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Abstract 

In computer science, an ambiguous grammar is a formal grammar for which there exists a string that can have more 

than one leftmost derivation, while an unambiguous grammar is a formal grammar for which every valid string has a 

unique leftmost derivation. For real-world programming languages, the reference CFG is often ambiguous, due to 

issues such as the dangling else problem. If present, these ambiguities are generally resolute by adding precedence 

rules or other context-sensitive parsing rules, so the overall phrase grammar is unambiguous. 

It has been known since 1962 that the ambiguity problem for context-free grammars is undesirables. Ambiguity in 

context-free grammars is a frequent problem in language design and parser invention, as well as in applications 

where grammars are used as models of real-world physical structures. 

We observe  that there is a simple linguistic categorization of the grammar  ambiguity problem, and  we show  how to  

develop this to conservatively  approximate the problem based  on local  regular  approximations and  grammar 

unfolding. As an application, we consider grammars that occur in RNA analysis in bioinformatics, and we 

demonstrate that our static analysis of context-free grammars is sufficiently precise and efficient to be sensibly useful. 

Introduction 

In formal language theory, a context-free grammar 

(CFG) is a formal grammar in which every production 

rule is of the form 

V → w 

Where V is a single non-terminal symbol, and w is a 

string of terminals and/or non-terminals (w can be 

empty). A formal grammar is considered "context 

free" when its production rules can be applied apart 

from of the context of a non-terminal. It does not 

matter which symbols the non-terminal is surrounded 

by, the single non-terminal on the left hand side can 

always be replaced by the right hand side. 

Languages generated by context-free grammars are 

known as context-free languages (CFL). Different 

Context Free grammars can generate the same context 

free language. It is important to discriminate properties 

of the language (intrinsic properties) from properties of 

a particular grammar (extrinsic properties). Given two 

context free grammars, the language equality question 

(do they generate the same language?) is undesirable. 

Context-free grammars are important in linguistics for 

describing the structure of sentences and words in 

natural language, and in computer science for 

recitation the structure of programming languages and 

other formal languages. 

In linguistics, some authors use the term phrase 

structure grammar to refer to context-free grammars, 

whereby phrase structure grammars are distinct from 

craving grammars. In computer science, a popular 

notation for context-free grammars is Backus–Naur 

Form, or BNF. 

 

 

1.1.Overview: 

Characterization of grammar ambiguity that allows us 

to reason about the language of the non-terminals in 

the grammar rather than the structure of the grammar. 

In particular, we reformulate the ambiguity problem in 

terms of language roundabout and overlap operations. 

Based on this characterization, we formulate a general 

frame- work for conservatively approximating the 
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ambiguity problem. In another section we show how 

regular approximations can be used to obtain a 

particular decidable approximation.  Next section 

discusses applications in the area of bio sequence 

analysis where context-free grammars are used to 

describe RNA structures. It also summarizes a number 

of experiments that test the accuracy and performance 

of the analysis. In the appendices, we show how the 

precision can be improved by selectively unfolding 

parts of the given grammar, and we provide proofs of 

the propositions. 

A context-free grammar G is defined by the 4-tuple 

 where 

1.  is a finite set; each element  is 

called a non-terminal character or a variable. 

Each variable represents a different type of 

phrase or clause in the sentence. Variables are 

also sometimes called syntactic categories. 

Each variable defines a sub-language of the 

language defined by . 

2.  is a finite set of terminals, disjoint from , 

which make up the actual content of the 

sentence. The set of terminals is the alphabet 

of the language defined by the grammar . 

3.  is a finite relation from  to , 

where the asterisk represents the KLeene star 

operation. The members of  are called 

the (rewrite) rules or productions of the 

grammar. (also commonly symbolized by 

a ) 

4.  is the start variable (or start symbol), used 

to represent the whole sentence (or program). 

It must be an element of . 

 

Production rule notation 

A production rule in  is formalized mathematically 

as a pair , where  is a non-

terminal and  is a string of variables 

and/or terminals; rather than using ordered pair 

notation, production rules are usually written using an 

arrow operator with  as its left hand side and  as 

its right hand side: . 

It is allowed for  to be the empty string, and in this 

case it is customary to denote it by ε. The 

form  is called an ε-production. 

It is common to list all right-hand sides for the same 

left-hand side on the same line, using | (the pipe 

symbol) to separate them. Rules 

 and  can hence be written as

. 

 

Rule application 

For any strings , we say 

 directly yields , written as , 

if  with 

 and  such 

that  and . Thus,  is the 

result of applying the rule   to . 

Repetitive rule application 

For any  we say  yields 

 written as  (or  in some 

textbooks), 

if  such 

that  

 

Context-free language 

The language of a grammar 

 is the set 

 

A language  is said to be a context-free language 

(CFL), if there exists a CFG , such 

that . 

 

Proper CFG’s 

A context-free grammar is said to be proper, if it has 

 no inaccessible symbols: 

 

 no unproductive symbols: 

 

 no ε-

productions: 

 ε 

(the right-arrow in this case denotes logical 

"implies" and not grammatical "yields") 

 no cycles:  

 

Example 

The grammar , with 

productions 
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S → aSa, 

S → bSb, 

S → ε, 

is context-free. It is not proper since it includes an ε-

production. A typical derivation in this grammar is 

S → aSa → aaSaa → aabSbaa → aabbaa. 

This makes it clear that

. The 

language is context-free, however it can be proved that 

it is not regular. 

 

 

2. A Characterization of Grammar 

Ambiguity 

We begin by briefly recapitulating the basic 

terminology about context-free grammars. 

Definition 1 (Context-free grammar and 

ambiguity). 

A context-free gram- mar (CFG) G is defined by G = 

(N , Σ , s, π) where N is a finite  set of  non-terminals,  

Σ is a finite  set of alphabet symbols (or  terminals), s 

∈N is the  start non-terminal, and π : N → P (E∗)  is 

the production function  where E = Σ ∪N . 

We write αnω ⇒ αθω when θ ∈ π (n) and α, ω ∈ E∗, 

and ⇒∗ is the reflexive transitive closure of ⇒. We 

assume that every non-terminal n ∈N is reachable from 

s and derives some string that is, ∃α, φ, ω ∈ Σ∗: s ⇒∗ 

αnω ⇒∗ αφω. The language of a sentential form α ∈ 

E∗ is LG (α) = {x ∈ Σ ∗ | α ⇒∗ x}, and the language of 

G is L (G) = LG (s). 

Assume that x ∈ L (G), that is, s = φ0   ⇒ φ1   ⇒ ...  ⇒ 

φn  = x. Such a 

derivation  sequence  gives  rise  to  a  derivation  tree  

where  each  node  is  labelled with a symbol from  E,  

the root is labelled s,  leaves are labelled from  Σ , and 

the labels of children  of a node  with  label e are  in  

π(e).  G  is  ambiguous  if  there exists a string x in 

L(G)  with multiple  derivation  trees,  and we then say 

that x is ambiguous  relative  to G. 

We now introduce the properties vertical and 

horizontal unambiguity and show that they together 

characterize grammar unambiguity. 

Definition 2 (Vertical and horizontal unambiguity). 

 A grammar G is vertically unambiguous if 

∀n ∈ N , α, α0 ∈ π(n),α = α0 :  LG (α) ∩ LG (α0) = ∅ 

A grammar G is horizontally unambiguous if 

∀n ∈ N, α ∈ π (n), i ∈ {1... |α|−1}:  LG (α0 ••• αi−1) ∩ 

LG (αi ••• α|α|−1) = ∅ 

Where   ∩ is the language overlap operator defined by 

 X ∩ Y = { xay  | x, y ∈ Σ ∗ ∧ a ∈ Σ + ∧ x, xa ∈ X ∧ y, 

ay ∈ Y } 

Intuitively, vertical unambiguity means that, during 

parsing of a string, there is never a choice between two 

different productions of a non-terminal. The overlap X 

∩ Y  is the set of strings  in XY   that can be split  non-

uniquely in an X part and a Y part.  For example, if X 

= {x, xa} and Y = {a, ay} then X ∩ Y = {xay}. 

Horizontal unambiguity then means that, when parsing 

a string according to a production, there is never any 

choice of how to split the string into substrings 

corresponding to the entities in the production. 

Definition 3 (Characterization of Ambiguity). 

G is vertically and horizontally unambiguous   ⇔ G is 

unambiguous 

Proof:  Intuitively, any ambiguity must result from a 

choice between two productions of some non-terminal 

or from a choice of how to split a string according to a 

single production. 

This  scheme essentially means  that we have  

transformed the  problem  of context-free grammar 

ambiguity from  a  grammatical   property to a  

linguistic property dealing solely with  the languages  

of the non-terminals in the grammar rather than with 

derivation trees. As we shall see in the next section, 

this characterization can be exploited to obtain a good 

conservative approximation for the problem without 

violating the two requirements described. Note that 

this linguistic characterization of grammar ambiguity 

should not be perplexed with the notion of inherently 

ambiguous languages/ (A language is inherently 

ambiguous if all its grammars are ambiguous.)  

 

3. A Framework for  Conservative 

Approximation 
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The characterization of ambiguity presented above can 

be used as a foundation for a agenda for obtaining 

decidable, conservative approximations of the 

ambiguity problem.  When the analysis says 

“unambiguous grammar”, we know that this is indeed 

the case. The key to this technique is that the linguistic 

characterization allows us to reason about languages of 

non-terminals rather than derivation trees. 

Definition 6 (Grammar over-approximation).  

A  grammar  over-approximation  relative  to a CFG  

G is a function  AG  : E∗  → P (Σ ∗) where LG (α)  ⊆ 

AG (α)  for every α ∈ E∗. An approximation strategy 

A is a function that returns a grammar over 

approximation AG given a CFG G. 

Definition 7 (Approximated vertical and horizontal 

unambiguity). 

A grammar G is vertically unambiguous relative to a 

grammar over-approximation AG if 

∀n ∈ N, α, α0 ∈ π(n),α = α0 :  AG (α) ∩ AG (α0) = ∅ 

Similarly, G is horizontally unambiguous relative to 

AG if 

∀n ∈ N ,α ∈ π(n),i ∈ {1,... , |α|−1} :  AG (α0  ••• αi−1 ) 

∩ AG (αi ••• α|α|−1 ) = ∅ Finally,  we say that  an 

approximation strategy  A is  decidable  if the 

following problem is decidable: “Given a grammar  G, 

is G vertically  and horizontally  unambiguous relative  

to AG ?” 

Definition 8 (Approximation soundness). 

If G is vertically and horizon- tally unambiguous 

relative to AG then G is unambiguous. 

 

4. Regular Approximation 

One approach for obtaining decidability is to consider  

regular  approximations, that is, ones where AG (α)  is 

a regular  language  for each α:  the family of regular  

languages  is closed under  both connection and 

overlap,  and  emptiness  on regular  languages  is 

decidable. Also, shortest examples can easily be 

extracted from non-empty regular languages.  As a 

concrete approximation strategy we propose using 

Mohri and Nederhof’s algorithm for constructing 

regular approximations of context-free grammars. 

We will not repeat their algorithm in detail, but some 

important properties are worth mentioning. Given a 

CFG G, the approximation results in another 

CFG  G0  which is right linear (and  hence its language 

is regular),  L(G)  ⊆ L(G0 ), and  G0  is at most  twice  

the size of G.  Whenever  n  ⇒∗ αnω  and  n  ⇒∗ θ in 

G  for some α, ω, θ ∈ E  and  n  ∈ N , the grammar  G0  

has  the property  that n ⇒∗ αm θωk  for any m, k. 

Intuitively, G0  keeps track of the order that alphabet 

symbols may appear  in, but  it loses track of the fact 

that α and ω must appear in balance. 

Definition 9 (Mohri-Nederhof approximation 

strategy). 

Let MN  be the approximation strategy  that given a 

CFG G = (N , Σ , s, π) returns  the grammar over-

approximation MN G  defined by MN G (α) = L(Gα ) 

where Gα is the Mohri- Nederhof approximation of the 

grammar (N ∪{sα}, Σ , sα, π[sα  7→ {α}]) for some sα 

6∈ N . 

In other words, whenever we need to compute AG (α) 

for some α ∈ E∗, we apply Mohri and Nederhof’s 

approximation algorithm to the grammar  G modified 

to derive α as the first step. 

 

5. Application to Bio-sequence Analysis 

The languages of bio-sequences are trivial from the 

formal language point of view. The alphabet of DNA 

is ΣDNA = {A, C, G, T}, of RNA it is ΣRNA = {A, C, 

G, U}, and for proteins  it is a 20 letter amino acid 

code. In each case, the language of bio-sequences is 

Σ∗. Bio-sequence analysis relates two sequences to 

each other or one sequence to itself.  The latter is our 

application domain-RNA structure analysis. 

RNA  is a chain  molecule,  built  from the  four  bases  

adenine  (A),  cytosine (C ), guanine  (G),  and  uracil 

(U ), connected  via a backbone of sugar and  

phosphate.  Mathematically, it is a string over ΣRNA 

of moderate length (compared to genomic DNA), 

ranging from 20 to 10,000 bases. 

RNA forms structure by folding back on itself.  

Certain bases, located at different positions in the 

backbone, may form hydrogen bonds. Such bonded 

base pairs arise between complementary bases G − C, 

A − U, and G − U. By forming these bonds, the two 

pairing bases are arranged in a plain, and this inturn 

enables them to stack very densely onto adjacent bases 
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also forming pairs. Helical structures arise, which are 

energetically stable and mechanically rather stiff. They 

enable RNA to perform its wide variety of functions. 

Because of the backbone turning back on itself, RNA 

structures can be viewed as palindromic languages. 

Starting from palindromes in the traditional we can 

characterize palindrome languages for RNA structure 

via five generalizations:  

a. A letter does not match to itself but to a 

complementary. 

b.  The two arms of a palindrome may be 

separated by a non-palindrome string called a 

loop. 

c. The two arms of the palindrome may hold 

non-pairing bases called bulges. 

d. A string  may hold several adjacent 

palindromes separated by unpaired bases 

e. Palindromes can be recursively nested, that is, 

a loop or a bulge may contain further 

palindromes. 

A language is a context-free language (CFL) if all of 

its strings are generated by a context-free grammar. 

A 4-tuple G = < V , , S , P > is a context-free 

grammar (CFG) if V and  are finite sets sharing no 

elements between them, S   V is the start symbol, and 

P is a finite set of productions of the form X -> , 

where X   V , and    ( V   )* . 

Example 1: L1 = { a
n
b

n
 | n is a positive integer } is a 

context-free language. For the following context-free 

grammar G1 = < V1 , , S , P1 > generates L1 :  

V1 = { S } ,  = { a , b } and P1 = { S -> aSb , S -> 

ab }.  

 

Example 2: L2 = { ww
r
| w  {a, b }

+
 } is a context-

free language , where w is a non-empty string and 

w
r
 denotes the reversal of string w, that is, w is spelled 

backward to obtain w
r
 . For the following context-free 

grammar G2 = < V2 , , S , P2 > generates L2 :  

V2 = { S } ,  = { a , b } and P2 = { S -> aSa , S -> 

bSb , S -> aa , S -> bb }.  

 

Example 3: Let L3 be the set of algebraic expressions 

involving identifiers x and y, operations + and * and 

left and right parentheses. Then L3 is a context-free 

language. For the following context-free grammar 

G3 = < V3 , 3, S , P3 > generates L3 :  

V3 = { S } , 3 = { x , y , ( , ) , + , * } and P3 = { S -> 

( S + S ) , S -> S*S , S -> x , S -> y }.  

 

6. Properties of Context-Free Language  

Theorem 1: Let L1 and L2 be context-free languages. 

Then L1  L2 , L1L2 , and L1
*
 are context-free 

languages.  

 

Outline of Proof: 

This theorem can be verified by constructing context-

free grammars for union, concatenation and Kleene 

star of context-free grammars as follows:  

 

Let G1 = < V1, , S1 , P1 > and G2 = < V2 ,  , S2 , 

P2 > be context-free grammars generating L1 and L2 , 

respectively.  

 

Then for L1  L2, first re-label symbols of V2, if 

necessary, so that V1 and V2 don't share any symbols. 

Then let Su be a symbol which is not in V1  V2. 

Next define Vu = V1  V2  { Su } and Pu = P1 

 P2  { Su -> S1 , Su -> S2 } .  

 

Then it can be easily seen that Gu = < Vu, , Su , Pu > 

is a context-free grammar that generates the language 

L1  L2 .  

 

Similarly for L1L2, first re-label symbols of V2, if 

necessary, so that V1 and V2 don't share any symbols. 

Then let Sc be a symbol which is not in V1  V2. 

Next define Vc = V1  V2  { Sc } and Pc = P1 

 P2  { Sc -> S1S2 } .  

Then it can be easily seen that Gc = < Vc ,  , Sc , 

Pc > is a context-free grammar that generates the 

language L1L2 .  

 

For L1
*
, let Ss be a symbol which is not in V1. Then let 

Ps = P1  {Ss -> SsS1, Ss -> }. It can be seen that 

the grammar Gs = < Vs, , Ss , Ps > is a context-free 

grammar that generates the language L1
*
 .  

 

Pushdown Automata  

 

Like regular languages which are accepted by finite 
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automata, context-free languages are also accepted by 

automata but not finite automata. They need little more 

complex automata called pushdown automata.  

Let us consider a context-free language a
n
b

n
 . Any 

string of this language can be tested for the 

membership for the language by a finite automaton if 

there is a memory such as a pushdown stack that can 

store a's of a given input string. For example, as a's are 

read by the finite automaton, push them into the stack. 

As soon as the symbol b appears stop storing a's and 

start popping a's one by one every time a b is read. If 

another (or anything other than b) is read after the first 

b, reject the string. When all the symbols of the input 

string are read, check the stack. If it is empty, accept 

the string. Otherwise reject it. 

This automaton behaves like a finite automaton except 

the following two points: First, its next state is 

determined not only by the input symbol being read, 

but also by the symbol at the top of the stack. Second, 

the contents of the stack can also be changed every 

time an input symbol is read. Thus its transition 

function specifies the new top of the stack contents as 

well as the next state.  

Let us define this new type of automaton formally.  

 

A pushdown automata (or PDA) is a 7-tuple M = < Q 

,  ,  , q0 , Z0 , A ,  >,where Q is a finite set of 

states,  and  are finite sets (the input and stack 

alphabet,respectively).  

q0 is the initial state, Z0 is the initial stack symbol and 

it is a member of  , A is the set of accepting states  

 is the transition function and  

 : Q  (   (  }   -> 2
 Q

  
*
.  

 Conclusion 

We have obtainable a technique for statically 

analyzing ambiguity of context-free grammars. Based 

on a linguistic characterization, the technique allows 

the use of grammar transformations, in particular 

regular approximation and recitation, without 

sacrificing reliability.  Moreover, the analysis is often 

able to identify sources of ambiguity through existing 

examples being automatically generated. The  analysis  

may be used when LR(k)  and  related  techniques  are 

insufficient, for example  in  bio-sequence  analysis,  

as our  examples show. Our experiments indicate that 

the precision, the speed, and the quality of warning 

messages are ample to be practically useful. 
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