

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 3 March, 2014 Page No. 5132-5137

Prof. D.B. Rane , IJECS Volume 3 Issue 3 Mar, 2014 Page No.5132-5137 Page 5132

Design and Performances Analysis of 16-bit RISC

Processor using Xilinx tool
Prof. D.B. Rane, Pokharna Pritesh G, Pawade Swapnil B, Chopade Yogesh S

 Department of Electronics Engineering

Pravara Rural Engineering College, Loni.

Abstract: In this project we have described the design of a 16-bit non-pipelined RISC processor for applications in real-time embedded

systems. The processor executes most of the instructions in single machine cycle making it ideal for use in high speed systems. The

processor has been designed to be implemented on an FPGA using VHDL such that one can reconfigure it according to specific

requirements of the target applications. the main objective of this project is to design and implement an 16-bit Reduced Instruction Set

(RISC) processor using XILINX Spartan 3E tool. It involves writing a VHDL / verilog behavioral model, developing test-bench and

simulating the behavior. The important components of this processor include the Arithmetic Logic Unit, Shifter, Rotator and Control

unit. The instruction code is received at the beginning of each cycle, all operations are executed during the clock period, and results are

stored at the end of it.

Keyword: RISC, load store architecture, pipeline, processor,

VHDL, Xilinx, FPGA

I. INTRODUCTION

The reduced instruction set computer, or RISC,

microprocessor CPU design philosophy that favors a smaller

and simpler set of instructions that all take about the same

amount of time to execute. The most common RISC

microprocessors are ARM, DEC Alpha, PA-RISC, SPARC,

MIPS, and IBM's PowerPC. The idea was inspired by the

discovery that many of the features that were included in

traditional CPU designs to facilitate coding were being

ignored by the programs that were running on them. Also

these more complex features took several processor cycles

to be performed. Additionally, the performance gap between

the processor and main memory was increasing. This led to

a number of techniques to streamline processing within the

CPU, while at the same time attempting to reduce the total

number of memory accesses.. There we provide more than

one execution unit. The time when one unit is busy with the

current execution task, the fetch unit can probably fetch he

next instruction which would be executed with the help of

some other execution unit present in system.

The features which are generally found in RISC designs are

uniform instruction encoding which allows faster decoding,

a homogeneous register set allowing any register to be used

in any context and simplifying compiler design, simple

addressing modes, It was also becoming cost-effective to

employ small amounts of higher-speed cache memory to

reduce memory latency. the instruction set can be hardwired

to speed instruction execution. No microcode is needed for

single cycle execution [1].

The objective of this project is like that writing a VHDL/

verilog behavioral model. Developing test bench and

simulating the behavior. Implementing of same on FPGA

platform to validate the functionality. Synthesizing it using

Xilinx ISE. In our project 16-bit RISC processor is used. the

processor consist of control register ,different memory

register, universal shift register, barrel shift register,

arithmetic logic unit, accumulator and flag register. The

instruction can be executed by using processor when

different commands are gives.

Concept of RISC is like that, Overall design procedure is

composed of pipeline, stage analysis, instruction execution

analysis, RT-level (Register Transfer Level) functional unit

composition, and control signal generation. A conventional

computer executes one instruction at a time with a Program

Counter pointing to the instruction currently being executed.

Pipelining is analogous to an oil pipeline where the last

product may have gone in before the first result comes out

[2].

In this project we used Spartan-3 family of FPGA. The

Spartan®-3E family of Field-Programmable Gate Arrays

(FPGAs) is specifically designed to meet the needs of high

volume, cost-sensitive consumer electronic applications.

The five-member family offers densities ranging from

100,000 to 1.6 million system gates.Spartan-3E family

builds on the success of the earlier Spartan-3 family by

increasing the amount of logic per I/O, significantly

reducing the cost per logic cell. New features improve

system performance and reduce the cost of configuration.

These Spartan-3E FPGA enhancements, combined with

advanced 90 nm process technology, deliver more

functionality and bandwidth per dollar than was previously

possible, setting new standards in the programmable logic

industry. Because of their exceptionally low cost, Spartan-

3E FPGAs are ideally suited to a wide range of consumer

electronics applications including broadband access, home

Prof. D.B. Rane , IJECS Volume 3 Issue 3 Mar, 2014 Page No.5132-5137 Page 5133

networking, display/projection, and digital television

equipment.

 The Spartan-3E family is a superior alternative to mask

programmed ASICs. FPGAs avoid the high initial cost, the

lengthy development cycles, and the inherent inflexibility of

conventional ASICs. Also, FPGA programmability permits

design upgrades in the field with no hardware replacement

necessary, an impossibility with ASICs.

II. BLOCK DIAGRAM OF SYSTEM

Fig.1 Block diagram of system

Design

 In this project we look at some of the basic choices in the

processor design space. We start our discussion with the

number of addresses used in processor instructions. This is

an important characteristic that influences instruction set

design. We also look at the load/store architecture used by

RISC processors.

 Another important aspect that affects performance of

the overall system is the flow control. Flow control deals

with issues such as branching and procedure calls. We

discuss the general principles used to efficiently implement

branching and procedure invocation mechanisms. We wrap

up the chapter with a discussion of some of the instruction

set design issues.

POWER

 Power is a critical part of our design, we have to make

sure that we are not overloading or supplying too little

power to any component. Either case would have been

dangerous to the components. the controller rated at 5v and

the processor need 2.5v. The power supply is used to

convert the AC energy provided by the wall outlet to dc

energy. In most electronic equipment, the power cord

supplies the ac energy at 120 V to the power supply. The

power supply then provides all the dc voltages needed to run

the equipment.

 FPGA

 Today’s electronic systems need to be brought to market

more quickly, within budget, and with feature-sets that

outperform competing products. Xilinx Spartan-3 FPGAs

deliver the ideal solution, using 90nm process technology

and staggered I/O pads to give you up to 5 million system

gates and up to 784 I/Os with the lowest cost per gate and

lowest cost per I/O of any FPGA. Spartan-3 Easy Path™

FPGAs further extend the benefits of the Spartan-3 FPGA

family to volume production with a conversion-free, no-risk

methodology that delivers up to 60% cost reduction. To

address low-power challenges, Spartan-3L™ reduced-power

devices lower quiescent power consumption by up to 98%

and include an exclusive Hibernate mode. With all their cost

and feature advantages, you can now use Spartan-3 FPGAs

in higher volume than ever before. Plus, we make it easy to

start your FPGA design immediately with the US $99

Spartan-3 Starter Kit.

 Designers of gate-centric solutions face a

common problem —

 increasing design functionality while also

minimizing device costs. This has often meant sacrificing

either features or cost-effectiveness. The Spartan-3E FPGA

family offers the low cost and platform features you’re

looking for, making it ideal for gate-centric programmable

logic designs. Sparatan-3E is the seventh family in the

groundbreaking low-cost Spartan Series and the third Xilinx

family manufactured with advanced 90nm process

technology.Spartan-3E FPGAs deliver up to 1.6 million

system gates, up to 376 I/Os, and a versatile platform FPG

Architecture with the lowest cost per-logic in the industry.

This combination of state-of-the art low-cost manufacturing

and cost-efficient architecture provides unprecedented price

points and value. The features and capabilities of the

Spartan-3E family are optimized for high-volume and low-

cost applications and the Xilinx supply chain is ready to

fulfill your production requirements.

III. DESIGN OF 16-BIT RISC PROCESSOR

 Always in design methods involve one or more than

one PCBs (printed circuit board) that contain many chips

together with other peripherals. After that the required

integrated circuits chips are selected followed by the PCBs

that house and connect the chips together are designed

according to design concept and put different components

on PCB. Since the complexity of circuits implemented on

individual chips and on the circuit boards is usually very

high, it is very much essential to make use of Xilinx

software [3].

 Flowchart of 16-bit processor is given below :

Prof. D.B. Rane , IJECS Volume 3 Issue 3 Mar, 2014 Page No.5132-5137 Page 5134

1) Design entry- First define logic which we want to

executed then write code for logic. It consist of

different logics. Because of different logics write

code in section.

2) Synthesis- Written code executed for many

instruction. in this mode overall code synthesis of the

system.

3) Physical design- Physical design of processor is done

in this part .the main focus of this part is that the

materials used for processor and which gives better

physical strength and low cost.

4) Timing simulation- When code synthesis that time we

used timing simulation. In this part we can check out

the execution is right or wrong.

5) Chip – when above all steps are right then code

download in chip.

Fig.2 flowchart

 Fig shows the design method of proposed 16 bit processor.

FPGA devices are software configured and field

programmable and easy to implementable. Hence, there is a

significant cost saving in design and productions. Here

FPGA kit use for only verification purpose. Design entry of

the processor is carried out by using VHDL code.

Functional simulation is done to verify the functionality of

the circuit, based on inputs provided by the designer at the

time of designing. Physical design determines how to

implement the optimized circuit in a FPGA chip and

consideration about area. Timing simulation determines the

propagation delays that are expected in the implemented

circuit. It also tells number of instruction executed in time.

 Fig.3 Block diagram of RISC Processor

 The architecture of proposed 16-bit Processor is shown in

Fig. which consists of processor block and memory block

and data path. in control unit consist of controller, program

counter, instruction register. ALU and resister file

communicate with control unit through data path. The

architecture of the 16-bit processor is designed based on

three 16-bit instruction. The operation of the fetch stage

starts when the program counter (PC) a 16-bit register is

sent out to fetch the instruction from memory into the

instruction register (IR) and the PC is incremented to

address the next sequential instruction. The IR is used to

hold the instruction needed on subsequent clock cycles.

 The processor's 16-bit registers are stored in

'register file' that contains the register state of the machine.

For R-format instructions, there are three register operands.

Two data words are read from the register file and one data

word is written into the register file for each instruction. The

register number inputs are 4 bits wide to specify one of the

16 registers, whereas the data input and two data output

buses are each 16 bits wide. When the instruction is fetched

from the fetch stage, the instruction's operation code is sent

to the control unit. The instruction's register address fields

are used to address the two port register file. The two-port

register performs two independent reads and one write in

one clock cycle .In the decode stage, the instructions are

decoded and the register file is accessed to read the registers.

The outputs of the General purpose registers are read into

two registers, register 1 and register 2. After the Instructions

decode stage, the execution stage performs calculations [3].

Top Level Block Description

Prof. D.B. Rane , IJECS Volume 3 Issue 3 Mar, 2014 Page No.5132-5137 Page 5135

Fig.4 Block Description

The micro-architecture refers to a view of the machine that

exposes the registers, buses and all other important

functional units such as ALUs and counters. The principle

subsystems of a processor are the CPU, main memory and

the input/output. The data path and the control unit interact

to do the actual processing task. The control unit receives

signals from the data path and sends control signals to the

data oath. These signal s control the data flow within the

CPU and between the CPU and the main memory and

input/output.

program counter

The program counter output is used as address of the

instruction memory. The program counter is a 16 bit

counter. The program counter value depends on input

condition. The program counter value is either incremented

or loaded with branch address or loaded from stack registers

Fig.5 Program counter

instruction register and register file

The instruction register stores the instruction to be executed.

The instruction register is loaded from an external

instruction ROM. The program counter value is used as

address to the instruction ROM. The format of the 16 bits

instruction register is shown here. The first 4 bits are op-

code, which are input to the control unit. The control unit

decides the operation sequence of the data path. The next 4

bits are used as address of the source register 1. The next 4

bits are used as address of the source register 2. The next 4

bits are used as address of the target register. The function

of the two source registers, target register are explained in

instruction set description.

Fig.6 Instruction register

Control Unit Design

The Control FSM has only three distinct states that

determine the operation of the processor: IDLE, FETCH and

EXECUTE. Here fetch and Execute is further divided into

two states, Fetch instruction state and Fetch operands state.

Similarly Execute state also divided into two parts. When

the reset signal (reset_s1) goes high from any state, the FSM

will be placed in the IDLE state. While in the IDLE state the

control unit will send the PC write enable signal (pc_wrt_s2

=1) and select zero (pc_sel_s2=0) as the current program

counter.

When the reset signal goes low, the FSM’s next state will be

the FETCH state and the instruction from Memory address 0

will be loaded into the Instruction Register (IR) to begin

program execution. The control looks at the next state =

FETCH and generates the IR write (ir_wrt_s1), Operand a

Select (opA_sel_s1), Operand B Select (opB_sel_s1 = 0010)

and the ALU add operation (alu_op_s1 = 00000001) to load

the IR with the next instruction and increment the PC by 1.

These events all occur on the first clock of the FETCH state.

One-hot signals are used for alu_op_s1, opB_sel_s1, and

data_sel_s2 to make for easier decoding in the datapath

units. The operation at the next phase of FETCH will be

determined by the opcode (opcode_s2) from the IR, except

for the incremented PC that is written in from the ALU

output latch in all cases. The ALU Operations will load in

Operands A and B from the Register File. The Load word

will only need Operand A, while the Store word will need

both operands (one for the address and one for the data

word). The Branch instructions will use the offset in its

instruction word and PC + 1 count as operands into the

ALU. The JAL stores the incremented PC in the Register

File, while the JR loads the return address into Operand A.

 After phase two of the FETCH state, the FSM

enters the EXECUTE state. During the first phase for an

ALU operation, the appropriate alu_op_s1 control signals

are sent to the ALU as decoded from the opcode. The

operand mux (opA_sel_s1 & opB_sel_s1) control signals

are also generated to select the latch outputs. For the other

operations (except LI), an add operation is required from the

ALU. The operands chosen for the add operation are

determined by the operation specified. The Load and Store

words will access Memory on this first phase as well. The

second phase of EXECUTE writes data into the register file

or writes a new address into the PC. For the branch

instruction, the control will look at the check zero signals

from operand A to determine if the branch should be taken

and the new PC should be written. The control returns the

next state to FETCH to repeat the process for the next

instruction. Instruction operation opcode is given below.

Prof. D.B. Rane , IJECS Volume 3 Issue 3 Mar, 2014 Page No.5132-5137 Page 5136

Fig.7 instruction operation

IV. SIMULATION AND DISCUUSSION

 We have simulated the VHDL code of the proposed

processor using Xilinx Software tool (Version 10.1). The

simulation results of processor are presented for

justification. The proposed 16 bit RISC processor is coded

with VHDL (very high speed integrated circuit hardware

description language). When there is no error, the code is

synthesized and simulated using Xilinx software. Before the

start of simulation, the code written in memory that is in

register. The completed processor with memory is tested for

arithmetic, logical and shifting program. When the VHDL

code is 100% synthesized and check, then the code is

downloaded to the FPGA device. After downloading the

code, the functionality of 16 bit RISC processor is done

according as a input instruction.

The simulation result of the proposed 16 bit RISC

processor is shown in Fig. the simulation window is shown

for different operation. Control path is used for synthesis and

simulation.

Analysis of16-bit RISC processor-

1) 16-bit RISC processor is synthesis on 50MHz frequency

and time required for that is 7ns. For non-pipeline processor

one pass is selected for best. There is different default

because of wire used.

2) We can see area report after synthesizing. For this

processor one ground is used and one VCC is used. Total

number of IOs is 47 and total number of LCs is 28 in

processor. 25.41 % area used for IOs that is 47 out of 185.

3) Because of reset load is 0.52 on processor. Data required

time for processor is 7ns and data arrivals time for processor

is 6.26ns. Therefore the total slag is 0.74.

V. CONCLUSION

We can conclude that from overall system. We checked out

our processor architecture by different instruction. We

perform arithmetic, logical and shifting programs which

created using Xilinx Software. We have compared the

simulated output results with the expected results which we

considered at the timing of design.. From synthesis report,

the minimum clock period that can be achieved in this

proposed architecture is 50 ns (50 MHz). Similarly, the

functionality of execution of instruction, area used time

delay and flow of data path is tested and found correct.

Finally, we eliminated errors which produce infinite result.

REFERENCES
[1] R. Uma, Apr 2012, ―Design and Performances

Analysis of 8-bit RISC Processor using Xilinx

tool‖, international journal of engineering research

and application pp.053-058.

[2] Swati Joshi and Puran Gour, Sept.2012,‖Area

Optimized 32-bit pipeline RISC processor in

VHDL‖, International journal of Digital

Application and Contemporary research.

[3] Manoranjan Pradhan, April-2011,‖Simulation and

verification of self test 16-bit processor‖,

International Journal of Computer Application.

[4] Galani Tina G., Riya Saini and R.D. Daruwala,

July-2013,‖Design And Implementation of 32-bit

RISC Processor Using Xilinx‖, International

Journal of Emerging Trends in Electrical and

Electronics.

[5] V. N. Sireesha and D. Hari Hara Santosh, june-

2012,‖FPGA Implementation of A MIPS RISC

Processor‖, International Journal of Computer

Technology and Application.

[6] Amit kumar Sing Tomar and Rita jain, Sept-

2012,‖Imlemenation of RISC System in FPGA‖,

International Journal of Emerging Technology and

Advance Engineering.

[7] V.R.Gaikwad,April2013,‖Desingn,Implementation

and Testing of 16-bit RISC Processor‖, IOSR

journal of VLSI and Signal processing , pp-01-04.

Prof. D.B. Rane , IJECS Volume 3 Issue 3 Mar, 2014 Page No.5132-5137 Page 5137

AUTHOR BIOGRAPHY

Prof. D.B.Rane, Department of Electronics

Engineering, P.R.E.C, LONI, MAHARASHTRA,

INDIA

Mr. Pokharna Pritesh G. B.E. student, Department of

Electronics Engineering, P.R.E.C, LONI,

MAHARASHTRA, INDIA.

Mr. Pawade swapnil B. B.E. student, Department of

Electronics Engineering, P.R.E.C, LONI,

MAHARASHTRA, INDIA.

Mr. Chopade Yogesh S B.E. student, Department

of Electronics Engineering, P.R.E.C, LONI,

MAHARASHTRA, INDIA.

