
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 5 Issues 6 June 2016, Page No. 16824-16829

Nivethaa Varshinie.R , IJECS Volume 5 Issue 6 June 2016 Page No.16824-16829 Page 16824

Protection Preserving Public Supportable System In Cluster Based Distributed

Storage
Nivethaa Varshinie.R

1
, Rajarajan.A

2

1
M.E. Student, Department of CSE, Parisutham Institute of Technology and Science, Tamil Nadu, India

2
Asst. Professor, Department of CSE,

Parisutham Institute of Technology and Science, Tamil Nadu, India
1
varshinie05@gmail.com,

2
rajarajan.ag@gmail.com

Abstract— to secure outsourced information in distributed storage against defilements, adding adaptation to internal

failure to distributed storage together with information uprightness checking and disappointment reparation gets to be

basic. As of late, recovering codes have picked up ubiquity because of their lower repair transfer speed while giving

adaptation to non-critical failure. Existing remote checking systems for recovering coded information just give private

examining, requiring information proprietors to dependably stay online and handle reviewing, and additionally repairing,

which is some of the time unreasonable and also all the distributed data are stored in same functional location ,so search

and data retrieval takes much time. This time delay will affect the distributed storage efficiency. In this project an open

examining plan for the recovering code based distributed storage is proposed and also Attribute Based Clustering

Technique (ABCT) For Distributed Data. The ABCT will recover the issue of time delayness and makes the system more

efficient. We randomize the encode coefficients with a pseudorandom capacity to protect information security. The ABCT

achieves the much faster performance data searching and retrieval. Broad security examination demonstrates that our plan

is provable secure under arbitrary prophet model and trial assessment shows that our plan is exceptionally productive and

can be attainably coordinated into the recovering code based distributed storage.
Keywords: Clustering, ABCT, Distributed System.

1 INTRODUCTION
Nowadays, the ever-growing volume and value of digital
information have raised a critical and increasing requirement for
data protection in the personal computing environment. Cloud
backup service has become a cost-effective choice for data
protection of personal computing devices [1], since the
centralized cloud management has created an efficiency and cost
inflection point, and offers simple offsite storage for disaster
recovery, which is always a critical concern for data backup. And
the efficiency of IT resources in the cloud can be further
improved due to the high data redundancy in
backup dataset [2]. Data deduplication, an effective data
compression approach that exploits data redundancy, partitions
large data objects into smaller parts called chunks, represents
these chunks by their fingerprints (i.e., generally a cryptographic
hash of the chunk data), replaces the duplicate Clustering:
Cluster analysis or clustering is the task of grouping a set of
objects in such a way that objects in the same group (called a
cluster) are more similar (in some sense or another) to each other
than to those in other groups (clusters).Cluster analysis itself is
not one specific algorithm, but the general task to be solved. It
can be achieved by various algorithms that differ significantly in
their notion of what constitutes a cluster and how to efficiently
find them. Popular notions of clusters include groups with small
distances among the cluster members, dense areas of the data
space, intervals or particular statistical distributions.
Cluster analysis as such is not an automatic task, but an iterative
process of knowledge discovery or interactive multi-objective
optimization that involves trial and failure. It will often be

necessary to modify data preprocessing and model
parameters until the result achieves the desired properties.
Clustering servers is completely a scalable solution. You
can add resources to the cluster afterwards. If a server in the
cluster needs any maintenance, you can do it by stopping it
while handing the load over to other servers. Among high
availability options, clustering takes a special place since it
is reliable and easy to configure. In case of a server is
having a problem providing the services furthermore, other
servers in the cluster can take the load the cloud side before
data transfer over WAN. The former only eliminates intra-
client redundancy with low duplicate elimination ratio by
low-latency client-side duplicate data check, while the latter
can suppress both intra-client and inter-client redundancy
with high deduplication effectiveness by performing high-
latency duplication detection on the cloud side. Inspired by
Cloud4Home [9] that enhances data services by combining
limited local resources with low latency and powerful
Internet resources with high latency, local-global source
deduplication scheme that eliminates intra-client
redundancy at client before suppression inter-client
redundancy in the cloud, can potentially improve
deduplication efficiency in cloud backup
services to save as much cloud storage space as the global

method but at as low latency as the local mechanism.ALG-
Dedupe, an Applicationaware Local-Global source
deduplication scheme that not only exploits application
awareness, but also combines local and global duplication
detection, to achieve high deduplication efficiency by

reducing the deduplication latency to as low as the
application-aware local deduplication while saving as much

DOI: 10.18535/ijecs/v5i6.17

Nivethaa Varshinie.R , IJECS Volume 5 Issue 6 June 2016 Page No.16824-16829 Page 16825

cloud storage cost as the application-aware global deduplication.
Our application- aware deduplication design is motivated by the
systematic deduplication analysis on personal storage.
We observe that there is a significant difference among different
types of applications in the personal computing environment in
terms of data redundancy, sensitivity to different chunking
methods, and independence in the deduplication process. Thus,
the basic idea of ALG-Dedupe is to effectively exploit this
application difference and awareness by treating different types
of applications independently and adaptively during the local and
global duplicate check processes to significantly improve the We
propose a new metric,
‘‘bytes saved per second,’’ to measure the efficiency of different
deduplication schemes on the same platform. We design an
application-aware deduplication scheme that employs an
intelligent data chunking method and an adaptive use of hash
functions to minimize computational overhead and maximize
deduplication effectiveness by exploiting application awareness.
We combine local deduplication and global deduplication to balance

the effectiveness and latency of deduplication. To relieve the disk

index lookup bottleneck, we provide application-aware index

structure to suppress redundancy independently and in parallel by

dividing a central index into many independent small indices to

optimize lookup performance.. at the client side to improve data

transfer efficiency by grouping many small data packets into a single

larger one for cloud storage. Our prototype implementation and real

dataset driven evaluations show that our ALG-Dedupe outperforms

the existing state-of-the-art source deduplication schemes in terms of

backup window, energy efficiency, and cost saving for its high

deduplication efficiency and low system overhead.

The remainder of this paper is organized as follows: We
formulate the research problem in Section 2 and conduct
deduplication analysis on personal data in Section 3. We describe
the detailed design of ALG-Dedupe in Section 4.We evaluate
ALG-Dedupe by comparing it with the existing state-of-the-art
schemes in Section 5.

2 PROBLEM FORMULATION
For a backup dataset with logical dataset size L, its physical
dataset size will be reduced to PL after local source deduplication
in personal computing devices and further decreased to PG by
global source deduplication in the cloud, PL 9 PG. We divide the
backup process into three parts: local duplicate detection, global
duplicate detection and unique data cloud store. Here, the
latencies for chunking and fingerprinting are included in
duplicate detection latency. Meanwhile, we assume that there are
average local duplicate detection latency TL, average global
duplicate detection latency TG and average cloud storage I/O
bandwidth B for average chunk size C, TG 9 TL. We can build
models to calculate BWSL and BWSG for the average backup
window size per chunk of local source deduplication based cloud
backup and global source deduplication Though local
deduplication can achieve several to tens times of duplicate
elimination ratio R ¼ L=PL with low latency, from an empirical
estimation in NEC [10], global deduplication can outperform
local deduplication at 20 percent to 50 percent greater in
deduplication effectiveness, and the research results in EMC [20]
show that interclient data overlapping can reach up to 75 percent,

though around 10 percent is more common. While the
latency is always the Achilles Heel of cloud computing, and
the average global duplicate detection latency per chunk
TG is dozens or hundreds of times the latency of local
duplicate detection TL [9]. To balance cloud storage cost
saving and backup window shrinking in these two schemes,
we choose local-global source deduplication, which reduce
the backup window size by exploiting local resources to
reduce deduplication latency and save cloud storage cost by
leveraging cloud resources to improve deduplication
effectiveness. It can outperform We can define a metric for
deduplication efficiency to balance the cloud storage cost
saving and backup window shrinking in source
deduplication based cloud backup services. It is well
understood that the deduplication efficiency is proportional
to deduplication effectiveness that is always defined by
duplicate elimination ratio R ¼ L=P, and inversely
proportional to the average backup window size per chunk
BWS with average chunk size C.Based on this
understanding and to better quantify and compare
deduplication efficiency of a wide variety of deduplication
techniques, we propose a new metric, called‘‘bytes saved
per second,’’ which is expressed in (6), to measure the
deduplication efficiency DE of different deduplication
schemes on the same platform. Our local global source
deduplication design can achieve high efficiency for its
global deduplication effectiveness and reduced backup
window. Different from the traditional deduplication based
cloud backup services that are oblivious to the file level
semantic knowledge, we optimize the efficiency for the
source deduplication based cloud backup services by
exploiting application awareness. We can divide backup
dataset into n application data subsets according to file
semantics, and improve the deduplication effectiveness and
decrease deduplication
latency by dedicated deduplication process for each kind of

application data. For application i, we define Li, PLi, and

PGi as its logical data subset size, its physical data subset
sizes after traditional local and global source deduplication,

respectively; PALi and PAGi as its physical data subset
sizes after local and global application aware source

deduplication, respectively. We assume its average latency

per chunk for local and global application aware
duplication detection are TALi and TAGi, respectively,

then TALi G TL and TAGi G TG due to the index lookup

optimization by exploiting application awareness.
According to our observation in Section 3: the amount of

data shared among different types of applications is
negligibly small, we have PLi _ PALi and PGi _ PAGi for

any i is established. We make formulas to estimate the

upper bound of physical dataset size PAG and the average
backup window size per chunk BWSALG for application-

aware local-global source deduplication based cloud

backup services, and then we know formula is established,
and it indicates that the efficiency of application-aware

local-global source dedudeduplication DEALG is higher
than that of local-global source deduplication DELG.

3 DEDUPLICATION ANALYSIS ON PERSONAL
DATA
In this section, we will investigate how data redundancy,

DOI: 10.18535/ijecs/v5i6.17

Nivethaa Varshinie.R , IJECS Volume 5 Issue 6 June 2016 Page No.16824-16829 Page 16826

space utilization efficiency of popular data chunking Methods
and computational overhead of typical hash Functions change in
different applications of personal Computing to motivate our

research. We perform preliminary experimental study on datasets
collected from desktops in our research group, volunteers’
personal laptops, personal workstations for image processing and
financial analysis, and a shared home server. Table 1 outlines the
key dataset characteristics: the number of devices, applications

and dataset size for each studied workload. To the best of our
knowledge, this is the first systematic deduplication analysis on
personal storage.
Observation 1
A disproportionally large percentage of storage space is
Occupied by a very small number of large files with very Low
chunk-level redundancy after file-level dedupe. Implication.File-
level deduplication using weak hash fun-ctions for these large
files is sufficient to avoid hash collisions for small datasets in the
personal computing environment. To reveal the relationship
between file count and storage capacity under variousfiles size.

Fig. 1. Distribution of capacity and count as a function of file
size. The histograms are the values of discrete density functions
on file count and capacity, while the lines are cumulative
distribution functions for them.

We observe that about 60.3 percent of all files are smaller than
10 KB, accounting for only 1.7 percent of the total storage
capacity, and only 1.5 percent files are larger than 1MB but
occupy 77.2 percent of the storage capacity. These results are

consistent with. This suggests that tiny files can be ignored
during the deduplication process as so to improve the
deduplication efficiency, since it is the large files in the tiny
minority that dominate in determining the deduplication

efficiency. In the datasets mentioned above, we also find that
compressed files larger than 1 MB occupy 61.2 percent storage
space. To verify the data redundancy in the compressed files, we
carried out chunk-level deduplication using two popular

methods: Static Chunking (SC) [11] of 4 KB chunk size
and TTTD based Content Defined Chunking (CDC) [of 4 KB
average chunk size (Min: 2 KB, Max: 16 KB) after file level
deduplication in about 2.6TB data of typical PCapplications
using compression, respectively. It shows the chunk-level data

redundancy after file-level deduplication in typical
application groups. Here, according to the function of
applications, we group file types using compression into
application groups: video, audio, image, Linux-AC for
compressed archive file types in Linux, Mac-AC for
compressed archive file types in Mac OS X, Windows-AC
for compressed archive file types in Windows.

Fig. 2. Throughput of chunking and fingerprinting

Time is spent on the hash calculation itself. CDC-based
deduplication has the lowest throughput on chunking and

fingerprinting because most of its computational Overhead

is on identifying the chunk boundaries instead of chunk
fingerprinting. The deduplication strategy based on simpler

chunking schemes (e.g., WFC or SC) can achieve a higher
throughput because of their lower metadata storage and

chunking overheads, while deduplication strategies with

weaker hash functions (e.g., Rabin hash) obtain a higher
throughput because of their lower computational overhead.

Furthermore, the combined response time of Rabin hash

and MD5 is even less than that of SHA-1. This suggests
that we can employ the extended Rabin hash value as chunk

fingerprint for local duplicate detection and MD5 for global
duplicate detection on compressed files to reduce the

computational overhead with low probability of hash

collision in both small PC dataset and large-scale cloud
dataset. We use SC-based deduplication with the SHA-1 or

CDC-based deduplication with MD5 for both local and

global deduplication on those uncompressed application
datasets. Observation 3.The amount of data shared among

different types of applications is negligibly small due to the
difference in data content and format in these applications.
Implication
Application-aware deduplication has a potential to improve
the efficiency of deduplication by eliminating Redundancy
in each application independently and in Parallel. We first
made this proposition in our primary study with empirical
observations and analysis [21], which was subsequently

DOI: 10.18535/ijecs/v5i6.17

Nivethaa Varshinie.R , IJECS Volume 5 Issue 6 June 2016 Page No.16824-16829 Page 16827

confirmed by a recent
Microsoft Research’s paper [18] in their datasets from
15 globally, distributed servers. To guide our application-aware
deduplication design, we conduct a content overlapping analysis
to exploit the independent
parallel local-global deduplication among the clients and in the

cloud. We first examine the data redundancy of intra-application

and inter-application by measuring the space savings of

deduplication within applications and across applications. To

discover the data redundancy, we chunk files with a fixed chunk

size of 4 KB and calculate the corresponding MD5 value as the

chunk fingerprint in each application dataset. We first compare

fingerprints in each application for intra-application Redundancy,

then compare fingerprints between any two applications to

identify the overlapping data between these applications for

inter-application redundancy in all datasets. As seen in Table 3,

we find that the loss in deduplication savings is negligibly small

for all datasets when partitioning application dataset by file type

and only performing intra-application deduplication. So the

amount of shared data among the application groups is negligibly

small due to the difference in data content and format in

application datasets, which makes independent parallel

deduplication among different application groups possible. As a

result, the full fingerprint index can be divided into small

independent indices according to the data type information in

different applications, enabling it to greatly benefit from small

indices to avoid on-disk index lookup bottlenecks [14], [15] by

leveraging data locality in applications to prefetch appropriate

application indices into memory, while exposing higher index

access parallelism with low lock contention on chunk index

structure.
Observation 4
To exploit chunk-level redundancy, the best choices of chunking
method and chunk size to achieve high deduplication efficiency
vary with different application datasets.
Implication
For each application data subset, dedicated deduplication design
can significantly improve deduplication efficiency over
traditional deduplication schemes with single chunking method
and solely chunk size for all application types.To discover high
chunk-level redundancy, we need to choose chunking method
and chunk size to strike a good balance between the capability of
redundancy discovery and the deduplication overhead. We
always use SC-based
or CDC-based deduplication schemes. The effectiveness of the
former lies in its simplicity in splitting files into small chunks
with a fixed chunk size. The latter partitions data into variable
size chunks based on the data content rather than the data
position to avoid the chunk boundary shifting problem [13]
caused by data updates with high computational overhead. It is
also important to select chunk size since poor chunk size
selection harms efficiency: too large chunk size reduces the
exploitable redundancy in datasets, while too small chunk size
can greatly increase the overhead of representing and
transferring the datasets. We test the efficiency of local-global
source deduplication based cloud backup service on 3
applications
Datasets with high redundancy: 160 GB Linux kernel Source

code (Linux), 313 GB Virtual Machine disk images (VM)
and 87 GB Microsoft Word documents with multiple
versions (DOC), as a function of chunking method and

chunk size. The results are shown in Fig. 3 with 4.3 MB/s
mean upload bandwidth and about 300 ms average cloud
latency for duplicate detection. We observe that the optimal
chunk size for the highest deduplication efficiency varies
among different application types. Hence, our application-

aware deduplication design can significantly improve the
deduplication efficiency for each application. data subset by
adaptively selecting chunking method and chunk size
according to dataset characteristics.

Fig. 3. Difference of deduplication efficiency as a function
of chunk size and chunking method for various
applications. Linux dataset can achieve highest efficiency
by CDC scheme with 2 KB average chunk size, VM dataset
reaches best efficiency by SC method with 8 KB chunksize,
and DOC dataset can get peak efficiency by CDC scheme
with 4 KB
4.1 Architecture Overview
An architectural overview of ALG-Dedupe is illustrated in
Fig. 4, where tiny files are first filtered out by file size filter
for efficiency reasons, and backup data streams are broken
into chunks by an intelligent chunker using an application
aware chunking strategy. Data chunks from the same type
of files are then deduplicated in the application-aware
deduplicator by generating chunk fingerprints in hash
engine and performing data redundancy check in
application-aware indices in both local client and remote
cloud. Their fingerprints are first looked up in an
application-aware local index that is stored in the local disk
for local redundancy check. If a match is found, the
metadata for the file containing that chunk is updated to
point to the location of the existing chunk. When there is no
match, the fingerprint will be sent to the cloud for further
parallel global duplication check on an application- aware
global index, and then if a match is found in the cloud, the
corresponding file metadata is updated for duplicate
chunks, or else the chunk is new. On the client side,
fingerprints will be transferred in batch and new data
chunks will be packed into large units called segments in
the segment store module with tiny files before their
transfers to reduce cloud computing latency and improve
network bandwidth efficiency over WAN. On the cloud

DOI: 10.18535/ijecs/v5i6.17

Nivethaa Varshinie.R , IJECS Volume 5 Issue 6 June 2016 Page No.16824-16829 Page 16828

datacenter side, segments and its corresponding chunk
fingerprints are stored in self describing data
structureVcontainerVin cloud storage, supported by the parallel
container store. We will now describe the deduplication process
in more detail in the rest of this section.
4. File Size Filter
Most of the files in the PC dataset are tiny files that less than 10
KB in file size, accounting for a negligibly small percentage of
the storage capacity. As shown in our statistical evidences in
Section 2, about 60.3 percent of all files are tiny files, accounting
for only 1.7 percent of the total storage capacity of the dataset.
To reduce the Metadata overhead, ALG-Dedupe filters out these
tiny Files in the file size filter before the deduplication process,
and groups data from many tiny files together into larger units of
about 1 MB each in the segment store to increase the data
transfer efficiency over WAN.
4.1 Intelligent Data Chunking
The deduplication efficiency of data chunking scheme among
different applications differs greatly as we discussed in Section
2. Depending on whether the file type is compressed or whether
SC can outperform CDC in deduplication efficiency, we divide
files into three main categories: compressed files, static
uncompressed files, and dynamic uncompressed files. The
dynamic files are always editable, while the static files are
uneditable in common.Some examples are shown in Fig. 5. To
strike a better
Intelligent Data Chunking
The deduplication efficiency of data chunking scheme among
different applications differs greatly as we discussed in Section 2.
Depending on whether the file type is compressed or whether SC
can outperform CDC in deduplication efficiency, we divide files
into three main categories: compressed files, static uncompressed
files, anddynamic uncompressed files. The dynamic files are
always editable, while the static files are uneditable in common.
Some examples are shown in Fig. 5. To

Fig 4.Application-aware index structure.
Our experimental results in Fig. 6 present the cumulative cloud
storage capacity required of the providers at each backup session
for individual user with the six cloud backup schemes. Different
from source deduplication schemes, Jungle Disk fails to achieve

high cloud storage saving due to the fact that its incremental
backup scheme cannot eliminate file copies written in different
places. In the source deduplication schemes, the coarse-grained

method BackupPC cannot find more redundancy than other
fine-grained mechanisms. The fine-grained Cumulus only
performs local duplicate check, and limits the search for

unmodified data to the chunks in the previous versions of
the file, so it achieves lower space saving than the
localdeduplication- only application-aware deduplication
AADedupe

Fig. 5. Cloud storage space requirement.

The high effectiveness of data deduplication of the fine
grained or global deduplication schemes comes at a
significant overhead that throttles the system throughput. In
our ALG-Dedupe, we perform parallel local duplication
detection on shared hash-table based application-aware
index structure that is stored in RAM at client side. For
high parallel global duplication check in SimpleDB, we
apply horizontal partitioning to divide the whole
unclassified index into many small independent domains
that are partitioned by file-type directed application
grouping. Despite of the high WAN latency, we can
significantly improve the global deduplication performance
of ALGDedupe by batch I/O and parallel query. We present
a comparison of the five cloud backup schemes in terms
ofdeduplication efficiency in Fig. 7, and employ our
proposed new metric of ‘‘bytes saved per second’’, defined
in Section
2.3, to measure the efficiency of different deduplication

approaches in the same cloud storage platform. ALG-
Dedupe perform much better than other backup schemes in
the deduplication efficiency measure with a low overhead.
This significant advantage of ALGDedupe is primarily

attributed to its application awareness and global duplicate
detection in the deduplication process. We observe that the
deduplication efficiency of ALGDedupe is 14 percent
higher than our previous local scheme AA-Dedupe, owing
to its advantage in global design, about 1.6 times that of the

application-oblivious SAM and 1.9 times that of the local-
deduplication Cumulus, more than 2.3 times that of the
coarse-grained BackupPC on

DOI: 10.18535/ijecs/v5i6.17

Nivethaa Varshinie.R , IJECS Volume 5 Issue 6 June 2016 Page No.16824-16829 Page 16829

Fig. 6. Backup window size of 10 backup sessions.

5.CONCLUSION AND FUTURE WORK
In this paper, I have proposed an open evaluating plan for the

recovering code-based distributed storage framework, where the

information proprietors are advantaged to assign TPA for their
information legitimacy checking. To ensure the first information

protection against the TPA, we randomize the coefficients in the

first place rather than applying the visually impaired procedure
amid the evaluating procedure. Considering that the information

proprietor can't generally stay online in rehearse, so as to keep
the capacity accessible and unquestionable after a noxious

debasement, we present a semi-trusted intermediary into the

framework display and give a benefit to the intermediary to
handle the reparation of the coded pieces and authenticators. To

better proper for the recovering code-situation, the

authenticator’s BLS signature is taken into account. This
authenticator can be effectively produced by the information

proprietor at the same time with the encoding method. Broad
investigation demonstrates that the plan is provable secure, and

the execution assessment demonstrates that
our plan is exceedingly productive and can be plausibly
incorporated into a recovering code-based cloud capacity
framework.In this system each document is stored under specific
cluster to make the maintenance and the retrieval easy. In Phase I
the data upload with security and encryption and data storage
under specific cluster

Fig. 7. Speeds of chunking and fingerprinting in PC clients.
ACKNOWLEDGMENT
This research was supported in part by the 863 Program of China
under Grant 2013AA013201, the National Natural Science
Foundation of China under Grant 61025009, 61232003,
61120106005, 60903040, 61070198 and 61170288,

China Scholarship Council, and the US NSF under Grants
CCF-0937993, IIS-0916859, CNS-1016609 and CNS-
1116606. N. Xiao is the corresponding author. A
preliminary version of the paper was presented at the 2011
IEEE Cluster Conference.
REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz,A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
‘‘A View of Cloud Computing,’’ Commun. ACM, vol. 53, no. 4, pp. 49-
58, Apr. 2010.
[2] H. Biggar, ‘‘Experiencing Data De-Duplication: Improving
Efficiency and Reducing Capacity Requirements,’’ Enterprise
Strategy Grp., Milford, MA, USA, White Paper, Feb. 2007.
[3] C. Liu, Y. Lu, C. Shi, G. Lu, D. Du, and D.-S. Wang,
‘‘ADMAD:Application-DrivenMetadata Aware De-Deduplication
Archival Storage Systems,’’ in Proc. 5th IEEE Int’l Workshop SNAPI

I/Os,
[4] A. Katiyar and J. Weissman, ‘‘ViDeDup: An Application-Aware
Framework for Video De-Duplication,’’ in Proc. 3rd USENIX
Workshop Hot-Storage File Syst., 2011, pp. 31-35.
[5] Y. Tan,H. Jiang, D. Feng, L. Tian, Z. Yan, and G. Zhou, ‘‘SAM: A
Semantic-Aware Multi-Tiered Source De-Duplication Frame-Work for
Cloud Backup,’’ in Proc. 39th ICPP, 2010, pp. 614-623.
[6] BackupPC, 2011. [Online]. Available: http://backuppc.sourceforge.
net/
[7] A. Muthitacharoen, B. Chen, and D. Mazie` res, ‘‘A Low-Bandwidth
Network File System,’’ in Proc. 18th ACM SOSP,2001, pp. 174-187.
[8] EMC Avamar, 2011. [Online]. Available: http://www.emc.com/avamar
[9] S. Kannan, A. Gavrilovska, and K. Schwan,
‘‘Cloud4HomeVEnhancing Data Services with @Home Clouds,’’ in

Proc. 31
st

 ICDCS, 2011, pp. 539-548.

[10] Maximizing Data Efficiency: Benefits of Global Deduplication-
NEC, Irving, TX, USA, NEC White Paper, 2009.
[11] D. Meister and A. Brinkmann, ‘‘Multi-Level Comparison of Data
Deduplication in a Backup Scenario,’’ in Proc. 2nd Annu. Int’l
SYSTOR, 2009, pp. 1-8.
[12] D. Bhagwat, K. Eshghi, D.D. Long, and M. Lillibridge, ‘‘Extreme
Binning: Scalable, Parallel Deduplication for Chunk Based File Backup,’’
HP Lab., Palo Alto, CA, USA, Tech. Rep. HPL-2009-10R2, Sept. 2009.
[13] K. Eshghi, ‘‘A Framework for Analyzing and Improving Content
Based Chunking Algorithms,’’ HP Laboratories, Palo Alto, CA,USA,
Tech. Rep. HPL-2005-30 (R.1), 2005.
[14] B. Zhu, K. Li, and H. Patterson, ‘‘Avoiding the Disk Bottleneck in

the Data Domain Deduplication File System,’’ in Proc. 6
th

 USENIX Conf.
FAST, Feb. 2008, pp. 269-282.
[15] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and
P. Camble, ‘‘Sparse Indexing: Large Scale, Inline Deduplication Using
Sampling and Locality,’’ in Proc. 7th USENIX
Conf. FAST, 2009, pp. 111-123.
[16] P. Anderson and L. Zhang, ‘‘Fast and Secure Laptop Backups With
Encrypted De-Duplication,’’ in Proc. 24th Int’l Conf.
LISA,2010, pp. 29-40.

[17] Jungle Disk. 2011. [Online]. Available:
http://www.jungledisk.com/
[18] A. El-Shimi, R. Kalach, A. Kumar, J. Li, A. Oltean, and S.
Sengupta,‘‘Primary Data DeduplicationVLarge Scale Study and System
Design,’’ in Proc. USENIX ATC, 2012, pp. 285-296.
[19] P. Shilane, M. Huang, G. Wallace, and W. Hsu, ‘‘WAN
Optimized Replication of Backup Datasets Using Stream- Informed
Delta Compression,’’ in Proc. 10th USENIX Conf.FAST, 2012, pp.
49-64.
[20] F. Douglis, D. Bhardwaj, H. Qian, and P. Shilane, ‘‘Content-Aware
Load Balancing for Distributed Backup,’’ in Proc. 25

th

USENIX Conf. LISA, Dec. 2011, pp. 151-168.
[21] Y. Fu, H. Jiang, N. Xiao, L. Tian, and F. Liu,13th IEEE Int’l Conf.
CLUSTER Comput., 2011, pp. 112-120.

