
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issues 8 Aug 2016, Page No. 17375-17380

Poonam Kumari, IJECS Volume 05 Issue 08 Aug 2016 Page No.17375-17380 Page 17375

A Round-Robin based Load balancing approach for Scalable demands and

maximized Resource availability
Poonam Kumari

1
, Mohit Saxena

2

M. Tech Scholar
1
, Assistant Professor

2

1Apex Institute of Engineering & Technology,

Sitapura, Jaipur, Rajasthan, India

Hunny.punam@gmail.com

2Apex Institute of Engineering & Technology,

Sitapura, Jaipur, Rajasthan, India

Mohit.saxena234@gmail.com

Abstract: In a communication scenario where the capacity of one running service is not enough to serve high demands and it is desired to

increase the performance by distributing the workload across multiple resources i.e. services. The solution for such scenarios could be using

of load balancer. Load balancer receives hundreds of requests at same instant from client and it distributes the load to the different

instances/machines. This Load distribution is independent of the number of instances/machines. To simulate the scenario, this research

implements a client application using a service to Sort the n numbers. The calculation is split into many small intervals. Therefore, the

service gets overloaded and the performance drops down. In this research, a load balancer is proposed based on the Round-Robin approach.

The service processes the message and sends back the response that is routed via the load balancer back to the client. Due to any reason if

one of the instance/machine fails during process execution, this does not lead the complete process to failure. The Round-Robin approach is

suitable for load balancing because the processing of requests takes approximately same time.

Keywords: Load Balancing, Round-Robin approach, Distributed systems.

1. Introduction

In today’s communication scenario, where traffic is

continuously growing up and up so single service is not enough

to handle it. So, to cost effectively scale to meet these high

volume traffic, modern computing requires several concurrent

servers which serves these concurrent requests from clients and

return responses.

A load balancer works between client and server and it routes

client requests across all available servers that helps to

maximize speed and capacity utilization of each server. Load

balancer acts as a reverse proxy. Load balancer also ensures

that no any server is overloaded, which could degrade the

performance of system. If any server goes down, then load

balancer redirects the incoming traffic to the remaining

available online servers [1]. When a new server is added to the

system then the load balancer automatically begin to send

traffic to it.

Load balancing is an approach which distributes the workloads

across the available multiple computing resources so it

increases capacity and reliability of system. Load balancer also

improves the overall performance of system by minimizing the

burden on servers associated with system by managing and

maintaining network sessions. These resources may be

computers, a computer cluster, network links, central

processing units or disk drives. The aim of Load balancing is to

optimize the resource use, maximize the throughput, minimize

their response time, and avoid the overloading situation of any

single resource. A load balancing with multiple components

may increase the reliability and availability of the system

through redundancy than a system with single component.

Usually load balancing consists a dedicated software or a

hardware. It is also known as Server Pool or Server Farm [2].

Load balancer ensures that it sends traffic to those servers

which are online so it provides high availability and reliability

to the system. Load balancer also provides flexibility to the

system by adding or subtracting servers to system as demands

needs.

Load balancer are divided into categories: Layer 4 and Layer 7.

Layer 4 load balancer works upon the data found at network

and transport layer while layer 7 load balancer acts on data

associated with application layer protocols like HTTP.

Incoming requests are received by both type of load balancers

and these requests are distributed to a particular server decided

by a configured algorithm. For example: a multilayer switch or

a Domain Name System server process [2].

 Load balancing sounds same as channel bonding but Load

balancing is different from the channel bonding. In a load

balancing, balancer divides the traffic or workload between the

network interfaces. These network interfaces rely on network

socket which works in layer 4 of OSI model. Whereas, in

channel bonding, traffic is divided between the physical

interfaces. These division may be as per packet (which comes

under layer 3 of OSI model). It also may be on data link basis

(which is layer 2 of OSI model) with a protocol such as

shortest path bridging [3].

1.1 Overview of load balancing algorithms

There are five common load balancing algorithms, discussed

below. In this section, some important characteristics and

suitable environment for using these algorithms are given

below.

1.1.1 Round Robin

Round Robin is the most widely used algorithm in computer

science. Main thing about it is that it is easy for the

implementation and easy to understand. It is also worked in a

load balancing. Suppose, two servers are waiting for the

requests behind load balancer in system. Assume a scenario in

which the first request arrives, then balancer will forward this

DOI: 10.18535/ijecs/v5i8.04

Poonam Kumari, IJECS Volume 05 Issue 08 Aug 2016 Page No.17375-17380 Page 17376

request to the first server. And when the second request arrives

to the balancer then (assuming it is coming from a different

client), this request will be forwarded to the second server [4].

As mentioned above there are two servers in this cluster. So,

the next request (i.e. third one) will be moved back to the first

server. And then next upcoming fourth request will forward

back to the second server, and so on, in a circular way.

The method used in round robin is very simple. But when this

algorithm gives best results or for which environment it does

not work well, for the answers of these questions can be

understand by following examples.

Suppose, Server 1 is having more CPU, RAM, and other

specifications compared to the Server 2 means now Server 1

should be able to handle a higher workload than Server 2,

right? But, a load balancer with round robin algorithm would

not work accordingly to the capacity of these two servers. So it

may give inefficient results because the load balancer still

distribute workload (means requests) equally to the both

servers by using round robin algorithm [4].

According to this scheduling server 2 gets overloaded faster

and probably it may go down. So, it is not a suitable approach

for this situation. So, to handle these servers according to their

capacity wise, a weighted round robin algorithm is introduced.

 It is clear that round robin algorithm is suitable for a cluster

consisting of servers with identical specifications. But if

specifications of servers are not same then weighted round

robin approach is used.

1.1.2 Weighted Round Robin

As it is mentioned above in second scenario in which server 1

is having higher capacity than the server 2 means Server 1 is

having higher specifications than Server 2. By using weighted

round robin algorithm, load balancer assigns more requests to

the server 1 which is having higher capability to handling

greater load than server 2. This algorithm is known as

Weighted Round Robin algorithm.

This Weighted Round Robin is same as Round Robin

algorithm in a manner by which incoming requests are

assigned to the server is still cyclical. The server with the

higher specifications will be apportioned to a greater count of

requests.

But how would a load balancer know about the capacities of

the nodes available in the network? It is set beforehand.

Basically, when a load balancer is set up in network, then it is

assigned by the "weights" to each node. These weights are

given according to the capacity of nodes which is available in

system. A node which is having higher specifications should be

given a higher weight and a node which is having lesser

specifications should be given lesser weight accordingly.

Usually weights are specified in proportion to the actual

capacities. For an example, if the capacity of server 1 is 5x

more than the Server 2's, so, weight of the server is usually

given as 5 and for the Server 2 a weight is given to 1.

So, when clients are started to come in. The first five requests

will be assigned to the server 1 and then after the upcoming

sixth request will be assigned to the server 2.

If more clients are come in system, then this same sequence

will be followed by balancer to distribute incoming requests.

That means, the upcoming 7th, 8th, 9th, 10th, and 11th

requests will all assign to the Server1, and the next 12th

request will be assigned to the Server 2, and so on [5].

Weighted round robin is suitable for such system in which

above mentioned capacity of server is an issue. It is also

suitable for such situations, in which capacities of the servers

are equal but we want any server from the network to get a

substantially lesser number of connections than an equally

capable server. This is useful for such scenario in which the

first server is running a business-critical applications and we

don't want this to be get overloaded easily.

1.1.3 Least Connections

This can be understand by assuming a scenario in which two

servers are in a cluster and these two servers are having exactly

the same specifications. Suppose one server may still get

overloaded faster than the other server. The one possible

reason for such scenario would be that clients which are

connecting to the server 2 stays connected much longer than

those clients which are connecting to the server 1. So, the total

current connections in server 2 is increased. While the clients

of server 1 are connecting and disconnecting over the shorter

times. So that, the total current connections in server 1 would

be remain same and having lesser current connections compare

to the server 2.

So, for a result, resources of server 2 can run out speedily. As

in an example given below, where we can see that clients 1 and

3 are already disconnected, while client 2, 4, 5 and 6 are still

connected.

For such situations, the Least Connections algorithm is better.

This algorithm consider the total number of current

connections of each node has. So when a client try to connect

with a node so, the load balancer will determine a server which

is having a least number of current connections in system

firstly and then it will assign the incoming request to that

server. And make a new connection to that server [5].

For example (continuing to last example given above), client 6

now attempts to connect after the both 1 and 3 have already

terminated but both 2 and 4 are still in connection, So, load

balancer will now assign next client 6 to the Server 1 instead of

the Server 2.

1.1.4 Weighted Least Connections

The improvement of Round Robin algorithm is a Weighted

Round Robin. The Weighted Least Connections algorithm do

similar to the Least Connections. It uses a "weight" component

in algorithm. This weight can be find according to the

respective capacities of an each server. Same as in the

Weighted Round Robin algorithm. So, before started we have

to specify the "weight" of each server.

 If a load balancer works according to the Weighted Least

Connections algorithm then there are two things which should

be consider by it are following: (1) the weights/capacities of

each server (2) the current number of clients that are currently

connected to each server.

 1.1.5 Random

There is no such particular method is used in assigning a task

to the node. As it name tells, this algorithm randomly matches

clients and nodes available. This can be done by using random

number generator. Suppose there is a high traffic in system,

then the load balancer will receive these requests and distribute

these requests evenly to the nodes available by using random

algorithm. So, it works here like Round Robin algorithm. The

Random algorithm is sufficient for those clusters which consist

nodes with the similar configurations such as (CPU, RAM,

etc).

2. Literature Survey

2.1 Brief Overview of Taxonomy of Load Balancing

Policies

DOI: 10.18535/ijecs/v5i8.04

Poonam Kumari, IJECS Volume 05 Issue 08 Aug 2016 Page No.17375-17380 Page 17377

The different categories of the load-balancing policies are

displayed in this part. A detailed overview of these different

taxonomies are given in later sub parts.

2.1.1 Static versus Dynamic

Static load distribution also called as a deterministic

scheduling. In this scheme load balancer assigns a given job to

a fixed processor or node. In static scheme, the system is

restarted every time and the same binding of task-processor

(means the allocation of a task to the same processor which is

predefined) is followed without considering the changes that

may be occurred during lifetime of a system. Moreover, static

load distribution may also characterized in the strategy which

is applied at runtime. In this strategy, it does not follow the

same task-processor assignment as previous, but it assigns

newly arrived jobs in a sequential or in a fixed fashion. For

example, by using a simple static strategy, arrived jobs can be

assigned to the nodes in a round-robin manner. So that, each

processor executes approximately the same number of tasks.

Fixed or static scheme produces poor results because it does

not consider any changes occurred in a system. So, Dynamic

load-balancing scheme is introduced. In this scheme, system

parameters may not be fixed before. A dynamic policy is

usually executed several times in system and can change the

binding of task-processor. It may change/reassign a previously

scheduled job to a new processor/node according to the current

dynamics of the system environment.

2.1.2 Distributed Versus Centralized

Load distribution normally falls under the category of dynamic

load-balancing scheme, where a basic question arises that

where the actually decision is made. In centralized policies,

global information is store at a central node/location and by

using some computations on this information load balancer

takes the scheduling decisions and store resources of one or

more processors. This scheme is most suitable for such systems

where a central station/node can easily collect an individual

processor's state information at little cost, and the new jobs

first arrived at this centralized location and then redirected to

the subsequent nodes. But it has a single point of failure. This

is the main drawback of this scheme [6].

In distributed scheduling, the state information is distributed

among the nodes that are responsible in managing their own

resources or allocating tasks residing in their queues to other

processors. In some cases, the scheme allows idle processors to

assign tasks to themselves at runtime by accessing a shared

global queue. Note that failures occurring at a particular node

will remain localized and may not affect the global operation

of the system.

 Another available scheme which lies between the above

mentioned two types is hierarchical scheme. In this scheme,

some nodes are selected as a decision makers. These nodes are

responsible for scheduling of task by providing task to the set

of processors. These selected nodes are arranged in the form of

tree. In which, the selected nodes are the roots of a sub tree

domains.

2.1.3 Local Versus Global

The both Local and the global load-balancing falls under the

category of distributed scheme. Since a centralized scheme

should always work as a global. Each processor polls with

other processors in its neighborhood in this local load

balancing scheduling. And by using this local status

information load balancer makes decision upon a load

migration. This local neighborhood area is generally called as

migration space in the local load balancing scheduling. The

primary objective of this scheme is to minimize the remote

communication between nodes and to maintain an efficiently

balance of load on the processors. But in the case of global

balancing scheme, status information of the entire or a part of

the system is shared which is used to make decision about

load-balancing. A considerable information set is needed to be

exchanged within a system which may be affect its scalability

[6].

2.1.4 Cooperative versus Non-Cooperative

There are two mechanisms which involves the cooperation

level between the parts of the system within the distributed

dynamic global scheduling. These are cooperative and non-

cooperative schema. Non-cooperative is also called

autonomous scheme. Each node is autonomous and maintain

its own resource scheduling in the non-cooperative scheme.

That means, decisions are made by each node independently

without involving the rest of the system. So that nodes may

transfer or allocate the tasks according to their local

performance. But in cooperative scheduling, processes work

together towards a common system-wide global balance. So

that, decisions are depend upon some global measures. So

scheduling decisions are take place after considering their

effectiveness on global measures (such as global completion

time).

2.1.5 Adaptive versus Non-Adaptive

Dynamic load-balancing policies has two parts: Adaptive and

non-adaptive schemes. Scheduled decisions are made by

considering the past and the present system performance in an

adaptive scheme. These decisions are also affected by the

previous decisions or the changes occurred in environment. If

any system parameter does not correlated to the performance

of program, it is weighted low for next time. But in non-

adaptive scheme, system parameters which are used in the

scheduling, are not affected by the system's past behavior and

remains same. An example may be of such policy which

always weighs it’s given inputs to the same without

considering the past behavior of the system.

Main thing which helps to distinguish between both dynamic

scheduling and adaptive scheduling is that a dynamic

scheduling takes an environmental inputs into consideration

while making the decisions, whereas an adaptive scheduling

takes an environmental stimuli into the account to alter

scheduling policy itself . An adaptive policy is also a dynamic

[7].

2.1.6 One-Time Assignment versus Dynamic Reassignment

In this part, scheduling of an entities are considered. If task is

assigned to node under one time assignment scheme, it may be

dynamically done but it is scheduled once to the available

node. It cannot be rescheduled to another processor/node.

Whereas in the dynamic reassignment process, jobs can be

transfer after an initial binding is done from one processor to

another processor. But it may have a negative aspect such as

tasks may endlessly moving into the system without having

much progress.

2.1.7 Sender/Receiver/Symmetrical Initiated

In distributed systems, techniques for task scheduling are

divided into sender-initiated, receiver-initiated, and

symmetrically-initiated. In sender-initiated algorithm, a node

which is overloaded can transfer their one or more tasks to the

under- loaded nodes. In receiver-initiated scheme, a node

DOI: 10.18535/ijecs/v5i8.04

Poonam Kumari, IJECS Volume 05 Issue 08 Aug 2016 Page No.17375-17380 Page 17378

which is now under-loaded can request for tasks to be sent

from nodes which is having higher loads to them. In a

symmetric approach, both under-loaded and over loaded nodes

can initiate about load transfers.

2.2 Related Work

In 2014, Sunil K S, Ravichandra A J and Dr. H S Guruprasad,

researchers studying Load Balancing in Three Tier Cloud

Computing concluded that Load Balancing Algorithm reduces

the average execution time of user tasks by increasing machine

availability time which leads uniform distribution of workload

in a cloud infrastructure [8].

In their approach they did not use the fault tolerant concept if a

server crashes then it may lead to system fault.

In 2015, Geethu Gopinath P P and Shriram K Vasudevan , in

their research paper with title “An in depth analysis and study

of load balancing techniques in the cloud computing

environment" have given the performance metrics of load

balancing algorithms in cloud are response time and waiting

time [9].

In their research, they compare two algorithms but not able to

find the approach for dynamic load balancing.

2.3 Motivation

Load balancing covers different types of architectures that are

not possible in traditional approach to handle large amount of

requests. The motivation behind this approach is that it is

having simplified design, scalable and enough control over the

availability of large data. Load balancing provides results more

efficient for different types of tasks.

Load balancing can be applied in many ways as according to

user requirements like here Round Robin method is used to

implement the load balancing. When there are thousands of

requests at a time over the single server then it is not able to

handle all the requests then it fails. It needs more servers to

handle them at single instance so it needs something that

distribute the load of all requests to among the servers. To

solve this problem load balancing is used here to distribute the

load and provide more efficient and accurate result.

2.4 Contribution

The contribution of this research work can be summarized as

the improved performance of Load balancing using Round

Robin method with different number of servers over the single

server.

The load balancing makes the performance better when the

number of servers added to the load balancer network. It

improves the efficiency of the result generated by the server,

also reduce the load traffic from the single server and distribute

these traffic loads to all the servers which are connected to the

load balancer. It also care about the system crashes, it never

cause the system failure if any server crashes and all other

servers perform their execution without interrupt and provide

the efficient result.

3. Proposed Approach & Experimental Setup

3.1 Proposed Approach

In this research, a load balancer is developed based on Round-

Robin Approach. Load balancer receives hundreds of requests

at same instant from client and it distributes the load to the

different instances/machines. Load distribution is independent

of the number of instances/machines.

In this research, a load balancer is developed which is

distributing total workload among available machines or

instances of an application. This distribution is done according

to the Round Robin approach. Round Robin is one of the most

popular approach which is best suitable for those applications

which uses context switching concept somewhere in their

program. By using its approach, context switching is

implemented based on some criteria. This helps to load

balancer to divide a total number of tasks equally to instances

of an application. So that, a particular part (i.e. range of task)

of a program is executed by one instance and next part is

executed by next instance and so on. And round robin also

responsible for parallel execution of a process. This can

minimize the response time of a program.

Round Robin is suitable for such systems where all available

machines are having similar configurations and able to process

equal number of tasks by taking approximately equal time.

Here, the instances of an application is used to process tasks.

Which shows a similar capacity to process. If any system is

having dissimilar type of specifications of machines means

machines may be of different capacities then also we can used

extent approach of Round Robin. This is known as weighted

round robin. Here in this research, instances of same

application is used. So we can assume that it all are takes

approximately same time to process same number of tasks.

These all the things are implemented based on the concept of

Round Robin algorithm.

The service processes the message and sends back the response

that is routed via the load balancer back to the client. Due to

any reason if one of the instance/machine fails while process

execution, this does not lead the complete process to failure.

To simulate the scenario, this research implements a client

application using a service to Sort the n numbers. The

calculation is split into many small intervals. Therefore, the

service gets overloaded and the performance drops down. The

solution for such scenarios could be using of load balancer.

3.2 Experimental Setup

In this research, all the tests are performed under following

specifications:

Host System: Intel i5 processor with 6 GB RAM and 1000

GB Hard disk.

Operating Environment: Windows 10

Microsoft Tool: Visual Studio 2013 is used for Task

Parallelism.

4. Results And Analysis
4.1 Performing sorting function with load balancing on 5k

Numbers

Here in the first experiment of this research, sorting function is

applied on 5k random numbers in three different ways.

Implementation is done on the single server, two servers and

three servers which are having similar type of configurations.

Here number of executions are five on all type of servers. After

performing the operation time is calculated of all servers.

Table 4.1

Execution Time for Single Server, Two Servers & Three

Servers

Experiment

No.

Single

Server

Two

Servers

Three

Servers

1 14.256 9.54 7.652

2 13.35 8.96 6.544

3 12.66 8.486 6.452

4 12.8 8.796 6.398

5 12.68 8.656 6.55

DOI: 10.18535/ijecs/v5i8.04

Poonam Kumari, IJECS Volume 05 Issue 08 Aug 2016 Page No.17375-17380 Page 17379

Table 4.1 presents the execution time of load balancing

executed on all these servers. When load balancing is done on

the single server the execution is much higher than as compare

to that when load balancing is done on two servers and three

servers. Maximum speed is achieved when there are three

servers. Along with the speed accuracy is also maintained

perfectly through the load balancer. These results show the

efficiency and speed of load balancing over the different

servers.

Figure 4.1: Execution Time for Single Server, Two Servers &

Three Servers

From the figure 4.1 it is showing the execution time of load

balancing executed on all these servers. When load balancing

is done on the single server the execution is much higher than

as compare to that when load balancing is done on two servers

and three servers. Maximum speed is achieved when there are

three servers. Along with the speed accuracy is also maintained

perfectly through the load balancer. These results show the

efficiency and speed of load balancing over the different

servers. The resulting graph displaying the gap between these

operations and prove that load balancer is producing efficient

and high speed performance and also it is seen that as number

of servers increase then the speed and performance of the

operations also increase.

4.2 Performing sorting function with load balancing on

10k Numbers

Here in the first experiment of this research, sorting function is

applied on 10k random numbers in three different ways.

Implementation is done on the single server, two servers and

three servers which are having similar type of configurations.

Here number of executions are five on all type of servers. After

performing the operation time is calculated of all servers.

Table 4.2

Execution Time for Single Server, Two Servers & Three

Servers

Experiment

No.

Single

Server

Two

Servers

Three

Servers

1 22.56 16.75 13.75

2 20.98 15.896 13.445

3 20.458 15.458 12.369

4 19.784 14.785 12.856

5 19.633 14.536 12.476

Table 4.2 presents the execution time of load balancing

executed on all these servers. When load balancing is done on

the single server the execution is much higher than as compare

to that when load balancing is done on two servers and three

servers. Maximum speed is achieved when there are three

servers. Along with the speed accuracy is also maintained

perfectly through the load balancer. These results show the

efficiency and speed of load balancing over the different

servers.

Figure 4.2: Execution Time for Single Server, Two Servers &

Three Servers

From the figure 4.2 it is showing the execution time of load

balancing executed on all these servers. When load balancing

is done on the single server the execution is much higher than

as compare to that when load balancing is done on two servers

and three servers. Maximum speed is achieved when there are

three servers. Along with the speed accuracy is also maintained

perfectly through the load balancer. These results show the

efficiency and speed of load balancing over the different

servers. The resulting graph displaying the gap between these

operations and prove that load balancer is producing efficient

and high speed performance and also it is seen that as number

of servers increase then the speed and performance of the

operations also increase.

4.3 Performing sorting function with load balancing on

15k Numbers

Here in the first experiment of this research, sorting function is

applied on 15k random numbers in three different ways.

Implementation is done on the single server, two servers and

three servers which are having similar type of configurations.

Here number of executions are five on all type of servers. After

performing the operation time is calculated of all servers.

Table 4.3

Execution Time for Single Server, Two Servers & Three

Servers

Experiment

No.
Single Server

Two

Servers

Three

Servers

1 29.784 22.698 17.488

2 28.636 22.865 16.589

3 28.411 21.569 16.48

4 27.96 21.856 16.963

5 27.458 22.58 16.865

Table 4.3 presents the execution time of load balancing

executed on all these servers. When load balancing is done on

the single server the execution is much higher than as compare

to that when load balancing is done on two servers and three

servers. Maximum speed is achieved when there are three

servers. Along with the speed accuracy is also maintained

perfectly through the load balancer. These results show the

efficiency and speed of load balancing over the different

servers.

0

5

10

15

1 2 3 4 5

E
x
ec

u
ti

o
n
 T

im
e

in
 s

ec

No. of Experiments

Execution on 5k Numbers

Single Server Two Servers Three Servers

0

10

20

30

1 2 3 4 5

E
x
ec

u
ti

o
n
 T

im
e

in
 s

ec

No. of Experiments

Execution on 10k Numbers

Single Server Two Servers Three Servers

DOI: 10.18535/ijecs/v5i8.04

Poonam Kumari, IJECS Volume 05 Issue 08 Aug 2016 Page No.17375-17380 Page 17380

Figure 4.3: Execution Time for Single Server, Two Servers &

Three Servers

From the figure 4.3 it is showing the execution time of load

balancing executed on all these servers. When load balancing

is done on the single server the execution is much higher than

as compare to that when load balancing is done on two servers

and three servers. Maximum speed is achieved when there are

three servers. Along with the speed accuracy is also maintained

perfectly through the load balancer. These results show the

efficiency and speed of load balancing over the different

servers. The resulting graph displaying the gap between these

operations and prove that load balancer is producing efficient

and high speed performance and also it is seen that as number

of servers increase then the speed and performance of the

operations also increase.

5. Conclusion

5.1 Conclusion

This research shows the load balancing working, how the load

balancer distribute the load with using the round robin

approach. It is very clear to see the results that show the load

balancer is capable to distribute the load on the different

servers.

Results prove that load balancer give the more efficient results

in terms of speed and accuracy. The results prove that when the

number of servers increase then the speed increases and

accuracy also maintained.

It does not effect if some server crashes while execution or in

middle of operation and then other server’s execution is not

affected by this and their operation will be executed

continuously.

5.2 Future Scope

The present and future of this area is bright, and full of

opportunities and great challenges as it processes high

demands.

In future it can be used for the auto sharding for the high

scalable demands.

References

[1] N. Ajith Singh, M. Hemalatha, “An approach on semi

distributed load balancing algorithm for cloud

computing systems” International Journal of Computer

Applications Vol-56 No.12 2012

[2] Shanti Swaroop moharana, Rajadeepan d. Ramesh &

Digamber Powar ,” Analysis of load balancers in cloud

computing” International Journal of Computer Science

and Engineering (IJCSE)ISSN 2278-9960 Vol. 2, Issue

2, May 2013, 101-108.

[3] Gaurav R. et al. “Comparative Analysis of Load

Balancing Algorithms in Cloud Computing.”

International Journal of Advanced Research in

Computer Engineering & Technology, Vol. 1, No. 3,

pp.120-124, May 2012.

[4] A.Khiyaita, M.Zbakh, H. El Bakkali & Dafir El

Kettani ,”Load Balancing Cloud Computing : State of

Art” IEEE Network Security and Systems (JNS2),

2012 National Days of , 978-1-4673-1050-5.

[5] Ektemal Al-Rayis, Heba Kurdi,” Performance

Analysis of Load Balancing Architectures in Cloud

Computing” IEEE Modelling Symposium (EMS),

2013 European, 20-22 Nov. 2013, 978-1-4799-2577-3.

[6] Shridhar G.Damanal and G. Ram Mahana Reddy,”

Optimal Load Balancing in Cloud Computing By

Efficient Utilization of Virtual Machines”, IEEE 978-

1-4799-3635-9/14

[7] D. Fernández-Baca: Allocating modules to processors

in a distributed system, IEEE Transactions on

Software Engineering, Vol. 15, No. 11, pp. 1427-1436

(1989).

[8] Suneel K S, Ravichandra A J and Dr. H S Guruprasad,

“Enhanced load balancing algorithm in three tier cloud

computing”, International Journal of Engineering

Sciences & Research Technology, December 2014

[9] Geethu Gopinath and Shriram K Vasudevan, “An in

depth analysis and study of load balancing techniques

in the cloud computing environment”,2nd International

Symposium on Big data and Cloud computing, 2015

[10] Rodrigo N. Calheiros, Rajiv Ranjan,Anton Beloglazov

and Rajkumar Buyya,Cesar A. F. De Rose,”

CloudSim: a toolkit for modeling and simulation of

cloud computing environments and evaluation of

resource provisioning algorithms” Published online 24

August 2010 in Wiley Online Library

(wileyonlinelibrary.com). DOI: 10.1002/spe.995

[11] Suneel K S - Department of Computer Engineering,

BMSCE Ravichandra A J - Department of

Computer Engineering, ,BMSCE and Dr. H S

Guruprasad - Department of Computer Engineering,

,BMSCE “Enhanced load balancing algorithm in three

tier cloud computing”,International Journal of

Engineering Sciences & Research

Technology,December- 2014

0

10

20

30

40

1 2 3 4 5

E
x
ec

u
ti

o
n
 T

im
e

in
 s

ec

No. of Experiments

Execution on 15k Numbers

Single Server Two Servers Three Servers

