

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 3 March-2014 Page No. 5114-5117

Ms.Ritu Sharma, IJECS Volume 3 Issue3 March 2014 Page No.5114-5117 Page 5114

FPGA Implementation of Fast Fourier Transform

(FFT) Based Finite Impulse Response (FIR) filter

Using VHDL

Ms.Ritu Sharma, Prof. Ravi Mohan Verma
Department of Electronics & Communications Engineering

RGTU Bhopal, SRIT, Jabalpur

Abstract— The paper describes the development of FIR filters on Field programmable gate array (FPGAs) using FFT Algorithm.

FIR filter has been designed and realized by FPGA for filtering the digital signal. The implementation of FIR filter on a Cyclone

IV GX FPGA is considered. Presented soft core is the unit to perform the finite impulse response filter based on the Fast Fourier

Transform (FFT). It performs the convolution of the unlimited signal sequence with the synthesized impulse response of the

length of Ni=N/2 samples, where N = 64, 128, 256, 512, 1024. The data and coefficient widths are tunable in the range 8 to 18.

The model is capable of performing filtering operations like low pass, high pass, band pass and band stop based on selection that

is embedded into the design. The most basic functions required for nearly any signal processor include addition, multiplication

and delays. Input data, output data, and coefficient widths are generics. The maximum sampling frequency Fs by N=1024 is less

than Fclk/29. IP Corse has been used to filter the input data. The design is coded through VHDL (hardware descriptive language).

To verify the designed outputs simulation, compilation and synthesis have been done.

Introduction
Digital signal processing (DSP) is used in a very wide range of

applications from high-definition TV, mobile telephony, digital

audio, multimedia, digital cameras, radar, sonar detectors,

biomedical imaging, global positioning, digital radio, speech

recognition, to name but a few!

The increasing costs of silicon technology have put

considerable pressure on developing dedicated SoC. An

alternative is to use microprocessor style solutions such as

microcontrollers, microprocessors and DSP micros, but in

some cases, these offerings do not match well to the speed, area

and power consumption requirements of many DSP

applications. More recently, the field-programmable gate array

(FPGA) has been proposed as a hardware technology for DSP

systems as they offer the capability to develop the most suitable

circuit architecture for the computational, memory and power

requirements of the application in a similar way to SoC systems.

FPGAs are a collection of system components with which the

user can create a DSP system. Whilst the prefabricated aspect

of FPGAs avoids many of the deep submicron problems met

when developing system-on-chip (SoC) implementations, the

ability to create an efficient implementation from a DSP system

description, remains a highly convoluted problem.

FIR filter has been designed and realized on FPGA for filtering

the digital signal. This technique can be applied to any FPGAs.

Signal processing is an important area where FPGAs have

found many applications in recent years. FPGA contains over a

million equivalent logic blocks (logic gates and tens of

thousands of flip-flops) [1][2].This means that it is not possible

to use traditional methods of logic design involving the

drawing of logic diagrams when the digital circuit may contain

thousands of gates. The reality is that today digital systems are

designed by writing software in the form of hardware

description languages (HDLs) [5]. Computer-aided design tools

are used to both simulate VHDL design and to synthesize the

design to actual

hardware.

The designing of an FIR filter in VHDL for programming it

onto an FPGA is explained in this paper. Implementation of

project onto an FPGA (including hardware and software parts)

VHDL, and basic digital filter concepts are used.

DESIGN FEATURES

Small hardware volume

The proposed Design is intended for the signal filtering with

the FIR filter of large impulse response length which exceeds

up to Ni = 512 samples.

Dynamically tuneable band pass frequencies

In many applications the user needs the filters which band pass

frequencies are tuned dynamically. They are adaptive filtering,

software defined radio, ultrasound testing devices, etc. It is not

easy problem to perform this mode in the usual FIR or IIR

filters. This problem is usually solved by storing a set of

coefficients of different filters or by calculating the new

coefficient set each time on demand.

Highly pipelined calculations

Each FFT iteration dates are computed by the computational

unit, called FFTDPATH, another words, data path for FFT

Ms.Ritu Sharma, IJECS Volume 3 Issue3 March 2014 Page No.5114-5117 Page 5115

calculations. FFTDPATH calculates the radix-2 FFT butterfly

in thehigh pipelined mode. Therefore in each clock cycle one

complex number is read from the data RAM and the complex

result is written in this RAM. This mode supports the

increasing the clock frequency up to 80 MHz and higher.

High precision computations

In the core the block floating point arithmetic is implemented.

This means that the data array has the common exponent, and

the array is normalized in the mode when the maximum data in

the array occupies all the digits of the word. Such mode

supports the high calculation precision. Due to this mode, 1024

– point FFT calculations for 16 bit data and coefficients give 70

db signal to noise ratio, which is at least at 20 db higher than

calculations with the fixed point arithmetic give.

Combining the band pass filter with differentiators

In many applications the user needs to combine the band pass

filter with differentiators. For example, in ultrasound testing

devices the transducer has the integrator properties, which have

to be compensated by differentiators. Therefore the system

needs to put band pass filter and one or two differentiators

sequentially. In this situation the proposed Design is the best

solution because this mode is implemented in it naturally

without additional hardware.

Additional frequency measurements

Often the user needs to investigate the input signal spectrum,

for example, to find out the noisy frequency bands. To

implement this feature the proposed FFT core has additional

output for signal spectrum samples or bins. This output is

attached/detached on demand when instantiating the core.

FILTERING ALGORITHM

One channel real signal filter

The sectioned convolution algorithm is used for the one

channel complex signal filtering. Consider N = 1024. This

algorithm for convolution of the signal a with the impulse

responce h looks like the following.

 Input signal is divided into segments ak of the length 512.

 The working array a of the length 1024 is formed as the

concatenation of this segment and previous one:

 a = <ak-1 , ak >.

 FFT of the length 1024 for the working array is

implemented: A = F(a).

 FFT of the length 1024 for the impulse responce is

implemented: H = F(h); note that more than a half of the

array h has to be zeroed.

 The signal spectrum and the impulse responce spectrum

(frequency responce) are multiplied: A*H

 Inverse FFT of the length 1024 is derived: y = F-1 (A*H).

 512 resulting samples are selected which are not inferred

by the circular convolution effect: yk ={yp,…, yp+511}, p =

256.

The following considerations have to be mentioned. The

impulse responce h may not be transferred into the frequency

responce H. Instead the frequency responce H can be generated

due the parameters of low pass frequency Fl and high pass

frequency Fh. It has to be symmetric one and has more than

512 zeroed samples.

The initial algorithm is true for the signals, which are

represented by the sum of sinusoids which periods are the

fractions of the FFT period. If the signal is of common form

then it could not be filtered precisely by this algorithm due to

the frequency aliasing effect. To minimize this effect the input

signal has to be multiplied by some time window W. The

resulting filtering algorithm for the real input signal is

represented by the diagram on the following Fig.1.

Figure 1. The filtering algorithm for a single channel

Two filters for a single real signal

When filtering a single real signal with two different filters the

input signal spectrum is just the same for both filters. But the

frequency responce H2 of the second filter differs from the

frequency responce H1 of the first filter. To minimize the

algorithm complexity the spectrum symmetry is used. If we

have the real signal y1 with the spectrum (YR1 + jYI1) on the

real input of FFT, and the real signal y2 with the spectrum

(YR2 + jYI2) on the imaginary input of FFT, then after FFT we

get the spectrum:

YR = YR1 _ YI2; (*)

YI = YI1 + YR2;

Therefore if the spectrum of both signals is fore calculated

according to (*), then after IFFT we get one signal as the real

part, and another signal as the imaginary part of the result. The

resulting algorithm diagram is shown on the Fig.2.

Figure 2. Algorithm of two filters for a single real signal

Two filters for two real signals

The filtering of a single input signal is performed with the

abundance of operations because the maginary part of the

input data is zeroed. This abundance is minimized when the

imaginary part of FFT is data of another input signal (second

channel). I.e. the FFT input x is formed as:

x = a + jb,

where a = <ak-1 , ak > , b= <bk-1 , bk > .

Ms.Ritu Sharma, IJECS Volume 3 Issue3 March 2014 Page No.5114-5117 Page 5116

After FFT the spectres of channels are restored from the

spectrum X due to the formulas:

ARi= (XRi +XR(1024-i))/2; AIi= (XIi - XI(1024-i))/2;

BRi= (XIi +XI(1024-i))/2; BIi= - (XRi -XR(1024-i))/2;

i=1,2,…,511;

AR0= XR0; BR0= XI0;

AR512= XR 512; BR512= XI512;

AI0= AR512; BI0= BR512;

AI512= 0; BI512= 0;

where R and I are indexes of the real and imaginary parts

respectively. The rest of calculations is performed in the same

manner as by the filtering of a single real signal by two filters.

Differentiating

The differentiating of the real signal is equal to multiplying its

spectrum at the frequency w to the coefficient jω (-π< ω < π).

By the sectioned convolution it is enough to multiply the real

part of the i-th spectrum bin to the coefficient i, and the

imaginary part to the coefficient –i, and to swap them.

Time and frequency windows

Frequency window H derives the selective properties of the

filter. The rectangle window gives the shortest transitional

frequency band. But it is bad because its IFFT has not zeros,

and therefore it causes the aliasing effect.

In the Proposed design core the Blackman window is used

which has not ripples in the band pass, and provides the

suppression range more than 70 db. The time window consists

of three parts. The first ant the third parts represent the halves

of the Hanning window, and the second part is equal to 1.

Fig.3 illustrates top level entity of proposed FIR filter

SIGNAL DESCRIPTION

The descriptions of the core signals and generics are

represented in the table 1.

Signals Type Description

GENERICS

iwidth natural Input data width = 8,…,18

owidth natural Output and intermediate data width = 8,…,18

wwidth natural Coefficient width = 8,…,6

n natural

FFT length code:6–64,7–128,8–256,9–512,10–1024
reall natural 0 – complex, 1 – real Input and output signals

SIGNALS

CLK Input Global clock

RST Input Global reset

START Input Filter start

DATAE Input data enable strobe

FILTER Input

00 – without filtering,

01 – LPF , LPF+HPF,

10 – LPF+HPF+ differentiator,

11 – LPF+HPF+ double differentiator
L1 Input Low band pass frequency of the first filter

H1 Input High band pass frequency of the first filter

L2 Input Low band pass frequency of the second filter

H2 Input High band pass frequency of the second filter

DATAIRE

[iwidth-

1:0]

Input Input data real sample (first channel)

DATAIIM

[iwidth-

1:0]

Input Input data imaginary sample (second channel)

 READY output Result ready strobe

DATAOR

E [owidth-

1:0]

output Output data real sample (first channel)

 DATAOI

M

[owidth-

1:0]

output Output data imaginary sample (second channel)

 SPRDY output Spectrum start output impulse

WESP output Spectrum sample strobe

SPRE[owi

dth-1;0]

output Spectrum real part sample

SPIM[owi

dth-1;0]

output Spectrum imaginary part sample

FREQ output Spectrum bin number

SPEXP[3:

0]

output Spectrum data block exponent

Table 1. Signal Description of Design

DATA REPRESENTATION

Input and output dates are represented by iwidth and owidth bit

two-th complement complex integers, respectively. The

spectrum data block exponent is 4-bit positive integer e, and

the spectrum result Y is equal to Y=Ym*2
θ
 , where Ym is the real

or imaginary part of the spectrum data. The exponent is the

same for each sample of the result array.

The code of the band frequency is equal to the bin number

where the filter pass level is equal to –3 db. Codes L1,L2 have

to be less than respective codes H1,H2. For instance, for Fs

=2500 kHz, N=1024, and LPF with the band pass 400 kHz the

code H1=164 because 400*1024/2500 =163.84 . If L1 = 0 or

L2 = 0 then the respective HPF is detached.

VERIFICATION

To verify the proposed design before synthesis and after it and

after implementation the following files can be additionally

used:

FFT_Filter_tb.VHD – the test bench file;

RAMB4_S18_S18.vhd – behavioural model of the Block RAM,

can be substituted to the similar Unisim model.

In the testbench the proposed design is instantiated as the

component in the standard instantiation. To the core inputs the

sine and cosine waves are put with the given frequency which

is exchanged in time by the linear law. From the core outputs

the results are sampled and analyzed.

The analysis consists in measurement of the complex vector

magnitudes, their averaging and logarithm representation. The

resulting signals of the testbench are:

res – result magnitude;

reslog – logarithm of the result magnitude (in decibels);

freque – sine wave frequency.

Ms.Ritu Sharma, IJECS Volume 3 Issue3 March 2014 Page No.5114-5117 Page 5117

As a result, after modeling one can investigate in the VHDL

simulator the frequency response of the filters by the given set

of control signals. For instance, Fig. Illustrates the frequency

responce of the band pass filter, and the Fig.9 illustrates the

same of the band pass filter with the double differentiator.

Figure . Frequency response of the band pass filter with the

band pass 100 – 200 kHz by Fs=2500 kHz and N=1024. 1 stage

width is 5 kHz.

References

[1] B. G. Jo and M. H. Sunwoo, ―New continuous-flow mixed-

radix(CFMR) FFT processor using novel in-place strategy,‖

IEEE Trans.Circuits Syst. I, Reg. Papers, vol. 52, no. 5, pp.

911–919, May 2005.

[2] P. Y. Tsai and C. Y. Lin, ―A generalized conflict-free

memory addressing scheme for continuous-flow parallel-

processing FFT processors with rescheduling,‖ IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 12, pp.

2290–2302, Dec. 2011.

 [3] S. He and M. Torkelson, ―A new approach to pipeline FFT

processor,‖ in Proc. IEEE Int. Parallel Process. Symp., Apr.

1996, pp. 766–770.

[4] A.Cortes, I. Velez, and J. F. Sevillano, ―Radix rk FFTs:

Matricial representation and SDC/SDF pipeline

implementation,‖ IEEE Trans. Signal Process., vol. 57, no. 7,

pp. 2824–2839, Jul. 2009.

[4] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, ―A 1-GS/s FFT/IFFT

processor for UWB applications,‖ IEEE J. Solid-State Circuits,

vol. 40, no. 8, pp. 1726–1735, Aug. 2005.

[5] S.-H. Hsiao and W.-R. Shiue, ―Design of low-cost and

high-throughput linear arrays for DFT computations:

Algorithms, architectures, and implementations,‖ IEEE Trans.

Circuits Syst. II, Analog Digital Signal Process., vol. 47, no. 11,

pp. 1188–1203, Nov. 2000.

 [6] Y.-W. Lin and C.-Y. Lee, ―Design of an FFT/IFFT

processor for MIMO OFDM systems,‖ IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 54, no. 4, pp. 807–815, Apr. 2007.

[7] B. M. Baas, ―A low-power, high-performance, 1024-point

FFT processor,‖ IEEE J. Solid-State Circuits, vol. 34, no. 3, pp.

380–387, Mar. 1999.

[8] M. S. Patil, T. D. Chhatbar, and A. D. Darji, ―An area

efficient and low power implementation of 2048 point

FFT/IFFT processor for mobile WiMAX,‖ in Proc. Int. Conf.

Signal Process. Commun., 2010, pp. 1–4.

