

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 10 October, 2013 Page No. 2958-2965

Aditi Khazanchi, IJECS Volume 2 Issue10 October, 2013 Page No.2959-2065 Page 2958

AN OVERVIEW OF DISTRIBUTED FILE

SYSTEM
Aditi Khazanchi, Akshay Kanwar, Lovenish Saluja

Abstract

This paper presents a distributed file system that is a client/server -based application that allows clients to access

and process data stored on the server as if it were on their own computer. The purpose of a distributed file system

(DFS) is to allow users of physically distributed computers to share data and storage resources by using a common

file system. It consists of an introduction of DFS, features of DFS, its background, its concepts, design goals and

consideration. It also emphasized on Classical file system: Sun network file system and Andrew file system and a

brief study of Google file system.

Introduction

A method of storing and accessing files based in

client/server architecture. In a distributed file system,

one or more central servers store files that can be

accessed, with proper authorization rights, by any

number of remote clients in the network. Much like

an operating system organizes files in a hierarchical

file management system; the distributed system uses

a uniform naming convention and a mapping scheme

to keep track of where files are located.

Distributed file systems can be advantageous because

they make it easier to distribute documents to

multiple clients and they provide a centralized storage

system so that client machines are not using their

resources to store files.

With Distributed File System (DFS), system

administrators can make it easy for users to access

and manage files that are physically distributed across

a network. With DFS, you can make files distributed

across multiple servers appear to users as if they

reside in one place on the network. Users no longer

need to know and specify the actual physical location

of files in order to access them.

For example, if you have marketing material scattered

across multiple servers in a domain, you can use DFS

to make it appear as though all of the material resides

on a single server. This eliminates the need for users

to go to multiple locations on the network to find the

information they need.

History

The Incompatible Timesharing System used virtual

devices for transparent inter-machine file system

access in the 1960s. More file servers were developed

in the 1970s. In 1976 Digital Equipment

Corporation created the File Access Listener (FAL), an

implementation of the Data Access Protocol as part

of DECnet Phase II which became the first widely used

network file system. In 1985 Sun

Microsystems created the file system called "Network

File System" (NFS) which became the first widely

used Internet Protocol based network file system.

Other notable network file systems are Andrew File

System (AFS), Apple Filing Protocol (AFP), NetWare

Core Protocol (NCP), and Server Message Block (SMB)

which is also known as Common Internet File System

(CIFS).

Design Goals

http://www.ijecs.in/

Aditi Khazanchi, IJECS Volume 2 Issue10 October, 2013 Page No.2959-2065 Page 2959

Distributed file systems may aim for "transparency" in

a number of aspects. That is, they aim to be "invisible"

to client programs, which "see" a system which is

similar to a local file system. Behind the scenes, the

distributed file system handles locating files,

transporting data, and potentially providing other

features listed below.

 Access transparency is that clients are unaware

that files are distributed and can access them in

the same way as local files are accessed.

 Location transparency A consistent name space

exists encompassing local as well as remote files.

The name of a file does not give its location.

 Concurrency transparency All clients have the

same view of the state of the file system. This

means that if one process is modifying a file, any

other processes on the same system or remote

systems that are accessing the files will see the

modifications in a coherent manner.

 Failure transparency The client and client

programs should operate correctly after a server

failure.

 Heterogeneity File service should be provided

across different hardware and operating system

platforms.

 Scalability The file system should work well in

small environments (1 machine, a dozen

machines) and also scale gracefully to huge ones

(hundreds through tens of thousands of systems).

 Replication transparency To support scalability,

we may wish to replicate files across multiple

servers. Clients should be unaware of this.

 Migration transparency Files should be able to

move around without the client's knowledge.

1. Design Consideration

 Avoiding single point of failure

The failure of disk hardware or a given storage node in

a cluster can create a single point of failure that can

result in data loss or unavailability. Fault

tolerance and high availability can be provided

through data replication of one sort or another, so

that data remains intact and available despite the

failure of any single piece of equipment. For

examples, see the lists of distributed fault-tolerant file

and distributed parallel fault-tolerant file systems.

 Performance

A common performance measurement of a clustered

file system is the amount of time needed to satisfy

service requests. In conventional systems, this time

consists of a disk-access time and a small amount

of CPU-processing time. But in a clustered file system,

a remote access has additional overhead due to the

distributed structure. This includes the time to deliver

the request to a server, the time to deliver the

response to the client, and for each direction, a CPU

overhead of running the communication protocol

software.

 Concurrency

Concurrency control becomes an issue when more

than one person or client is accessing the same file or

block and want to update it. Hence updates to the file

from one client should not interfere with access and

updates from other clients. This problem is more

complex with file systems due to concurrent

overlapping writes, where different writers write to

overlapping regions of the file concurrently. This

problem is usually handled by concurrency

control or locking which may either be built into the

file system or provided by an add-on protocol.

Concepts of DFS

Naming and Transparency

Naming is a mapping between logical and physical

objects. In DFS, users represent a logical data object

with a file name that is a textural name in user-level,

but the system physically stores data blocks on disk

tracks which is numerical identifiers mapped to disk

blocks in system – level. These two levels mapping

provides users with an abstraction of a file that hides

the details of how and where the file is stored on a

disk. In DFS, the location of the file in the network is

added to the abstraction. In conventional file system,

the range of the naming mapping is represented as an

address in a disk. The file abstraction leads us to the

notion of file replication. When we want to access a

specific file name the mapping returns a set of

locations of the file replicas. But, this abstraction

allows hiding both their locations and existence of

multiple copies.

There are two notion related mapping in DFS:

Location transparency – the name of a file does not

reveal any hint as to its physical storage location.

Aditi Khazanchi, IJECS Volume 2 Issue10 October, 2013 Page No.2959-2065 Page 2960

Location independence – the name of a file not be

changed when the file’s physical storage location

change.

Both definitions are relative to naming of files.

According to location independence is a stronger

property than location transparency because it can

map the same file name to different locations at two

different instance of time.

File Replication

File replication is a vital concept in all distributed

systems. In a system that supports replication, a file

may be represented by several copies of its contents

at different location. Replicas of file are useful

redundancy for accessing wait and delay of files

because it helps to share the loads between servers. If

a server copy is not available at some point, clients

may simply request that file from a different server.

Almost all distributed systems uses file replication and

backup. However, we have to notice that file

replication is more powerful feature because there is

a key difference between those two. Since backup

create checkpoint in the file system to which the

system can be restored that file replication is a policy

of keeping redundant copies of a file. This replication

policy makes sure that files are accessible even if one

or more components of DFS fail.

Replication techniques can be divided into three main

classes:

Explicit replication: The client explicitly writes files to

multiple servers. This approach requires explicit

support from the client and does not provide

transparency.

Lazy file replication: The server automatically copies

files to other servers after the files are written.

Remote files are only brought up to date when the

files are sent to the server. How often this happens is

up to the implementation and affects the consistency

of the file state .

Group file replication: write requests are

simultaneously sent to a group of servers. This keeps

all the replicas up to date, and allows clients to read

consistent file state from any replica.

Semantics of sharing

When more than one user access a file, it is crucial for

the distributed file system to specify how it will

behave. These semantics define how read and write

operations (file accesses) are related to each other

during a file session - series of file accesses between

opening and closing of a file. We can use different

semantics of sharing to deal with shared accesses

depending on the goal. Four semantics of sharing are

cited: UNIX semantics, session semantics, immutable

shared file semantics and transaction-like semantics.

Since UNIX semantics and session semantics are the

most employed, we will focus on them.

UNIX semantics- In the UNIX semantics, each file has

only a single image shared by all users. Write

operations on it will instantaneously affect clients that

have the same file opened. Moreover, read

operations always correspond to the last previous

write operation.

Session semantics- Different from UNIX semantics,

session semantics does not provide a single file image.

When performing a remote access on the latter, a

local copy of the file is done on each client who opens

it. File accesses are done locally in such a way that

their modifications will only be updated when the file

is opened.

Caching

In distributed file system context, files are frequently

accessed, thus the system will have to deal with a

great number of requests. Furthermore, the scenario

can be worst if the distributed file system is relied on

a remote service. In this method of access, each

request becomes a message to the server and its

result is also sent as a message. Instead of always

using remote accesses, it is encouraged to employ

caching on clients to improve performance.

When caching is employed, a part of the file (or even

the whole file) is copied. However, caching does not

mean file replication. This part of the file (or block) is

commonly recorded in main memory, besides other

storage devices can also be used. Caching is very

useful to provide fault tolerance and scalability. The

caching usage is encouraged to improve performance

as well as replication technique.

2. CLASSICAL DISTRIBUTED FILE SYSTEM –

Aditi Khazanchi, IJECS Volume 2 Issue10 October, 2013 Page No.2959-2065 Page 2961

NFS- Sun Network File system

Network File System (NFS) is a distributed file

system protocol originally developed by Sun

Microsystems in 1984, allowing a user on a client

computer to access files over a network in a manner

similar to how local storage is accessed. NFS, like

many other protocols, builds on the Open Network

Computing Remote Procedure Call (ONC RPC) system.

6.1.1. NFS ARCHITECTURE

6.1.2. NFS IMPLEMENTATION

• It consists of three layers:

– System call layer: This handles

calls like OPEN, READ, and

CLOSE.

– Virtual file system (VFS): The

task of the VFS layer is to

maintain a table with one entry

for each open file, analogous to

the table of i-nodes for open

files in UNIX. VFS layers have

an entry, called a v-node

(virtual i-node) for every open

file telling whether the file is

local or remote.

– NFS client code: to create an r-

node (remote i-node) in its

internal tables to hold the file

handles. The v-node points to the

r-node. Each v-node in the VFS

layer will ultimately contain either

a pointer to an r-node in the NFS

client code, or a pointer to an i-

node in the local operating

system. Thus from the v-node it is

possible to see if a file or

directory is local or remote, and if

it is remote, to find its file handle.

6.1.3. PATH NAME TRANSLATION

• Break the complete pathname into

components.

• For each component, do an NFS

lookup using the

 Component name + directory

v-node

• After a mount point is reached, each

component piece will cause a server

access.

• Can't hand the whole operation to

server since the client may have a

second mount on a subsidiary

directory (a mount on a mount).

Aditi Khazanchi, IJECS Volume 2 Issue10 October, 2013 Page No.2959-2065 Page 2962

• A directory name cache on the client

speeds up lookups.

6.1.4 Caches of Remote Data

• The client keeps:

File block cache - (the contents of a

file)

File attribute cache - (file header info

(i-node in UNIX)).

• The local kernel hangs on to the data

after getting it the first time.

• On an open, local kernel, it checks

with server that cached data is still

OK.

• Cached attributes are thrown away

after a few seconds.

• Data blocks use read ahead and

delayed write.

• Mechanism has:

Server consistency problem

Good performance.

6.2 Andrew File System

The Andrew File System (AFS) is

a distributed network file system which

uses a set of trusted servers to present a

homogeneous, location-transparent file

name space to all the client workstations.

It was developed by Carnegie Mellon

University as part of the Andrew

Project. It is named after Andrew

Carnegie and Andrew Project. Its primary

use is in distributed computing.

6.2.1 AFS Architecture

Figure .

Venus

Workstat ions Serv ers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

Aditi Khazanchi, IJECS Volume 2 Issue10 October, 2013 Page No.2959-2065 Page 2963

Distribution of processes in the Andrew File

System

 Like NFS, AFS provides transparent access to

remote shared files for UNIX programs

running on workstations.

 AFS is implemented as two software

components that exist at UNIX processes

called Vice and Venus.

 The files available to user processes running

on workstations are either local or shared.

 Local files are handled as normal UNIX files.

 They are stored on the workstation’s disk and

are available only to local user processes.

 Shared files are stored on servers, and copies

of them are cached on the local disks of

workstations.

 The UNIX kernel in each workstation and

server is a modified version of BSD UNIX.

 The modifications are designed to intercept

open, close and some other file system calls

when they refer to files in the shared name

space and pass them to the Venus process in

the client computer.

6.2.2 Shared Name Space

• The server file space is divided into volumes.

Volumes contain files of only one user. It's

these volumes that are the level of granularity

attached to a client.

• A vice file can be accessed using a fid =

<volume number, v-node >. The fid doesn't

depend on machine location. A client queries

a volume-location database for this

information.

• Volumes can migrate between servers to

balance space and utilization. Old server has

"forwarding" instructions and handles client

updates during migration.

• Read-only volumes (system files, etc.) can be

replicated. The volume database knows how

to find these.

6.2.3. File Operations And Consistency Semantics

• If a file is remote, the client operating

system passes control to a client user-level

process named Venus.

• The client talks to vice server only during

open/close; reading/writing are only to the

local copy.

• A further optimization - if data is locally

cached, it's assumed to be good until the

client is told otherwise.

• A client is said to have a callback on a file.

• When a client encaches a file, the server

maintains state for this fact.

• Before allowing a write to a file, the server

does a callback to anyone else having this

file open; all other cached copies are

invalidated.

• When a client is rebooted, all cached data

is suspect.

• If too much storage used by server for

callback state, the server can break some

callbacks.

• The system clearly has consistency

concerns.

6. CASE STUDY: Google File System

Google File System (GFS or GoogleFS) is

a proprietary distributed file system developed

by Google for its own use. It is designed to

provide efficient, reliable access to data using

large clusters of commodity hardware.

7.1 GFS Key Design Goals

 Scalability:
 High throughput, parallel reads/writes

 Fault tolerance built in:
Commodity components might fail often
Network partitions can happen

 Re-examine standard I/O semantics:
Complicated POSIX semantics vs. scalable
primitives vs. common workloads
 Co-design files system and applications

7.2 ARCHITECTURE

Aditi Khazanchi, IJECS Volume 2 Issue10 October, 2013 Page No.2959-2065 Page 2964

A GFS cluster consists of a single master and
multiple chunkservers and is accessed by
multiple clients, as shown in Figure. Each of
these is typically a commodity Linux machine
running a user level server process. It is easy
to run both a chunkserver and a client on the
same machine, as long as machine resources
permit and the lower reliability caused by
running possibly flaky application code is
acceptable.
Files are divided into fixed-size chunks. Each
chunk is identified by an immutable and
globally unique 64 bit chunk handle assigned
by the master at the time of chunk creation.
Chunkservers store chunks on local disks as
Linux files and read or write chunk data
specified by a chunk handle and byte range.
For reliability, each chunk is replicated on
multiple chunkservers. By default, we store
three replicas, though users can designate
different replication levels for different
regions of the file namespace.
The master maintains all file system
metadata. This includes the namespace,
access control information, the mapping from
files to chunks, and the current locations of
chunks. It also controls system-wide activities
such as chunk lease management, garbage
collection of orphaned chunks, and chunk
migration between chunkservers. The master
periodically communicates with each
chunkserver in Heartbeat messages to give it
instructions and collect its state.
GFS client code linked into each application
implements the file system API and
communicates with the master and
chunkservers to read or write data on behalf
of the application. Clients interact with the

master for metadata operations, but all data-
bearing communication goes directly to the
chunkservers. We do not provide the POSIX
API and therefore need not hook into the
Linux v-node layer.
 Neither the client nor the chunkserver caches
file data.
Client caches over little benefit because most
applications stream through huge files or have
working sets too large to be cached. Not
having them simplifies the client and the
overall system by eliminating cache
coherence issues.(Clients do cache metadata,
however.) Chunkservers need not cache file
data because chunks are stored as local files
and so Linux’s buffer cache already keeps
frequently accessed data in memory.

7. Conclusion

The DFS is one of the most important and
widely used forms of shared permanent
storage. A typical configuration for a DFS

is a collection of workstations and

mainframes connected by a local area

network (LAN). A DFS is implemented as

part of the operating system of each of

the connected computers. Architecture,
Naming space, File replication, Caching,
introduction to distributed file system,
different file system are the key terms that
are to be taken into consideration. We now
understand the distributed file system, its
evolution, other file systems, their
architecture and implementation, different
concepts of DFS, its design goals and
consideration.

Aditi Khazanchi, IJECS Volume 2 Issue10 October, 2013 Page No.2959-2065 Page 2965

8. References

http://searchcio-
midmarket.techtarget.com/definition/distribu
ted-file-system

http://technet.microsoft.com/en-
us/library/cc738688(v=ws.10).aspx

http://www.webopedia.com/TERM/D/distrib
uted_file_system.html

www.cs.gsu.edu/~cscyqz/courses/aos/slides1
1/ch6.5-Fall11.pptx - slide ch6.5

http://en.wikipedia.org/wiki/Clustered_file_s
ystem

http://www.comp.leeds.ac.uk/mscproj/report
s/1011/mista.pdf

ftp://ftp.irisa.fr/local/caps/DEPOTS/BIBLIO20
08/biblio_Lage-Freitas_Andre.pdf

www.cs.rice.edu/~gw4314/lectures/dfs.ppt

http://en.wikipedia.org/wiki/Andrew_File_Sys
tem

http://en.wikipedia.org/wiki/Google_File_Syst
em

