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Abstract— In Big Data, Map Reduce is a technique that helps to process the query from user to server in an efficient 

way. The Map Reduce is used to process large amount of servers in a parallel way. Hence the parallel processing is done 

in map reduce to retrieve results. To achieve this parallel processing, the jobs are split into 3 phases. Each phase is 

provided with resources for parallel and fast execution of jobs. If the resources are provided in a homogeneous way, it 

takes more time to complete a task.Now Heterogeneous phase level scheduling algorithm with Jobs Execution Scheduling 

is used to split the resources in heterogeneous way. This helps to achieve jobs to be execute greater with effective use of 

resources which improves speed and showing the resource usage variability within the lifetime of a task using a wide-

range of Map Reduce jobs. This Scheduler improves execution parallelism and resource utilization without introducing 

stragglers. Energy-Efficient Algorithm provides the flow time of a job. Flow time of a job is the length of the time interval 

between the release time and the completion time of the job with work efficiency. 
Keywords: Bug, Bug triage, data reduction, Instance selection, Data Mining. 

 

I. INTRODUCTION 

Big Data is a collection of large datasets that 
cannot be processed using traditional computing techniques. 
It is not a single technique or a tool, rather it involves many 
areas of business and technology.Big data involves the data 
produced by different devices and applications. Given 
below are some of the fields that come under the umbrella 
of Big Data.Corporations nowadays are more and more 
reliant on largescale information analytics to make 
important everyday enterprise selections. This shift closer to 
information-driven decision making has fueled the 
improvement of MapReduce[10], a parallel programming 
model that has end up synonymous with huge-scale, 
information-in depth computation. In MapReduce, a task is 
a set of Map and  decrease  Obligations that  may be  
scheduled   on  a couple of machines, resulting in 
substantial discount in activity going for walks time. Many 
big groups,including Google, facebook, and Yahoo!, 
automatically use MapReduce to process huge volumes of 
statistics on a each day foundation. consequently, the 
performance and performance of MapReduce frameworks 
have emerge as essential to the fulfillment of nowadays‘s 
internet companies.A central component to a MapReduce 
system is its job scheduler. Its role is to create a schedule of 
Map and Reduce tasks, spanning one or more jobs, that 
minimizes job completion time and maximizes resource 
utilization. A schedule with too many concurrently running 
tasks on a single machine will result in heavy resource 
contention and long job completion time. Conversely, a 
schedule with too few concurrently running tasks on a 
single machine will cause the machine to have poor 
resource utilization.  

The job scheduling trouble becomes appreciably 
easier to solve if we will assume that each one map tasks 

(and in addition, all lessen obligations) have homogenous 

resource necessities in terms of CPU, memory, disk and 
community systems, which include Hadoop MapReduce 

model 1.x, make this assumption to simplify the scheduling 

problem. these structures use a simple slot-primarily based 
resource allocation scheme, wherein physical resources on 

each system are captured by the quantity of identical slots 

that may be assigned to tasks. regrettably, in exercise, run-
time resource intake varies from undertaking to venture and 

from job to activity. numerous recent research have 
mentioned that production workloads frequently have 

diverse utilization profiles and overall performance 

necessities[8], [21]. Failing to keep in mind those process 
usage characteristics can probably result in inefficient 

process schedules with low resource usage and lengthy 

jobexecution time. 
Inspired by using this commentary, several latest 

proposals, together with useful resource-aware Adaptive 
Scheduling (RAS) [16] and Hadoop MapReduce version 2 

(also referred to as Hadoop NextGen and Hadoop Yarn) [7], 

have introduced resource-conscious process schedulers to 
the MapReduce framework. however, those schedulers 

specify a hard and fast length for every assignment in 

phrases of required resources  (e. g. CPU    and  
reminiscence) , as a  result   assuming   the   run-time  

resource consumption of the mission is strong over its life 
time. however, this isn't actual for many MapReduce jobs. 

especially, it's been mentioned that the execution of every 

MapReduce challenge can be divided into more than one 
stages of data transfer, processing and storage [13]. A phase 

is a sub-manner in the mission that has a wonderful reason 

and can be characterised via the uniform useful resource 
intake over its duration. As we will demonstrate in section 
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2.2, the stages worried in the same mission will have 

exceptional resource call for in terms of CPU, memory, disk 
and network usage. consequently, scheduling obligations 

based totally on constant aid requirements over their 

durations will regularly motive either immoderate resource 
contention by scheduling too many simultaneous duties on a 

machine, or low utilization by using scheduling too few. 
Big data are also highly susceptible to data 

complexities such as noisy, missing, inconsistent data and 
huge number of attributes. Data preprocessing steps such as 
imputing the missing values and reducing the insignificant 
attributes is needed for efficient classification. 
 
CHARACTERISTICS OF BIG DATA 

Volume – The quantity of data that is generated is 
very important in this context. It is the size of the data which 
determines the value and potential of the data under 
consideration and whether it can actually be considered as 
Big  
Data or not. The name ‗Big Data‘ itself contains a term 
which is related to size and hence the characteristic. 

Variety - The next aspect of Big Data is its variety. 
This means that the category to which Big Data belongs to is 
also a very essential fact that needs to be known by the data 
analysts. This helps the people, who are closely analysing 
the data and are associated with it, to effectively use the data 
to their advantage and thus upholding the importance of the 
Big Data.  

Velocity - The term ‗velocity‘ in the context refers 
to the speed of generation of data or how fast the data is 
generated and processed to meet the demands and the 
challenges which lie ahead in the path of growth and 
development.  

 
Variability - This is a factor which can be a 

problem for those who analyze the data. This refers to the 
inconsistency which can be shown by the data at times, thus 
hampering the process of being able to handle and manage 
the data effectively.  

Veracity - The quality of the data being captured 
can vary greatly. Accuracy of analysis depends on the 
veracity of the source data.  

Complexity - Data management can become a very 
complex process, especially when large volumes of data 
come from multiple sources. These data need to be linked, 
connected and correlated in order to be able to grasp the 
information that is supposed to be conveyed by these data. 
 

CONTRIBUTIONS  
In  this  paper,  I  present  PRISM,  a  phase  and  

useful resource data-aware Scheduler for MapReduce 

clusters that performs aid-aware scheduling at the level of 

undertaking phases. in particular, we display that for 

maximum MapReduce programs, the runtime venture aid 

intake can vary substantially from segment to segment. 

therefore, via considering the useful resource call for on the 

section stage, it is possible for the scheduler to obtain better 

stages of parallelism while warding off resource 

competition. To this quit, we have developed a section-

degree scheduling set of rules with the intention of reaching 

high process overall performance and useful resource 

utilization. via experiments the use of a real MapReduce 

cluster walking a extensive-variety of workloads, we display 

PRISM provides as much as 18% development in aid 

utilization even as permitting jobs to finish up to at least 

one.faster than modern-day Hadoop schedulers. in the end, 

even though PRISM is currently designed for Hadoop 

MapReduce, we accept as true with our solution may be 

carried out to Dryad [20] and different parallel computing 

frameworks as nicely.The rest of this paper is organized as 

follows. segment 2 offers a basic evaluation of MapReduce 

scheduling and task execution. We describe the phaselevel 

venture usage traits and our motivation in phase 3. section 

four introduces PRISM and describes its structure. The 

phase-stage scheduling set of rules is offered in details in 

phase 5. Our experimental evaluation of PRISM is furnished 

in phase 6. in the end,we summarize existing work 

associated with PRISM in segment 7, and draw our end in 

section 8. 

 

II  OVERVIEW 
 
            MapReduce [10] is a parallel computing model for 

huge-scale statistics-in depth computations. A MapReduce 

process includes kinds of obligations, specifically map and 

decrease duties. A map undertaking takes as input a 

keyvalue block saved inside the underlying dispensed 

report machine and runs a person-exact map characteristic 

to generate intermediary key-fee output. subsequently, a 

reduce challenge is liable for amassing and making use of a 

person-unique lessen feature on the collected keyvalue 

pairs to supply the final output.Currently, the most popular 

implementation of MapReduce is Apache Hadoop 

MapReduce [1]. A Hadoop cluster includes a huge range of 

commodity machines with one node serving as the master 

and the others performing as slaves. The grasp node runs a 

useful resource supervisor (additionally referred to as a  

activity tracker) this is responsible for scheduling 

obligations on slave nodes. every slave node runs a 

neighborhood node supervisor (also referred to as a 

undertaking tracker) that is accountable for launching and 

allocating sources for each undertaking.To do so, the task 

tracker launches a Java digital device (JVM) that executes 

the corresponding map or reduce project.  

              The unique Hadoop MapReduce (i.e. version 1.x 

and in advance) adopts a slot-based totally aid allocation 

scheme. The scheduler assigns tasks to every device based 

at the wide variety of available slots on that system. The 

quantity of map slots and reduce slots determines 

respectively the most number of map tasks and reduce 

obligations that may be scheduled at the gadget at a given 

time. As a Hadoop cluster is mostly a multi-user machine, 

many users can concurrently post jobs to the cluster. The 

activity scheduling is performed by the resource manager 

within the master node, which keeps a list of jobs within 

the gadget. each slave node monitors the development of 
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each running assignment and to be had sources on the 

node, and periodically (commonly among 1-3 seconds) 

transmit a heartbeat message to convey this records to the 

grasp node. The aid scheduler will use the furnished 

records to make scheduling choices. presently, Hadoop 

MapReduce helps numerous process schedulers which 

include the capability scheduler [2] and honest  scheduler 

[3]. these schedulers make job scheduling decisions at 

challenge degree. They determine which assignment should 

be scheduled on which system at any given time, based on 

the range of unoccupied slots on each system. while this 

simple slot-based allocation scheme is simple and clean to 

enforce, it does no longer take runtime project resource 

intake into consideration.As distinct duties can also have 

exclusive resource necessities, this simple slot-based totally 

useful resource allocation scheme can result in aid 

competition if the scheduler assigns multiple 

responsibilities that have excessive demand fors unmarried 

resource influenced through this observation, Hadoop Yarn 

(additionally referred to as the Hadoop version 2 and 

Hadoop NextGen) [7] allows resource-aware challenge 

scheduling in Hadoop MapReduce clusters. at the same 

time as nonetheless in alpha model, it offers the potential to 

specify the size of the venture field (i.e. a resource 

reservation for a challenge 

 
MAPREDUCE TASK LEVELS 
 

cutting-edge Hadoop activity schedulers carry  

out assignment-stage scheduling, where obligations are 

taken into consideration because the best granularity for  

scheduling. but, if we examine the execution of each 

assignment, we will find that a project consists of more 

than one phases, as illustrated in figure 1. in particular, a 

map project may be divided into 2 major stages: map and 

merge2. The enter of a MapReduce task is stored as records 

blocks (normally of length 64MB or 128MB) in the 

Hadoop disbursed file device (HDFS) [4], where statistics 

blocks are saved across a couple of slave nodes. inside the 

map phase, a mapper fetches a enter information block 

from the Hadoop disbursed record gadget (HDFS) [4] and 

applies the person-defined map function on each file. The 

map function generates data that are serialized and 

collected into a buffer. while the buffer turns into full (i.e., 

content material size exceeds a pre-targeted threshold), the 

content material of the buffer might be written to the 

neighborhood disk. lastly, the mapper executes a merge 

segment to institution the output statistics based totally at 

the middleman keys, and save the statistics in more than 

one files in order that each record can be fetched a 

corresponding reducer. 

 

PROBLEM STATEMENT 
Minimum execution time and the homogeneous 

resource allocation stays a difficult problem. efficient 
section stage scheduling improves the resources usage and 
reduce the execution time.aid Allocation is based totally on 
phases. Map Reduce schedulers outline a static variety of 
slots to represent the capacity of a cluster and creates a hard 
and fast range of execution slots according to machine. This 
abstraction works for homogeneous workloads, undertaking-
degree schedulers to successfully utilize available useful 
resource necessities of person jobs in multi-person 
environments.Homogeneous brief interactive queries are 
submitted to the same Map reduce cluster primarily based 
on necessities in terms of CPU, memory, disk and 
community bandwidth. Map reduce cluster scheduler is vital 
to providing the desired great of service like time efficient in 
excessive resource schedules. 

We formally introduce our scheduling algorithm in 
this section. Upon receiving a heartbeat message from a 
node manager reporting resource availability on the node, 
the scheduler must select which phase should be scheduled 
on the node. Suppose there are J jobs in the system. 
Specifically, each job j 2 J consists of two types of tasks: 
map tasks M and reduce task R. Let τ (t) 2 fM,Rg denote the 
type of a task t. Given a phase i of a task t that can be 
scheduled on a machine n, we define the utility function of 
assigning a phase i to machine n as: 

U(i, n) = Ufairness(i, n) + α _ Uperf (i, n) (1)  
where Ufairness and Uperf represent the utilities for  
improving fairness and job performance, respectively, and α 
is an adjustable weight factor. If we set α close to zero, then 
the algorithm would greedily schedule phases according to 
the improvement in fairness. Notice that considering job 
performance objectives will not severely  
hurt fairness. When a job is severely below its fair share, 
scheduling any phase with non-zero resource requirement 
will only improve its fairness.Now we describe each term in 
Eq. (1). We define  

 
Ufairness(i, n) = Ubefore fairness(i, n) Uafter fairness(i, 

n) (2)  
 
where Ubefore fairness(i, n) and Uafter fairness(i, n) are 
the fairness measures of the job before and after 
scheduling i on n. 
 

Algorithm 1. Phase-Level Scheduling Algorithm 

 

1: Upon receiving a status message from machine n:   
2: Obtain the resource utilization of machine n   
3: PhaseSelected ← {∅ }   
4: CandidateP hases ← {∅ }  

5: repeat   
6: for each job j ∈ jobsthathastasksonn do   
7: for each scheduable phase i ∈ j do   
8: CandidateP hases ← CandidateP hases ∪ {i}  

9: end for  
10: end for   
11: for each job j ∈ top k jobs with highest deficit n do  

12: if exist schedulable data local task then   
13: CandidateP hases ← CandidateP hases ∪ 
{first phase of the local task i}   
14: else   
15: CandidateP hases ← CandidateP hases ∪ 
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{first phase of the non-local task i}   
16: end if   
17: end for   
18: if CandidateP hases  = ∅ then   
19: for i ∈ CandidateP hases do   
20: if i is not schedulable on n given current 
utilization then  
21: CandidateP hases ← CandidateP hases\{i}  

22: continue;   
23: end if  
24: Compute the utility U(i; n) as in equation (1)   
25: if U(i; n) ≤ 0 then   
26: CandidateP hases ← CandidateP hases\{i}  

27: end if  

28: end for  

29: if CandidateP hases  = ∅ then  

30: i ← task with highest U(i; n) in the   
CandidateP hases  

31:.PhaseSelected ← PhaseSelected ∪ {i}  

CandidateP hases ← CandidateP hases\{i}  

32:Update the resource utilization of machine n  
33:end if   
34:end if   
35:until CandidateP hases == ∅   
36:return PhaseSelected  

 

III  EXPERIMENTS  
We have implemented PRISM in Hadoop 0.20.2. 

Implementing this architecture requires minimal change to 

the existing Hadoop architecture (around 1000 lines of 

code). We deployed PRISM in a compute cluster which 

consists of 10 compute nodes. Each compute node has 4-

core 2.13GHz Intel Xeon E5606 processors, 8GB RAM, 

100GB of local high speed hard drive, and runs 64-bit 

Ubuntu OS. The network interface card (NIC) installed on 

each node is capable of handling up to 1Gb/s of network 

traffic. Each node is connected to a top-of-rack switch and 

can communicate with others via a 1Gb/s link.We have 

chosen two benchmarks to evaluate the performance of 

PRISM:Gridmix 2 and PUMA.Gridmix 2 [5] a standard 

benchmark included in the Hadoop distribution. For 

Gridmix 2 we have chosen 3 jobs for performance 

evaluation: MonsterQuery (MQ), WebDataScan (WDS) and 

Combiner (CM). Similarly, PUMA [6] is a MapReduce 

benchmark developed at Purdue University. We have 

selected 4 jobs for performance evaluation: sort (SRT), self-

join (SJ), inverted-index (II) and classification (CL). We 

chose these jobs because they contain a variety of resource 

usage characteristics. For example, sort and MonsterQuery 

are I/O intensive jobs, whereas Combiner and self-join are 

more CPU intensive. A mixture of jobs with different 

resource requirements allows us to better evaluate the 

performance of PRISM. To evaluate the benefit brought by 

phase-level scheduling, it is necessary to compare PRISM to 

existing task-level resource-aware schedulers. In our 

experiments, we have chosen Hadoop Yarn 2.0.4 as a 

competitive task-level resource-aware scheduler.Hadoop 

Yarn 2.0.4 is a recent version of Hadoop NextGen that 

allows the users to specify both CPU (i.e. number of virtual 

cores) and memory (i.e. GB of RAM) requirements of each 

task. Ideally, we would like to compare PRISM with 

Hadoop Yarn running a fair scheduler. However, Hadoop 

Yarn is yet to support fair scheduling with consideration to 

resource requirements. Therefore, in our experiments we 

compare PRISM with Hadoop Yarn Capacity scheduler, as 

the Capacity scheduler takes resource requirements into 

consideration when making scheduling decisions. Lastly, to 

evaluate the fairness of our scheduler, in our 

implementation, we adopt the same fairness metric as in the 

Hadoop fair scheduler 0.20.2, and use Hadoop 0.20.2 as a 

baseline for comparing both fairness and scheduler 

performance. 

 
PERFORMANCE REQUIREMENTS  
             Even though job profiling is not the main focus of 
this work, for analysis purposes, we have implemented a 
simple job profiler that captures the CPU, memory and I/O 
usage of both tasks and compute nodes. Writing our  
own profiler allows us to better analyze the fine-grained 
resource  characteristics of individual phases. In our 
implementation, we monitor the execution of each task and 
record the start and end time of every phase in the task log 
file. As for monitoring run-time resource usage, we rely on 
linux top command to record CPU and memory usage once 
per second. Network I/O is more difficult to profile. In our 
current implementation, we modified the Hadoop source 
code to print the values of  
I/O counters. The actual disk and network I/O usage over-
time can be obtained from Linux utilities such as iotop and 
nethogs. 

 
EVALUATION USING INDIVIDUAL JOBS  

In our first experiment, our goal is to demonstrate 

the benefit of phase-level scheduling. For this purpose, we 

run a single sort job in a small cluster consisting of only 3 

nodes using Fair Scheduler, Yarn and PRISM3 . The input 

size is set to 5GB. The number of map and reduce slots used 

by Fair Scheduler is set to 8 and 6 as discussed in previous 

section.The experiment results for Hadoop fair scheduler, 

Yarn and PRISM are shown in Figure 10, 11 and 12, 

respectively. In particular, the fair scheduler is able to 

complete the job execution in 149 seconds, whereas Yarn 

finishes the job in 152 seconds. In contrast, PRISM achieves 

the same in just 125 seconds (as shown in Figure 12(a)), 

resulting in a 19% reduction in job running time. To 

understand the reason behind the performance gain, we first 

plotted the CPU/Memory usage as well as disk/network I/O 

usage in Figure 10(b) and 10(c) for Fair Scheduler, in Figure 

11(b) and 11(c) for Yarn, and in Figure 12(b) and 12(c) for 

PRISM. We found Yarn achieves highest utilization while 

performing slightly worse than the fair scheduler. The main 

reason is that Yarn has an additional scheduling overhead. 

Specifically, in order to run a new MapReduce job, 

scheduler need to run a job controller called Application 

Master [7], which will be responsible for monitoring and 

managing the job execution. This Application Master also 

consumes cluster resources at run-time, which reduce the 

resource capacity available for task scheduling. In contrast, 

PRISM delivers higher utilization for all resources. The 

CPU utilization of PRISM is always better than that of Fair 

scheduler except near the end of the execution. 

 
EVALUATION USING BENCHMARKS  
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        We now present our evaluation result using both 
PUMA and Gridmix 2 benchmarks. In the PUMA 
benchmark, we vary the number of jobs between 50 to 200 
to create batch workload of different size, and run each of 
the batch workload 3 times using Fair scheduler, Yarn and 
PRISM. To provide an accurate evaluate the performance 
gain, in our experiments, all the jobs in the batch are 
simultaneously submitted to the job tracker and executed 
concurrently in the cluster. Theresults for job completion 
time is shown in Figure 15(a). It can be seen that PRISM 
outperforms both Fair scheduler and Yarn in  
all scenarios. Furthermore, Yarn generally outperforms the 
Fair scheduler for large workloads, because it is more 
resource-aware. The locality of tasks are shown in Figure 
16(a). Once again, PRISM achieves lower task locality, 
while deliver better performance than Fair scheduler and 
Yarn. Figure 17(a), 18(a) and 19(a) shows the resource 
utilization of the cluster during the execution of each batch 
for each scheduler respectively. It can be seen from the 
diagrams that PRISM generally provider higher resource 
utilization than the Fair Scheduler, and One interesting 
observation is that PRISM achieves higher I/O throughput 
than Hadoop Yarn, but slightly lower CPUutilization. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V RELATED WORK 
  The original Hadoop MapReduce implements a 

slotbased resource allocation scheme, which does not take 

run-time task resource consumption into consideration. As a 

result, several recent works reported the inefficiency 

introduced due to such simple design,and proposed solutions. 

For instance, Polo et. al. proposed RAS [16], an adaptive 

resource-aware scheduler that uses job specific slots for 

scheduling. However, RAS still performs scheduling at task-

level, and does not consider the task resource usage 

variations at run time. Subsequently, Hadoop Yarn [7] 

represents a major endeavor towards resource-aware 

scheduling in MapReduce clusters.  
        It offers the ability to specify the size of each task 
container in terms of requiremen for each type of resources. 
In this context, A key 2168-7161 (c) 2015 IEEE. Personal use 
is permitted, but republication/redistribution requires IEEE 
permission. 
Seehttp://www.ieee.org/publications_standards/publications/r
ight s/index.html for more information. challenge is to define 
the notion of fairness when multiple resource types are 
considered. Ghodsi et.al. proposed dominant resource 
fairness (DRF) as a measure of fairness in the presence of 
multipleresource types, and provided a simple 
schedulingalgorithm for achieving near-optimal DRF. 
However, the DRF scheduling algorithm still focuses on 
tasklevel scheduling, and does not consider change 
inresource consumption within individual tasks. Their 
subsequent model, namely dominant resource fair queueing 
(DRFQ), aims at achieving DRF for packet scheduling over 
time. However, DRFQ algorithm is mainly designed for 
packet scheduling, which is different from the task-level 
―bin-packing‖ type ofscheduling model we consider in this 
paper. Thus it cannot be directly applied to MapReduce 
scheduling.Using profiles to improve MapReduce job 
performance has received considerable attention in recent 
years [13]. For instance, Verma et. al. [18] developed a 
framework that profiles task running times and use the job 
profiles to achieve deadline-ware scheduling in MapReduce 
clusters. Herodotou et. al. recently developed Starfish [13], a 
job profiler that collects finegrained that can be used for fine-
tuning job configuration parameters. However, the goal of 
profiling in these studies is to optimize job parameters, rather 
than optimizing job schedules.Another related research 
direction is MapReduce pipelining. In particular, MapReduce 
Online [9] is a framework for stream-based processing of 
MapReduce jobs. it allows partial outputs of each phase to be 
sent directly to the subsequent phase, thus enables overlaps 
execution of phases. ThemsisMR [17] is another scheme that 
modifies MapReduce phases to improve I/O efficiency. 
However, both of these solutions does not deal with 
scheduling. Furthermore, they are not resource-aware. While 
introducing resource-awareness in MapReduce Online is 
another interesting alternative, the scheduling model for 
MapReduce online is much different from the current 
MapReduce. It will require further investigation to identify 
scheduling issues for MapReduce online. 

VI CONCLUSIONS AND FUTURE WORK  
MapReduce is a popular programming model  

for data intensive computing. However, despite recent 

efforts toward designing resource-efficient MapReduce 
schedulers, existing work mainly focuses on designing task-
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level schedulers, and is oblivious to the fact that the 

execution of each task can be divided into phases with 
drastically different resource consumption characteristics.  

To address this limitation, we introduce PRISM, a fine-

grained resource-aware scheduler that coordinates task 
execution at the level of phases. We first demonstrate how 

task run-time usage can vary significantly over time for a 
variety of MapReduce jobs. We then present a phase-level 

job scheduling algorithm that improves job execution 

without introducing stragglers. In a 16-node Hadoop cluster 
running standard benchmarks, we demonstrated that PRISM 

offers high resource utilization and provides 1.3_ 

improvement in job running time compared to the current 
Hadoop schedulers.Lastly, we believe there are many 

interesting avenues for future exploration. In particular, we 
would like to study the problem of meeting job deadlines 

under phase-level scheduling. Also, in this paper we assume 

all machines have identical hardware and resource capacity. 
It is interesting to study the profiling and scheduling 

problem for machines with heterogenous performance 

characteristics. Finally, improving the scalability of PRISM 
using distributed schedulers is also an interesting direction 

for future research. 

 

ACKNOWLEDGMENTS  
This work was completed as part of the Smart Applications 
on Virtual Infrastructure (SAVI) project funded under the 
National Sciences and Engineering Research Council of 
Canada (NSERC) Strategic Networks grant number 
NETGP394424-10. 

 

REFERENCES 
[1] Hadoop MapReduce distribution. 

http://hadoop.apache.org. 
 [2] Hadoop Capacity Scheduler, 

http://hadoop.apache.org/docs/ stable/capacity scheduler.html/. 
[3] Hadoop Fair Scheduler. 

http://hadoop.apache.org/docs/ r0.20.2/fair scheduler.html. 
 [4] Hadoop Distributed File System, 

hadoop.apache.org/docs/hdfs/current/. 
[5] GridMix benchmark for Hadoop 

clusters.http://hadoop.apache.org/docs/mapreduce/current/ 
gridmix.html.  

[6] PUMA Benchmarks, http://web.ics.purdue.edu/ 
fahmad/ benchmarks/datasets.htm. 

 [7] The Next Generation of Apache Hadoop 
MapReduce.http://hadoop.apache.org/docs/current/hadoop-yarn/ 
hadoop-yarn-site/YARN.html. 

[8] R. Boutaba, L. Cheng, and Q. Zhang. On cloud 
computational models and the heterogeneity challenge. Journal of 
Internet Services and Applications, pages 1–10, 2012.  

[9] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. 
Elmeleegy, and R. Sears. MapReduce online. In USENIX 
Symposium on Networked Systems Design and Implementation 
(NSDI), 2010. 

 [10] J. Dean and S. Ghemawat. Mapreduce: Simplified 
data processing on large clusters. Communications of the ACM, 
51(1):107–113, 2008.  

[11] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, 
S. Shenker, and I. Stoica. Dominant resource fairness: fair 
allocation of multiple resource types. In USENIX Symposium on 
Networked Systems Design and Implementation (NSDI), 2011.  

[12] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, 
S. Shenker, and I. Stoica. Dominant resource fairness: fair 
allocation of multiple resource types. In USENIX Symposium on 
Networked Systems Design and Implementation (NSDI), 2011. 

 [13] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. 
Dong, F. Cetin, and S. Babu. Starfish: A self-tuning system for big 

data analytics. In Conference on Innovative Data Systems 
Research (CIDR11), 2011. 

 [14] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, 
and K. Talwar. Quincy: fair scheduling for distributed computing 
clusters. In ACM SIGOPS Symposium on Operating Systems 
Principles (SOSP), pages 261–276, 2009. 

 [15] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. 
Multi-resource allocation: Flexible tradeoffs in a unifying 
framework. In IEEE International Conference on Computer 
Communications (INFOCOM), pages 1206–1214, 2012. 

 [16] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. 
Whalley, M. Steinder, J. Torres, and E. Ayguade. Resource-Aware 
Adaptive ´ Scheduling for MapReduce Clusters. 
ACM/IFIP/USENIX Middleware, pages 187–207, 2011. 

 [17] A. Rasmussen, M. Conley, R. Kapoor, V. T. Lam, 
G. Porter, and A. Vahdat. ThemisMR: An I/O-Efficient 
MapReduce. In ACM Symposium on Cloud Computing (SoCC), 
2012.  

[18] A. Verma, L. Cherkasova, and R. Campbell. 
Resource Provisioning Framework for MapReduce Jobs with 
Performance Goals. ACM/IFIP/USENIX Middleware, pages 165–
186, 2011. 

 [19] D. Xie, N. Ding, Y. Hu, and R. Kompella. The only 
constant is change: incorporating time-varying network 
reservations in data centers. In ACM SIGCOMM, 2012. 

 [20] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. 
Erlingsson, P. Gunda, ´ and J. Currey. Dryadlinq: A system for 
general-purpose distributed data-parallel computing using a high-
level language. In USENIX Symposium on Operating Systems 
Design and Implementation (OSDI), 2008. 

 [21] M. Zaharia, D. Borthakur, J. Sen Sarma, K. 
Elmeleegy, S. Shenker, and I. Stoica. Delay scheduling: A simple 
technique for achieving locality and fairness in cluster scheduling. 
In European conference on Computer systems (Eurosys), 2010. 

 [22] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. 
Katz, and I. Stoica. Improving mapreduce performance in 
heterogeneous environments. In USENIX Symposium on 
Operating Systems Design and Implementation (OSDI), volume 8, 
page 7, 2008. 

http://hadoop.apache.org/

