
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issues 6 June 2016, Page No. 16880-16885

M.Sneha Priya
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16880-16885 Page 16880

Heterogeneous Phase-Level Scheduling With Jobs Execution Scheduling

Algorithm To Enhance Job Execution And Resource Management In

Mapreduce
M.Sneha Priya

1
, Mrs.R.Rebekha

2

1
M.E. Student, Department of CSE, Parisutham Institute of Technology and Science, Tamil Nadu, India

2
Asst. Professor, Department of CSE, Parisutham Institute of Technology and Science, Tamil Nadu, India

1
priya.sneha543@gmail.com,

2
 rebeccabecky2010@gmail.com

Abstract— In Big Data, Map Reduce is a technique that helps to process the query from user to server in an efficient

way. The Map Reduce is used to process large amount of servers in a parallel way. Hence the parallel processing is done

in map reduce to retrieve results. To achieve this parallel processing, the jobs are split into 3 phases. Each phase is

provided with resources for parallel and fast execution of jobs. If the resources are provided in a homogeneous way, it

takes more time to complete a task.Now Heterogeneous phase level scheduling algorithm with Jobs Execution Scheduling

is used to split the resources in heterogeneous way. This helps to achieve jobs to be execute greater with effective use of

resources which improves speed and showing the resource usage variability within the lifetime of a task using a wide-

range of Map Reduce jobs. This Scheduler improves execution parallelism and resource utilization without introducing

stragglers. Energy-Efficient Algorithm provides the flow time of a job. Flow time of a job is the length of the time interval

between the release time and the completion time of the job with work efficiency.
Keywords: Bug, Bug triage, data reduction, Instance selection, Data Mining.

I. INTRODUCTION

Big Data is a collection of large datasets that
cannot be processed using traditional computing techniques.
It is not a single technique or a tool, rather it involves many
areas of business and technology.Big data involves the data
produced by different devices and applications. Given
below are some of the fields that come under the umbrella
of Big Data.Corporations nowadays are more and more
reliant on largescale information analytics to make
important everyday enterprise selections. This shift closer to
information-driven decision making has fueled the
improvement of MapReduce[10], a parallel programming
model that has end up synonymous with huge-scale,
information-in depth computation. In MapReduce, a task is
a set of Map and decrease Obligations that may be
scheduled on a couple of machines, resulting in
substantial discount in activity going for walks time. Many
big groups,including Google, facebook, and Yahoo!,
automatically use MapReduce to process huge volumes of
statistics on a each day foundation. consequently, the
performance and performance of MapReduce frameworks
have emerge as essential to the fulfillment of nowadays‘s
internet companies.A central component to a MapReduce
system is its job scheduler. Its role is to create a schedule of
Map and Reduce tasks, spanning one or more jobs, that
minimizes job completion time and maximizes resource
utilization. A schedule with too many concurrently running
tasks on a single machine will result in heavy resource
contention and long job completion time. Conversely, a
schedule with too few concurrently running tasks on a
single machine will cause the machine to have poor
resource utilization.

The job scheduling trouble becomes appreciably
easier to solve if we will assume that each one map tasks

(and in addition, all lessen obligations) have homogenous

resource necessities in terms of CPU, memory, disk and
community systems, which include Hadoop MapReduce

model 1.x, make this assumption to simplify the scheduling

problem. these structures use a simple slot-primarily based
resource allocation scheme, wherein physical resources on

each system are captured by the quantity of identical slots

that may be assigned to tasks. regrettably, in exercise, run-
time resource intake varies from undertaking to venture and

from job to activity. numerous recent research have
mentioned that production workloads frequently have

diverse utilization profiles and overall performance

necessities[8], [21]. Failing to keep in mind those process
usage characteristics can probably result in inefficient

process schedules with low resource usage and lengthy

jobexecution time.
Inspired by using this commentary, several latest

proposals, together with useful resource-aware Adaptive
Scheduling (RAS) [16] and Hadoop MapReduce version 2

(also referred to as Hadoop NextGen and Hadoop Yarn) [7],

have introduced resource-conscious process schedulers to
the MapReduce framework. however, those schedulers

specify a hard and fast length for every assignment in

phrases of required resources (e. g. CPU and
reminiscence) , as a result assuming the run-time

resource consumption of the mission is strong over its life
time. however, this isn't actual for many MapReduce jobs.

especially, it's been mentioned that the execution of every

MapReduce challenge can be divided into more than one
stages of data transfer, processing and storage [13]. A phase

is a sub-manner in the mission that has a wonderful reason

and can be characterised via the uniform useful resource
intake over its duration. As we will demonstrate in section

DOI: 10.18535/ijecs/v5i6.26

M.Sneha Priya
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16880-16885 Page 16881

2.2, the stages worried in the same mission will have

exceptional resource call for in terms of CPU, memory, disk
and network usage. consequently, scheduling obligations

based totally on constant aid requirements over their

durations will regularly motive either immoderate resource
contention by scheduling too many simultaneous duties on a

machine, or low utilization by using scheduling too few.
Big data are also highly susceptible to data

complexities such as noisy, missing, inconsistent data and
huge number of attributes. Data preprocessing steps such as
imputing the missing values and reducing the insignificant
attributes is needed for efficient classification.

CHARACTERISTICS OF BIG DATA

Volume – The quantity of data that is generated is
very important in this context. It is the size of the data which
determines the value and potential of the data under
consideration and whether it can actually be considered as
Big
Data or not. The name ‗Big Data‘ itself contains a term
which is related to size and hence the characteristic.

Variety - The next aspect of Big Data is its variety.
This means that the category to which Big Data belongs to is
also a very essential fact that needs to be known by the data
analysts. This helps the people, who are closely analysing
the data and are associated with it, to effectively use the data
to their advantage and thus upholding the importance of the
Big Data.

Velocity - The term ‗velocity‘ in the context refers
to the speed of generation of data or how fast the data is
generated and processed to meet the demands and the
challenges which lie ahead in the path of growth and
development.

Variability - This is a factor which can be a

problem for those who analyze the data. This refers to the
inconsistency which can be shown by the data at times, thus
hampering the process of being able to handle and manage
the data effectively.

Veracity - The quality of the data being captured
can vary greatly. Accuracy of analysis depends on the
veracity of the source data.

Complexity - Data management can become a very
complex process, especially when large volumes of data
come from multiple sources. These data need to be linked,
connected and correlated in order to be able to grasp the
information that is supposed to be conveyed by these data.

CONTRIBUTIONS
In this paper, I present PRISM, a phase and

useful resource data-aware Scheduler for MapReduce

clusters that performs aid-aware scheduling at the level of

undertaking phases. in particular, we display that for

maximum MapReduce programs, the runtime venture aid

intake can vary substantially from segment to segment.

therefore, via considering the useful resource call for on the

section stage, it is possible for the scheduler to obtain better

stages of parallelism while warding off resource

competition. To this quit, we have developed a section-

degree scheduling set of rules with the intention of reaching

high process overall performance and useful resource

utilization. via experiments the use of a real MapReduce

cluster walking a extensive-variety of workloads, we display

PRISM provides as much as 18% development in aid

utilization even as permitting jobs to finish up to at least

one.faster than modern-day Hadoop schedulers. in the end,

even though PRISM is currently designed for Hadoop

MapReduce, we accept as true with our solution may be

carried out to Dryad [20] and different parallel computing

frameworks as nicely.The rest of this paper is organized as

follows. segment 2 offers a basic evaluation of MapReduce

scheduling and task execution. We describe the phaselevel

venture usage traits and our motivation in phase 3. section

four introduces PRISM and describes its structure. The

phase-stage scheduling set of rules is offered in details in

phase 5. Our experimental evaluation of PRISM is furnished

in phase 6. in the end,we summarize existing work

associated with PRISM in segment 7, and draw our end in

section 8.

II OVERVIEW

 MapReduce [10] is a parallel computing model for

huge-scale statistics-in depth computations. A MapReduce

process includes kinds of obligations, specifically map and

decrease duties. A map undertaking takes as input a

keyvalue block saved inside the underlying dispensed

report machine and runs a person-exact map characteristic

to generate intermediary key-fee output. subsequently, a

reduce challenge is liable for amassing and making use of a

person-unique lessen feature on the collected keyvalue

pairs to supply the final output.Currently, the most popular

implementation of MapReduce is Apache Hadoop

MapReduce [1]. A Hadoop cluster includes a huge range of

commodity machines with one node serving as the master

and the others performing as slaves. The grasp node runs a

useful resource supervisor (additionally referred to as a

activity tracker) this is responsible for scheduling

obligations on slave nodes. every slave node runs a

neighborhood node supervisor (also referred to as a

undertaking tracker) that is accountable for launching and

allocating sources for each undertaking.To do so, the task

tracker launches a Java digital device (JVM) that executes

the corresponding map or reduce project.

 The unique Hadoop MapReduce (i.e. version 1.x

and in advance) adopts a slot-based totally aid allocation

scheme. The scheduler assigns tasks to every device based

at the wide variety of available slots on that system. The

quantity of map slots and reduce slots determines

respectively the most number of map tasks and reduce

obligations that may be scheduled at the gadget at a given

time. As a Hadoop cluster is mostly a multi-user machine,

many users can concurrently post jobs to the cluster. The

activity scheduling is performed by the resource manager

within the master node, which keeps a list of jobs within

the gadget. each slave node monitors the development of

DOI: 10.18535/ijecs/v5i6.26

M.Sneha Priya
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16880-16885 Page 16882

each running assignment and to be had sources on the

node, and periodically (commonly among 1-3 seconds)

transmit a heartbeat message to convey this records to the

grasp node. The aid scheduler will use the furnished

records to make scheduling choices. presently, Hadoop

MapReduce helps numerous process schedulers which

include the capability scheduler [2] and honest scheduler

[3]. these schedulers make job scheduling decisions at

challenge degree. They determine which assignment should

be scheduled on which system at any given time, based on

the range of unoccupied slots on each system. while this

simple slot-based allocation scheme is simple and clean to

enforce, it does no longer take runtime project resource

intake into consideration.As distinct duties can also have

exclusive resource necessities, this simple slot-based totally

useful resource allocation scheme can result in aid

competition if the scheduler assigns multiple

responsibilities that have excessive demand fors unmarried

resource influenced through this observation, Hadoop Yarn

(additionally referred to as the Hadoop version 2 and

Hadoop NextGen) [7] allows resource-aware challenge

scheduling in Hadoop MapReduce clusters. at the same

time as nonetheless in alpha model, it offers the potential to

specify the size of the venture field (i.e. a resource

reservation for a challenge

MAPREDUCE TASK LEVELS

cutting-edge Hadoop activity schedulers carry

out assignment-stage scheduling, where obligations are

taken into consideration because the best granularity for

scheduling. but, if we examine the execution of each

assignment, we will find that a project consists of more

than one phases, as illustrated in figure 1. in particular, a

map project may be divided into 2 major stages: map and

merge2. The enter of a MapReduce task is stored as records

blocks (normally of length 64MB or 128MB) in the

Hadoop disbursed file device (HDFS) [4], where statistics

blocks are saved across a couple of slave nodes. inside the

map phase, a mapper fetches a enter information block

from the Hadoop disbursed record gadget (HDFS) [4] and

applies the person-defined map function on each file. The

map function generates data that are serialized and

collected into a buffer. while the buffer turns into full (i.e.,

content material size exceeds a pre-targeted threshold), the

content material of the buffer might be written to the

neighborhood disk. lastly, the mapper executes a merge

segment to institution the output statistics based totally at

the middleman keys, and save the statistics in more than

one files in order that each record can be fetched a

corresponding reducer.

PROBLEM STATEMENT
Minimum execution time and the homogeneous

resource allocation stays a difficult problem. efficient
section stage scheduling improves the resources usage and
reduce the execution time.aid Allocation is based totally on
phases. Map Reduce schedulers outline a static variety of
slots to represent the capacity of a cluster and creates a hard
and fast range of execution slots according to machine. This
abstraction works for homogeneous workloads, undertaking-
degree schedulers to successfully utilize available useful
resource necessities of person jobs in multi-person
environments.Homogeneous brief interactive queries are
submitted to the same Map reduce cluster primarily based
on necessities in terms of CPU, memory, disk and
community bandwidth. Map reduce cluster scheduler is vital
to providing the desired great of service like time efficient in
excessive resource schedules.

We formally introduce our scheduling algorithm in
this section. Upon receiving a heartbeat message from a
node manager reporting resource availability on the node,
the scheduler must select which phase should be scheduled
on the node. Suppose there are J jobs in the system.
Specifically, each job j 2 J consists of two types of tasks:
map tasks M and reduce task R. Let τ (t) 2 fM,Rg denote the
type of a task t. Given a phase i of a task t that can be
scheduled on a machine n, we define the utility function of
assigning a phase i to machine n as:

U(i, n) = Ufairness(i, n) + α _ Uperf (i, n) (1)
where Ufairness and Uperf represent the utilities for
improving fairness and job performance, respectively, and α
is an adjustable weight factor. If we set α close to zero, then
the algorithm would greedily schedule phases according to
the improvement in fairness. Notice that considering job
performance objectives will not severely
hurt fairness. When a job is severely below its fair share,
scheduling any phase with non-zero resource requirement
will only improve its fairness.Now we describe each term in
Eq. (1). We define

Ufairness(i, n) = Ubefore fairness(i, n) Uafter fairness(i,

n) (2)

where Ubefore fairness(i, n) and Uafter fairness(i, n) are
the fairness measures of the job before and after
scheduling i on n.

Algorithm 1. Phase-Level Scheduling Algorithm

1: Upon receiving a status message from machine n:
2: Obtain the resource utilization of machine n
3: PhaseSelected ← {∅ }
4: CandidateP hases ← {∅ }

5: repeat
6: for each job j ∈ jobsthathastasksonn do
7: for each scheduable phase i ∈ j do
8: CandidateP hases ← CandidateP hases ∪ {i}

9: end for
10: end for
11: for each job j ∈ top k jobs with highest deficit n do

12: if exist schedulable data local task then
13: CandidateP hases ← CandidateP hases ∪
{first phase of the local task i}
14: else
15: CandidateP hases ← CandidateP hases ∪

DOI: 10.18535/ijecs/v5i6.26

M.Sneha Priya
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16880-16885 Page 16883

{first phase of the non-local task i}
16: end if
17: end for
18: if CandidateP hases = ∅ then
19: for i ∈ CandidateP hases do
20: if i is not schedulable on n given current
utilization then
21: CandidateP hases ← CandidateP hases\{i}

22: continue;
23: end if
24: Compute the utility U(i; n) as in equation (1)
25: if U(i; n) ≤ 0 then
26: CandidateP hases ← CandidateP hases\{i}

27: end if

28: end for

29: if CandidateP hases = ∅ then

30: i ← task with highest U(i; n) in the
CandidateP hases

31:.PhaseSelected ← PhaseSelected ∪ {i}

CandidateP hases ← CandidateP hases\{i}

32:Update the resource utilization of machine n
33:end if
34:end if
35:until CandidateP hases == ∅
36:return PhaseSelected

III EXPERIMENTS
We have implemented PRISM in Hadoop 0.20.2.

Implementing this architecture requires minimal change to

the existing Hadoop architecture (around 1000 lines of

code). We deployed PRISM in a compute cluster which

consists of 10 compute nodes. Each compute node has 4-

core 2.13GHz Intel Xeon E5606 processors, 8GB RAM,

100GB of local high speed hard drive, and runs 64-bit

Ubuntu OS. The network interface card (NIC) installed on

each node is capable of handling up to 1Gb/s of network

traffic. Each node is connected to a top-of-rack switch and

can communicate with others via a 1Gb/s link.We have

chosen two benchmarks to evaluate the performance of

PRISM:Gridmix 2 and PUMA.Gridmix 2 [5] a standard

benchmark included in the Hadoop distribution. For

Gridmix 2 we have chosen 3 jobs for performance

evaluation: MonsterQuery (MQ), WebDataScan (WDS) and

Combiner (CM). Similarly, PUMA [6] is a MapReduce

benchmark developed at Purdue University. We have

selected 4 jobs for performance evaluation: sort (SRT), self-

join (SJ), inverted-index (II) and classification (CL). We

chose these jobs because they contain a variety of resource

usage characteristics. For example, sort and MonsterQuery

are I/O intensive jobs, whereas Combiner and self-join are

more CPU intensive. A mixture of jobs with different

resource requirements allows us to better evaluate the

performance of PRISM. To evaluate the benefit brought by

phase-level scheduling, it is necessary to compare PRISM to

existing task-level resource-aware schedulers. In our

experiments, we have chosen Hadoop Yarn 2.0.4 as a

competitive task-level resource-aware scheduler.Hadoop

Yarn 2.0.4 is a recent version of Hadoop NextGen that

allows the users to specify both CPU (i.e. number of virtual

cores) and memory (i.e. GB of RAM) requirements of each

task. Ideally, we would like to compare PRISM with

Hadoop Yarn running a fair scheduler. However, Hadoop

Yarn is yet to support fair scheduling with consideration to

resource requirements. Therefore, in our experiments we

compare PRISM with Hadoop Yarn Capacity scheduler, as

the Capacity scheduler takes resource requirements into

consideration when making scheduling decisions. Lastly, to

evaluate the fairness of our scheduler, in our

implementation, we adopt the same fairness metric as in the

Hadoop fair scheduler 0.20.2, and use Hadoop 0.20.2 as a

baseline for comparing both fairness and scheduler

performance.

PERFORMANCE REQUIREMENTS
 Even though job profiling is not the main focus of
this work, for analysis purposes, we have implemented a
simple job profiler that captures the CPU, memory and I/O
usage of both tasks and compute nodes. Writing our
own profiler allows us to better analyze the fine-grained
resource characteristics of individual phases. In our
implementation, we monitor the execution of each task and
record the start and end time of every phase in the task log
file. As for monitoring run-time resource usage, we rely on
linux top command to record CPU and memory usage once
per second. Network I/O is more difficult to profile. In our
current implementation, we modified the Hadoop source
code to print the values of
I/O counters. The actual disk and network I/O usage over-
time can be obtained from Linux utilities such as iotop and
nethogs.

EVALUATION USING INDIVIDUAL JOBS

In our first experiment, our goal is to demonstrate

the benefit of phase-level scheduling. For this purpose, we

run a single sort job in a small cluster consisting of only 3

nodes using Fair Scheduler, Yarn and PRISM3 . The input

size is set to 5GB. The number of map and reduce slots used

by Fair Scheduler is set to 8 and 6 as discussed in previous

section.The experiment results for Hadoop fair scheduler,

Yarn and PRISM are shown in Figure 10, 11 and 12,

respectively. In particular, the fair scheduler is able to

complete the job execution in 149 seconds, whereas Yarn

finishes the job in 152 seconds. In contrast, PRISM achieves

the same in just 125 seconds (as shown in Figure 12(a)),

resulting in a 19% reduction in job running time. To

understand the reason behind the performance gain, we first

plotted the CPU/Memory usage as well as disk/network I/O

usage in Figure 10(b) and 10(c) for Fair Scheduler, in Figure

11(b) and 11(c) for Yarn, and in Figure 12(b) and 12(c) for

PRISM. We found Yarn achieves highest utilization while

performing slightly worse than the fair scheduler. The main

reason is that Yarn has an additional scheduling overhead.

Specifically, in order to run a new MapReduce job,

scheduler need to run a job controller called Application

Master [7], which will be responsible for monitoring and

managing the job execution. This Application Master also

consumes cluster resources at run-time, which reduce the

resource capacity available for task scheduling. In contrast,

PRISM delivers higher utilization for all resources. The

CPU utilization of PRISM is always better than that of Fair

scheduler except near the end of the execution.

EVALUATION USING BENCHMARKS

DOI: 10.18535/ijecs/v5i6.26

M.Sneha Priya
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16880-16885 Page 16884

 We now present our evaluation result using both
PUMA and Gridmix 2 benchmarks. In the PUMA
benchmark, we vary the number of jobs between 50 to 200
to create batch workload of different size, and run each of
the batch workload 3 times using Fair scheduler, Yarn and
PRISM. To provide an accurate evaluate the performance
gain, in our experiments, all the jobs in the batch are
simultaneously submitted to the job tracker and executed
concurrently in the cluster. Theresults for job completion
time is shown in Figure 15(a). It can be seen that PRISM
outperforms both Fair scheduler and Yarn in
all scenarios. Furthermore, Yarn generally outperforms the
Fair scheduler for large workloads, because it is more
resource-aware. The locality of tasks are shown in Figure
16(a). Once again, PRISM achieves lower task locality,
while deliver better performance than Fair scheduler and
Yarn. Figure 17(a), 18(a) and 19(a) shows the resource
utilization of the cluster during the execution of each batch
for each scheduler respectively. It can be seen from the
diagrams that PRISM generally provider higher resource
utilization than the Fair Scheduler, and One interesting
observation is that PRISM achieves higher I/O throughput
than Hadoop Yarn, but slightly lower CPUutilization.

V RELATED WORK
 The original Hadoop MapReduce implements a

slotbased resource allocation scheme, which does not take

run-time task resource consumption into consideration. As a

result, several recent works reported the inefficiency

introduced due to such simple design,and proposed solutions.

For instance, Polo et. al. proposed RAS [16], an adaptive

resource-aware scheduler that uses job specific slots for

scheduling. However, RAS still performs scheduling at task-

level, and does not consider the task resource usage

variations at run time. Subsequently, Hadoop Yarn [7]

represents a major endeavor towards resource-aware

scheduling in MapReduce clusters.
 It offers the ability to specify the size of each task
container in terms of requiremen for each type of resources.
In this context, A key 2168-7161 (c) 2015 IEEE. Personal use
is permitted, but republication/redistribution requires IEEE
permission.
Seehttp://www.ieee.org/publications_standards/publications/r
ight s/index.html for more information. challenge is to define
the notion of fairness when multiple resource types are
considered. Ghodsi et.al. proposed dominant resource
fairness (DRF) as a measure of fairness in the presence of
multipleresource types, and provided a simple
schedulingalgorithm for achieving near-optimal DRF.
However, the DRF scheduling algorithm still focuses on
tasklevel scheduling, and does not consider change
inresource consumption within individual tasks. Their
subsequent model, namely dominant resource fair queueing
(DRFQ), aims at achieving DRF for packet scheduling over
time. However, DRFQ algorithm is mainly designed for
packet scheduling, which is different from the task-level
―bin-packing‖ type ofscheduling model we consider in this
paper. Thus it cannot be directly applied to MapReduce
scheduling.Using profiles to improve MapReduce job
performance has received considerable attention in recent
years [13]. For instance, Verma et. al. [18] developed a
framework that profiles task running times and use the job
profiles to achieve deadline-ware scheduling in MapReduce
clusters. Herodotou et. al. recently developed Starfish [13], a
job profiler that collects finegrained that can be used for fine-
tuning job configuration parameters. However, the goal of
profiling in these studies is to optimize job parameters, rather
than optimizing job schedules.Another related research
direction is MapReduce pipelining. In particular, MapReduce
Online [9] is a framework for stream-based processing of
MapReduce jobs. it allows partial outputs of each phase to be
sent directly to the subsequent phase, thus enables overlaps
execution of phases. ThemsisMR [17] is another scheme that
modifies MapReduce phases to improve I/O efficiency.
However, both of these solutions does not deal with
scheduling. Furthermore, they are not resource-aware. While
introducing resource-awareness in MapReduce Online is
another interesting alternative, the scheduling model for
MapReduce online is much different from the current
MapReduce. It will require further investigation to identify
scheduling issues for MapReduce online.

VI CONCLUSIONS AND FUTURE WORK
MapReduce is a popular programming model

for data intensive computing. However, despite recent

efforts toward designing resource-efficient MapReduce
schedulers, existing work mainly focuses on designing task-

DOI: 10.18535/ijecs/v5i6.26

M.Sneha Priya
1
 IJECS Volume 5 Issue 6 June 2016 Page No.16880-16885 Page 16885

level schedulers, and is oblivious to the fact that the

execution of each task can be divided into phases with
drastically different resource consumption characteristics.

To address this limitation, we introduce PRISM, a fine-

grained resource-aware scheduler that coordinates task
execution at the level of phases. We first demonstrate how

task run-time usage can vary significantly over time for a
variety of MapReduce jobs. We then present a phase-level

job scheduling algorithm that improves job execution

without introducing stragglers. In a 16-node Hadoop cluster
running standard benchmarks, we demonstrated that PRISM

offers high resource utilization and provides 1.3_

improvement in job running time compared to the current
Hadoop schedulers.Lastly, we believe there are many

interesting avenues for future exploration. In particular, we
would like to study the problem of meeting job deadlines

under phase-level scheduling. Also, in this paper we assume

all machines have identical hardware and resource capacity.
It is interesting to study the profiling and scheduling

problem for machines with heterogenous performance

characteristics. Finally, improving the scalability of PRISM
using distributed schedulers is also an interesting direction

for future research.

ACKNOWLEDGMENTS
This work was completed as part of the Smart Applications
on Virtual Infrastructure (SAVI) project funded under the
National Sciences and Engineering Research Council of
Canada (NSERC) Strategic Networks grant number
NETGP394424-10.

REFERENCES
[1] Hadoop MapReduce distribution.

http://hadoop.apache.org.
 [2] Hadoop Capacity Scheduler,

http://hadoop.apache.org/docs/ stable/capacity scheduler.html/.
[3] Hadoop Fair Scheduler.

http://hadoop.apache.org/docs/ r0.20.2/fair scheduler.html.
 [4] Hadoop Distributed File System,

hadoop.apache.org/docs/hdfs/current/.
[5] GridMix benchmark for Hadoop

clusters.http://hadoop.apache.org/docs/mapreduce/current/
gridmix.html.

[6] PUMA Benchmarks, http://web.ics.purdue.edu/
fahmad/ benchmarks/datasets.htm.

 [7] The Next Generation of Apache Hadoop
MapReduce.http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html.

[8] R. Boutaba, L. Cheng, and Q. Zhang. On cloud
computational models and the heterogeneity challenge. Journal of
Internet Services and Applications, pages 1–10, 2012.

[9] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K.
Elmeleegy, and R. Sears. MapReduce online. In USENIX
Symposium on Networked Systems Design and Implementation
(NSDI), 2010.

 [10] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Communications of the ACM,
51(1):107–113, 2008.

[11] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness: fair
allocation of multiple resource types. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2011.

[12] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness: fair
allocation of multiple resource types. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2011.

 [13] H. Herodotou, H. Lim, G. Luo, N. Borisov, L.
Dong, F. Cetin, and S. Babu. Starfish: A self-tuning system for big

data analytics. In Conference on Innovative Data Systems
Research (CIDR11), 2011.

 [14] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
and K. Talwar. Quincy: fair scheduling for distributed computing
clusters. In ACM SIGOPS Symposium on Operating Systems
Principles (SOSP), pages 261–276, 2009.

 [15] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang.
Multi-resource allocation: Flexible tradeoffs in a unifying
framework. In IEEE International Conference on Computer
Communications (INFOCOM), pages 1206–1214, 2012.

 [16] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I.
Whalley, M. Steinder, J. Torres, and E. Ayguade. Resource-Aware
Adaptive ´ Scheduling for MapReduce Clusters.
ACM/IFIP/USENIX Middleware, pages 187–207, 2011.

 [17] A. Rasmussen, M. Conley, R. Kapoor, V. T. Lam,
G. Porter, and A. Vahdat. ThemisMR: An I/O-Efficient
MapReduce. In ACM Symposium on Cloud Computing (SoCC),
2012.

[18] A. Verma, L. Cherkasova, and R. Campbell.
Resource Provisioning Framework for MapReduce Jobs with
Performance Goals. ACM/IFIP/USENIX Middleware, pages 165–
186, 2011.

 [19] D. Xie, N. Ding, Y. Hu, and R. Kompella. The only
constant is change: incorporating time-varying network
reservations in data centers. In ACM SIGCOMM, 2012.

 [20] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U.
Erlingsson, P. Gunda, ´ and J. Currey. Dryadlinq: A system for
general-purpose distributed data-parallel computing using a high-
level language. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2008.

 [21] M. Zaharia, D. Borthakur, J. Sen Sarma, K.
Elmeleegy, S. Shenker, and I. Stoica. Delay scheduling: A simple
technique for achieving locality and fairness in cluster scheduling.
In European conference on Computer systems (Eurosys), 2010.

 [22] M. Zaharia, A. Konwinski, A. D. Joseph, R. H.
Katz, and I. Stoica. Improving mapreduce performance in
heterogeneous environments. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), volume 8,
page 7, 2008.

http://hadoop.apache.org/

