a DTN monitors the activities of nodes and

detects an attack if there is deviation from expected behavior.

Different from their work that requires a special gateway for

counting, our scheme works in a totally distributed manner

and requires no special nodes.

9 CONCLUSIONS

In this paper, we employed rate limiting to mitigate flood

attacks in DTNs, and proposed a scheme which exploits

claim-carry-and-check to probabilistically detect the violation

of rate limit in DTN environments. Our scheme uses

efficient constructions to keep the computation, commu-

nication and storage cost low. Also, we analyzed the lower

bound and upper bound of detection probability. Extensive

trace-driven simulations showed that our scheme is effective

to detect flood attacks and it achieves such effectiveness in

an efficient way. Our scheme works in a distributed manner,

not relying on any online central authority or infrastructure,

which well fits the environment of DTNs. Besides, it can

tolerate a small number of attackers to collude.

ACKNOWLEDGMENTS

This work was supported in part by Army Research Office

under MURI grant W911NF-07-1-0318.

REFERENCES

[1] K. Fall, “A Delay-Tolerant Network Architecture for Challenged
Internets,” Proc. ACM SIGCOMM, pp. 27-34, 2003.

[2] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot,
“Pocket Switched Networks and Human Mobility in Conference
Environments,” Proc. ACM SIGCOMM, 2005.

[3] M. Motani, V. Srinivasan, and P. Nuggehalli, “PeopleNet:
Engineering a Wireless Virtual Social Network,” Proc. MobiCom,
pp. 243-257, 2005.

[4] J. Burgess, B. Gallagher, D. Jensen, and B. Levine, “Maxprop:
Routing for Vehicle-Based Disruption-Tolerant Networks,” Proc.
IEEE INFOCOM, 2006.

[5] S.J.T.U.Grid Computing Center, “Shanghai Taxi Trace Data,”
http://wirelesslab.sjtu.edu.cn/, 2012.

[6] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher, Internet Denial of
Service: Attack and Defense Mechanisms. Prentice Hall, 2005.

[7] C. Karlof and D. Wagner, “Secure Routing in Wireless Sensor
Networks: Attacks and Countermeasures,” Proc. IEEE First Int’l
Workshop Sensor Network Protocols and Applications, 2003.

[8] E. Daly and M. Haahr, “Social Network Analysis for Routing in
Disconnected Delay-Tolerant MANETs,” Proc. MobiHoc, pp. 32-40,
2007.

[9] W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in Delay
Tolerant Networks: A Social Network Perspective,” Proc. ACM
MobiHoc, 2009.

[10] F. Li, A. Srinivasan, and J. Wu, “Thwarting Blackhole Attacks in
Distruption-Tolerant Networks Using Encounter Tickets,” Proc.
IEEE INFOCOM, 2009.

[11] Y. Ren, M.C. Chuah, J. Yang, and Y. Chen, “Detecting Wormhole
Attacks in Delay Tolerant Networks,” IEEE Wireless Comm.
Magazine, vol. 17, no. 5, pp. 36-42, Oct. 2010.

[12] U. Shevade, H. Song, L. Qiu, and Y. Zhang, “Incentive-Aware
Routing in DTNS,” Proc. IEEE Int’l Conf. Network Protocols
(ICNP ’08), 2008.

[13] Q. Li and G. Cao, “Mitigating Routing Misbehavior in Disruption
Tolerant Networks,” IEEE Trans. Information Forensics and Security,
vol. 7, no. 2, pp. 664-675, Apr. 2012.

http://wirelesslab.sjtu.edu.cn/

[14] H. Zhu, X. Lin, R. Lu, X.S. Shen, D. Xing, and
Z. Cao, “An Opportunistic Batch Bundle
Authentication Scheme for Energy Constrained
DTNS,” Proc. IEEE INFOCOM, 2010.

[15] B. Raghavan, K. Vishwanath, S. Ramabhadran, K.
Yocum, and A.

Snoeren, “Cloud Control with Distributed Rate
Limiting,” Proc. ACM SIGCOMM, 2007.

[16] F-SECURE, “F-Secure Malware Information Pages:
Smsworm:- Symbos/Feak,” http://www.f-
secure.com/v-descs/smsworm symbos feak.shtml,
2012.

[17] N. Eagle and A. Pentland, “Reality Mining:
Sensing Complex

Social Systems,” Personal and Ubiquitous Computing,
vol. 10, no. 4, pp. 255-268, 2006.

[18] Q. Li, S. Zhu, and G. Cao, “Routing in Socially
Selfish Delay

Tolerant Networks,” Proc. IEEE INFOCOM, 2010.
[19] T. Spyropoulos, K. Psounis, and C.S. Raghavendra,

“Efficient Routing in Intermittently Connected
Mobile Networks: The Multiple-Copy Case,”
IEEE/ACM Trans. Networking, vol. 16, no. 1, pp.
77-90, Feb. 2008.

[20] A. Lindgren, A. Doria, and O. Schelen,
“Probabilistic Routing in Intermittently Connected
Networks,” ACM SIGMOBILE Mobile Computing
and Comm. Rev., vol. 7, no. 3, pp. 19-20, 2003.

[21] W. Gao and G. Cao, “On Exploiting Transient
Contact Patterns for Data Forwarding in Delay
Tolerant Networks,” Proc. IEEE 18th Int’l Conf.
Networks Protocols (ICNP), 2010.

[22] J. Burgess, G.D. Bissias, M. Corner, and B.N.
Levine, “Surviving Attacks on Disruption-Tolerant
Networks without Authentica- tion,” Proc. ACM
MobiHoc, 2007.

[23] S.C. Nelson, M. Bakht, and R. Kravets, “Encounter-
Based Routing in Dtns,” Proc. IEEE INFOCOM, pp.
846-854, 2009.

[24] T. Spyropoulos, K. Psounis, and C. Raghavendra,
“Spray and

Wait: An Efficient Routing Scheme for
Intermittently Connected
Mobile Networks,” Proc. ACM SIGCOMM, pp. 252-
259, 2005.

[25] B. Chen and C. Choon, “Mobicent: A Credit-
Based Incentive

System for Disruption Tolerant Network,” Proc.
IEEE INFOCOM,
2010.

[26] C. Gentry and A. Silverberg, “Hierarchical Id-Based
Cryptogra- phy,” Proc. Int’l Conf. Theory and
Application of Cryptography and
Information Security EUROCRYPT, 2002.

[27] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S.
Keshav, “Lowcost Communication for Rural
Internet Kiosks Using Mechanical Backhaul,” Proc.
ACM Mobicom, 2006.

[28] A. Vahdat and D. Becker, “Epidemic Routing
for Partially Connected Ad Hoc Networks,”
Technical Report CS-200006, Duke Univ., 2000.

[29] R. Merkle, “Protocols for Public Key
Cryptosystems,” Proc. IEEE Symp. Security and
Privacy, 1980.

[30] R. Groenevelt, “Stochastic Models in Mobile Ad
Hoc Networks,”

technical report, Univ. of Nice, Sophia Antipolis,
INRIA, 2006.

[31] A. Chaintreau, A. Mtibaa, L. Massoulie, and
C. Diot, “The

Diameter of Opportunistic Mobile Networks,”
Proc. ACM CoNEXT Conf., 2007.

[32] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble RAP:
Social-Based

Forwarding in Delay Tolerant Networks,” Proc.
MobiHoc, pp. 241-
250, 2008.

[33] B. Parno, A. Perrig, and V. Gligor, “Distributed
Detection of Node

Replication Attacks in Sensor Networks,” Proc.
IEEE Symp. Security and Privacy, 2005.

[34] S. Zhong, J. Chen, and Y.R. Yang, “Sprite: A Simple,
Cheat-Proof, Credit-Based System for Mobile Ad-
Hoc Networks,” Proc. IEEE INFOCOM, vol. 3, pp.
1987-1997, 2003.

[35] V. Natarajan, Y. Yang, and S. Zhu, “Resource-
Misuse Attack Detection in Delay-Tolerant
Networks,” Proc. Int’l Performance Computing and
Comm. Conf. (IPCCC), 2011.

http://www.f-secure.com/v-descs/smsworm
http://www.f-secure.com/v-descs/smsworm

