

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 10 October, 2013 Page No. 2921-2926

Akshay Kanwar, IJECS Volume 2 Issue10 October,2013 Page No.2921-2026 Page 2921

Analyzing Ambiguity of Context-Free Grammars
Akshay Kanwar, Aditi Khazanchi, Lovenish Saluja

Abstract

In computer science, an ambiguous grammar is a formal grammar for which there exists a string that can have more

than one leftmost derivation, while an unambiguous grammar is a formal grammar for which every valid string has a

unique leftmost derivation. For real-world programming languages, the reference CFG is often ambiguous, due to

issues such as the dangling else problem. If present, these ambiguities are generally resolute by adding precedence

rules or other context-sensitive parsing rules, so the overall phrase grammar is unambiguous.

It has been known since 1962 that the ambiguity problem for context-free grammars is undesirables. Ambiguity in

context-free grammars is a frequent problem in language design and parser invention, as well as in applications

where grammars are used as models of real-world physical structures.

We observe that there is a simple linguistic categorization of the grammar ambiguity problem, and we show how to

develop this to conservatively approximate the problem based on local regular approximations and grammar

unfolding. As an application, we consider grammars that occur in RNA analysis in bioinformatics, and we

demonstrate that our static analysis of context-free grammars is sufficiently precise and efficient to be sensibly useful.

Introduction

In formal language theory, a context-free grammar

(CFG) is a formal grammar in which every production

rule is of the form

V → w

Where V is a single non-terminal symbol, and w is a

string of terminals and/or non-terminals (w can be

empty). A formal grammar is considered "context

free" when its production rules can be applied apart

from of the context of a non-terminal. It does not

matter which symbols the non-terminal is surrounded

by, the single non-terminal on the left hand side can

always be replaced by the right hand side.

Languages generated by context-free grammars are

known as context-free languages (CFL). Different

Context Free grammars can generate the same context

free language. It is important to discriminate properties

of the language (intrinsic properties) from properties of

a particular grammar (extrinsic properties). Given two

context free grammars, the language equality question

(do they generate the same language?) is undesirable.

Context-free grammars are important in linguistics for

describing the structure of sentences and words in

natural language, and in computer science for

recitation the structure of programming languages and

other formal languages.

In linguistics, some authors use the term phrase

structure grammar to refer to context-free grammars,

whereby phrase structure grammars are distinct from

craving grammars. In computer science, a popular

notation for context-free grammars is Backus–Naur

Form, or BNF.

1.1.Overview:

Characterization of grammar ambiguity that allows us

to reason about the language of the non-terminals in

the grammar rather than the structure of the grammar.

In particular, we reformulate the ambiguity problem in

terms of language roundabout and overlap operations.

Based on this characterization, we formulate a general

frame- work for conservatively approximating the

http://www.ijecs.in/

Akshay Kanwar, IJECS Volume 2 Issue10 October,2013 Page No.2921-2026 Page 2922

ambiguity problem. In another section we show how

regular approximations can be used to obtain a

particular decidable approximation. Next section

discusses applications in the area of bio sequence

analysis where context-free grammars are used to

describe RNA structures. It also summarizes a number

of experiments that test the accuracy and performance

of the analysis. In the appendices, we show how the

precision can be improved by selectively unfolding

parts of the given grammar, and we provide proofs of

the propositions.

A context-free grammar G is defined by the 4-tuple

 where

1. is a finite set; each element is

called a non-terminal character or a variable.

Each variable represents a different type of

phrase or clause in the sentence. Variables are

also sometimes called syntactic categories.

Each variable defines a sub-language of the

language defined by .

2. is a finite set of terminals, disjoint from ,

which make up the actual content of the

sentence. The set of terminals is the alphabet

of the language defined by the grammar .

3. is a finite relation from to ,

where the asterisk represents the KLeene star

operation. The members of are called

the (rewrite) rules or productions of the

grammar. (also commonly symbolized by

a)

4. is the start variable (or start symbol), used

to represent the whole sentence (or program).

It must be an element of .

Production rule notation

A production rule in is formalized mathematically

as a pair , where is a non-

terminal and is a string of variables

and/or terminals; rather than using ordered pair

notation, production rules are usually written using an

arrow operator with as its left hand side and as

its right hand side: .

It is allowed for to be the empty string, and in this

case it is customary to denote it by ε. The

form is called an ε-production.

It is common to list all right-hand sides for the same

left-hand side on the same line, using | (the pipe

symbol) to separate them. Rules

 and can hence be written as

.

Rule application

For any strings , we say

 directly yields , written as ,

if with

 and such

that and . Thus, is the

result of applying the rule to .

Repetitive rule application

For any we say yields

 written as (or in some

textbooks),

if such

that

Context-free language

The language of a grammar

 is the set

A language is said to be a context-free language

(CFL), if there exists a CFG , such

that .

Proper CFG’s

A context-free grammar is said to be proper, if it has

 no inaccessible symbols:

 no unproductive symbols:

 no ε-

productions:

 ε

(the right-arrow in this case denotes logical

"implies" and not grammatical "yields")

 no cycles:

Example

The grammar , with

productions

Akshay Kanwar, IJECS Volume 2 Issue10 October,2013 Page No.2921-2026 Page 2923

S → aSa,

S → bSb,

S → ε,

is context-free. It is not proper since it includes an ε-

production. A typical derivation in this grammar is

S → aSa → aaSaa → aabSbaa → aabbaa.

This makes it clear that

. The

language is context-free, however it can be proved that

it is not regular.

2. A Characterization of Grammar

Ambiguity

We begin by briefly recapitulating the basic

terminology about context-free grammars.

Definition 1 (Context-free grammar and

ambiguity).

A context-free gram- mar (CFG) G is defined by G =

(N , Σ , s, π) where N is a finite set of non-terminals,

Σ is a finite set of alphabet symbols (or terminals), s

∈N is the start non-terminal, and π : N → P (E∗) is

the production function where E = Σ ∪N .

We write αnω ⇒ αθω when θ ∈ π (n) and α, ω ∈ E∗,

and ⇒∗ is the reflexive transitive closure of ⇒. We

assume that every non-terminal n ∈N is reachable from

s and derives some string that is, ∃α, φ, ω ∈ Σ∗: s ⇒∗

αnω ⇒∗ αφω. The language of a sentential form α ∈

E∗ is LG (α) = {x ∈ Σ ∗ | α ⇒∗ x}, and the language of

G is L (G) = LG (s).

Assume that x ∈ L (G), that is, s = φ0 ⇒ φ1 ⇒ ... ⇒

φn = x. Such a

derivation sequence gives rise to a derivation tree

where each node is labelled with a symbol from E,

the root is labelled s, leaves are labelled from Σ , and

the labels of children of a node with label e are in

π(e). G is ambiguous if there exists a string x in

L(G) with multiple derivation trees, and we then say

that x is ambiguous relative to G.

We now introduce the properties vertical and

horizontal unambiguity and show that they together

characterize grammar unambiguity.

Definition 2 (Vertical and horizontal unambiguity).

 A grammar G is vertically unambiguous if

∀n ∈ N , α, α0 ∈ π(n),α = α0 : LG (α) ∩ LG (α0) = ∅

A grammar G is horizontally unambiguous if

∀n ∈ N, α ∈ π (n), i ∈ {1... |α|−1}: LG (α0 ••• αi−1) ∩

LG (αi ••• α|α|−1) = ∅

Where ∩ is the language overlap operator defined by

 X ∩ Y = { xay | x, y ∈ Σ ∗ ∧ a ∈ Σ + ∧ x, xa ∈ X ∧ y,

ay ∈ Y }

Intuitively, vertical unambiguity means that, during

parsing of a string, there is never a choice between two

different productions of a non-terminal. The overlap X

∩ Y is the set of strings in XY that can be split non-

uniquely in an X part and a Y part. For example, if X

= {x, xa} and Y = {a, ay} then X ∩ Y = {xay}.

Horizontal unambiguity then means that, when parsing

a string according to a production, there is never any

choice of how to split the string into substrings

corresponding to the entities in the production.

Definition 3 (Characterization of Ambiguity).

G is vertically and horizontally unambiguous ⇔ G is

unambiguous

Proof: Intuitively, any ambiguity must result from a

choice between two productions of some non-terminal

or from a choice of how to split a string according to a

single production.

This scheme essentially means that we have

transformed the problem of context-free grammar

ambiguity from a grammatical property to a

linguistic property dealing solely with the languages

of the non-terminals in the grammar rather than with

derivation trees. As we shall see in the next section,

this characterization can be exploited to obtain a good

conservative approximation for the problem without

violating the two requirements described. Note that

this linguistic characterization of grammar ambiguity

should not be perplexed with the notion of inherently

ambiguous languages/ (A language is inherently

ambiguous if all its grammars are ambiguous.)

3. A Framework for Conservative

Approximation

Akshay Kanwar, IJECS Volume 2 Issue10 October,2013 Page No.2921-2026 Page 2924

The characterization of ambiguity presented above can

be used as a foundation for a agenda for obtaining

decidable, conservative approximations of the

ambiguity problem. When the analysis says

“unambiguous grammar”, we know that this is indeed

the case. The key to this technique is that the linguistic

characterization allows us to reason about languages of

non-terminals rather than derivation trees.

Definition 6 (Grammar over-approximation).

A grammar over-approximation relative to a CFG

G is a function AG : E∗ → P (Σ ∗) where LG (α) ⊆

AG (α) for every α ∈ E∗. An approximation strategy

A is a function that returns a grammar over

approximation AG given a CFG G.

Definition 7 (Approximated vertical and horizontal

unambiguity).

A grammar G is vertically unambiguous relative to a

grammar over-approximation AG if

∀n ∈ N, α, α0 ∈ π(n),α = α0 : AG (α) ∩ AG (α0) = ∅

Similarly, G is horizontally unambiguous relative to

AG if

∀n ∈ N ,α ∈ π(n),i ∈ {1,... , |α|−1} : AG (α0 ••• αi−1)

∩ AG (αi ••• α|α|−1) = ∅ Finally, we say that an

approximation strategy A is decidable if the

following problem is decidable: “Given a grammar G,

is G vertically and horizontally unambiguous relative

to AG ?”

Definition 8 (Approximation soundness).

If G is vertically and horizon- tally unambiguous

relative to AG then G is unambiguous.

4. Regular Approximation

One approach for obtaining decidability is to consider

regular approximations, that is, ones where AG (α) is

a regular language for each α: the family of regular

languages is closed under both connection and

overlap, and emptiness on regular languages is

decidable. Also, shortest examples can easily be

extracted from non-empty regular languages. As a

concrete approximation strategy we propose using

Mohri and Nederhof’s algorithm for constructing

regular approximations of context-free grammars.

We will not repeat their algorithm in detail, but some

important properties are worth mentioning. Given a

CFG G, the approximation results in another

CFG G0 which is right linear (and hence its language

is regular), L(G) ⊆ L(G0), and G0 is at most twice

the size of G. Whenever n ⇒∗ αnω and n ⇒∗ θ in

G for some α, ω, θ ∈ E and n ∈ N , the grammar G0

has the property that n ⇒∗ αm θωk for any m, k.

Intuitively, G0 keeps track of the order that alphabet

symbols may appear in, but it loses track of the fact

that α and ω must appear in balance.

Definition 9 (Mohri-Nederhof approximation

strategy).

Let MN be the approximation strategy that given a

CFG G = (N , Σ , s, π) returns the grammar over-

approximation MN G defined by MN G (α) = L(Gα)

where Gα is the Mohri- Nederhof approximation of the

grammar (N ∪{sα}, Σ , sα, π[sα 7→ {α}]) for some sα

6∈ N .

In other words, whenever we need to compute AG (α)

for some α ∈ E∗, we apply Mohri and Nederhof’s

approximation algorithm to the grammar G modified

to derive α as the first step.

5. Application to Bio-sequence Analysis

The languages of bio-sequences are trivial from the

formal language point of view. The alphabet of DNA

is ΣDNA = {A, C, G, T}, of RNA it is ΣRNA = {A, C,

G, U}, and for proteins it is a 20 letter amino acid

code. In each case, the language of bio-sequences is

Σ∗. Bio-sequence analysis relates two sequences to

each other or one sequence to itself. The latter is our

application domain-RNA structure analysis.

RNA is a chain molecule, built from the four bases

adenine (A), cytosine (C), guanine (G), and uracil

(U), connected via a backbone of sugar and

phosphate. Mathematically, it is a string over ΣRNA

of moderate length (compared to genomic DNA),

ranging from 20 to 10,000 bases.

RNA forms structure by folding back on itself.

Certain bases, located at different positions in the

backbone, may form hydrogen bonds. Such bonded

base pairs arise between complementary bases G − C,

A − U, and G − U. By forming these bonds, the two

pairing bases are arranged in a plain, and this inturn

enables them to stack very densely onto adjacent bases

Akshay Kanwar, IJECS Volume 2 Issue10 October,2013 Page No.2921-2026 Page 2925

also forming pairs. Helical structures arise, which are

energetically stable and mechanically rather stiff. They

enable RNA to perform its wide variety of functions.

Because of the backbone turning back on itself, RNA

structures can be viewed as palindromic languages.

Starting from palindromes in the traditional we can

characterize palindrome languages for RNA structure

via five generalizations:

a. A letter does not match to itself but to a

complementary.

b. The two arms of a palindrome may be

separated by a non-palindrome string called a

loop.

c. The two arms of the palindrome may hold

non-pairing bases called bulges.

d. A string may hold several adjacent

palindromes separated by unpaired bases

e. Palindromes can be recursively nested, that is,

a loop or a bulge may contain further

palindromes.

A language is a context-free language (CFL) if all of

its strings are generated by a context-free grammar.

A 4-tuple G = < V , , S , P > is a context-free

grammar (CFG) if V and are finite sets sharing no

elements between them, S V is the start symbol, and

P is a finite set of productions of the form X -> ,

where X V , and (V)* .

Example 1: L1 = { a
n
b

n
 | n is a positive integer } is a

context-free language. For the following context-free

grammar G1 = < V1 , , S , P1 > generates L1 :

V1 = { S } , = { a , b } and P1 = { S -> aSb , S ->

ab }.

Example 2: L2 = { ww
r
| w {a, b }

+
 } is a context-

free language , where w is a non-empty string and

w
r
 denotes the reversal of string w, that is, w is spelled

backward to obtain w
r
 . For the following context-free

grammar G2 = < V2 , , S , P2 > generates L2 :

V2 = { S } , = { a , b } and P2 = { S -> aSa , S ->

bSb , S -> aa , S -> bb }.

Example 3: Let L3 be the set of algebraic expressions

involving identifiers x and y, operations + and * and

left and right parentheses. Then L3 is a context-free

language. For the following context-free grammar

G3 = < V3 , 3, S , P3 > generates L3 :

V3 = { S } , 3 = { x , y , (,) , + , * } and P3 = { S ->

(S + S) , S -> S*S , S -> x , S -> y }.

6. Properties of Context-Free Language

Theorem 1: Let L1 and L2 be context-free languages.

Then L1 L2 , L1L2 , and L1
*
 are context-free

languages.

Outline of Proof:

This theorem can be verified by constructing context-

free grammars for union, concatenation and Kleene

star of context-free grammars as follows:

Let G1 = < V1, , S1 , P1 > and G2 = < V2 , , S2 ,

P2 > be context-free grammars generating L1 and L2 ,

respectively.

Then for L1 L2, first re-label symbols of V2, if

necessary, so that V1 and V2 don't share any symbols.

Then let Su be a symbol which is not in V1 V2.

Next define Vu = V1 V2 { Su } and Pu = P1

 P2 { Su -> S1 , Su -> S2 } .

Then it can be easily seen that Gu = < Vu, , Su , Pu >

is a context-free grammar that generates the language

L1 L2 .

Similarly for L1L2, first re-label symbols of V2, if

necessary, so that V1 and V2 don't share any symbols.

Then let Sc be a symbol which is not in V1 V2.

Next define Vc = V1 V2 { Sc } and Pc = P1

 P2 { Sc -> S1S2 } .

Then it can be easily seen that Gc = < Vc , , Sc ,

Pc > is a context-free grammar that generates the

language L1L2 .

For L1
*
, let Ss be a symbol which is not in V1. Then let

Ps = P1 {Ss -> SsS1, Ss -> }. It can be seen that

the grammar Gs = < Vs, , Ss , Ps > is a context-free

grammar that generates the language L1
*
 .

Pushdown Automata

Like regular languages which are accepted by finite

Akshay Kanwar, IJECS Volume 2 Issue10 October,2013 Page No.2921-2026 Page 2926

automata, context-free languages are also accepted by

automata but not finite automata. They need little more

complex automata called pushdown automata.

Let us consider a context-free language a
n
b

n
 . Any

string of this language can be tested for the

membership for the language by a finite automaton if

there is a memory such as a pushdown stack that can

store a's of a given input string. For example, as a's are

read by the finite automaton, push them into the stack.

As soon as the symbol b appears stop storing a's and

start popping a's one by one every time a b is read. If

another (or anything other than b) is read after the first

b, reject the string. When all the symbols of the input

string are read, check the stack. If it is empty, accept

the string. Otherwise reject it.

This automaton behaves like a finite automaton except

the following two points: First, its next state is

determined not only by the input symbol being read,

but also by the symbol at the top of the stack. Second,

the contents of the stack can also be changed every

time an input symbol is read. Thus its transition

function specifies the new top of the stack contents as

well as the next state.

Let us define this new type of automaton formally.

A pushdown automata (or PDA) is a 7-tuple M = < Q

, , , q0 , Z0 , A , >,where Q is a finite set of

states, and are finite sets (the input and stack

alphabet,respectively).

q0 is the initial state, Z0 is the initial stack symbol and

it is a member of , A is the set of accepting states

 is the transition function and

 : Q ((} -> 2
 Q

*
.

 Conclusion

We have obtainable a technique for statically

analyzing ambiguity of context-free grammars. Based

on a linguistic characterization, the technique allows

the use of grammar transformations, in particular

regular approximation and recitation, without

sacrificing reliability. Moreover, the analysis is often

able to identify sources of ambiguity through existing

examples being automatically generated. The analysis

may be used when LR(k) and related techniques are

insufficient, for example in bio-sequence analysis,

as our examples show. Our experiments indicate that

the precision, the speed, and the quality of warning

messages are ample to be practically useful.

References

1. http://en.wikipedia.org/wiki/Ambiguous_gram

mar

2. http://en.wikipedia.org/wiki/Context-

free_grammar

3. http://www.cs.odu.edu/~toida/nerzic/390teche

d/cfl/cfg.html

4. www.cs.rochester.edu/~nelson/courses/csc_17

3/grammars/cfg.html

5. lambda.uta.edu cse 17 notes node1 .html

6. cs.union.edu/~striegnk/courses/nlp-with-

prolog/html/node37.html

7. http: www.cs.cornell.edu people t svm light

svm cfg.html

8. http: www.cse.ohio-state.edu gurari theory-

bk theory-bk-threese .html

9.

http://en.wikipedia.org/wiki/Ambiguous_grammar/
http://en.wikipedia.org/wiki/Ambiguous_grammar/
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Context-free_grammar
http://www.cs.odu.edu/~toida/nerzic/390teched/cfl/cfg.html
http://www.cs.odu.edu/~toida/nerzic/390teched/cfl/cfg.html
www.cs.rochester.edu/~nelson/courses/csc_173/grammars/cfg.html
www.cs.rochester.edu/~nelson/courses/csc_173/grammars/cfg.html
lambda.uta.edu/cse5317/notes/node12.html
cs.union.edu/~striegnk/courses/nlp-with-prolog/html/node37.html
cs.union.edu/~striegnk/courses/nlp-with-prolog/html/node37.html
http://www.cs.cornell.edu/people/tj/svm_light/svm_cfg.html
http://www.cs.cornell.edu/people/tj/svm_light/svm_cfg.html
http://www.cse.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html
http://www.cse.ohio-state.edu/~gurari/theory-bk/theory-bk-threese3.html

