
www.ijecs.in 
International Journal Of Engineering And Computer Science ISSN: 2319-7242   
Volume 5 Issues 6 June 2016, Page No. 16800-16804 

 

 

S.Amritha
1 IJECS Volume 5 Issue 6 June 2016 Page No.16800-16804  Page 16800 

Bug Triage Using Dimensionality Reduction Technique And PSO Algorithm 

S.Amritha
1
, A.Jennifer Sagaya Rani

2
 

 
1
M.E. Student, Department of CSE, Parisutham Institute of Technology and Science, Tamil Nadu, India 

2
Asst. Professor, Department of CSE, Parisutham Institute of Technology and Science, Tamil Nadu, India 

1
amriajay@gmail.com,

2
jenusagay@gmail.com 

 

Abstract—The process of fixing bug is bug triage that aims to properly assign a developer to a new bug. Software 

companies pay out most of their expenses in dealing with these bugs. To reduce time and cost of bug triaging, an 

automated approach is developed to predict a developer with relevant experience to solve the new coming report. In 

proposed approach data reduction is done on bug data set which will reduce the scale of the data as well as increase the 

quality of the data. Instance selection and feature selection is also used simultaneously with historical bug data. Previously, 

text classification techniques are applied to conduct bug triage. The problem here is to get quality bug data sets as they are 

of very huge in size. In the proposed system, the problems of reducing the size and to improve the quality of bug data are 

addressed.First, pre-processing is done to the remove unimportant attributes and to identify missing terms. Then instance 

selection is combined with feature selection by using Dimensionality reduction technique to simultaneously reduce data 

size on the bug dimension and the word dimension. By using PSO algorithm, the reduction order is determined using 

fitness value. It is used to produce quality bug data set. The results show that the proposed system can effectively reduce 

the data size and improve the accuracy of bug triage. The proposed system provides an approach to leveraging techniques 

on data processing to form reduced and high eminence bug data in software improvement and maintenance. 

  

Keywords: Bug, Bug triage, data reduction, Instance 

selection, Data Mining. 

I. INTRODUCTION 

 A bug plays a vital task in handling software 

bugs. Various open source software projects attempt an open 

bug database that allows both developers and users to handle 

defects or problems in the software, providing possible 

improvements, and comment on existing bug reports. 

 For open source large-scale software projects, the 

number of daily bugs is so large which makes the triaging 

process very difficult and challenging [10]. Software 

companies spend over 45 percent of cost in fixing bugs 

.There are two challenges related to bug data that may affect 

the effective use of bug repositories in software development 

tasks, namely the large scale and the low quality. In a bug 

repository, a bug is maintained as a bug report, which 

records the textual description of reproducing the bug and 

updates according to the status of bug fixing [15]. 

Primary contribution of this paper is as follow:  

 Bug dimension: Instance selection can 

remove unhelpful bug information, meanwhile, 

we can witness that the accuracy may be 

diminished by confiscating bug information. 

 Word dimension: By removing unhelpful 

arguments, feature selection improves the 

accuracy of bug triage. This can recover the 

accuracy loss by instance selection. 

 

 In this paper, we proposed system which is used to 

simultaneously reduce the scales of the bug dimension and 

the word dimension and to improve the accuracy of bug 

triage. It proposes a combination approach to addressing the 

problem of data reduction. This can be viewed as an 

application of instance selection and feature selection in bug 

repositories. Data reduction for bug triage aims to build a 

small-scale and high-quality set of bug data by removing 

bug reports, which are redundant or non-informative. The 

reduced bug data contain fewer bug reports and fewer words 

than the original bug data and provide similar information 

over the original bug data using Dimensionality reduction. It 

extends the work on the generation of bug report summaries 

with a task-based study to evaluate the usefulness of bug 

report summaries in the context of a real software task that 

is bug report duplicate detection using Dimensionality 

reduction. PSO algorithm is used to calculate fitness value 

and predict the Efficient Retrieval result based on the fitness 

value. The proposed system will gives the bug report with 

accuracy. 

 

II.  ARCHITECTURE 

1) Bug Triage 



DOI: 10.18535/ijecs/v5i6.12 
 

S.Amritha
1 IJECS Volume 5 Issue 6 June 2016 Page No.16800-16804 Page 16801 

 
Fig. 1 Architecture of bug triaging process 

 

 Figure 1 shows the architecture of the bug triaging. 

Aim of bug triage is to allocate a developer for bug 

deception. Once a developer is allocated to a new bug report 

they will solve the bug or attempt to fix it. They will provide 

the status associated to bug whether it is corrected or not [1]. 

2) Data Reduction 

 

Fig. 2 Data Reduction 

 Figure 2 shows that the data is reduced from 

original bug data. Here we are decreasing the bug recordsby 

means of instance and feature selection so that we acquire 

low scale as well as eminence data. In our work, to protect 

the manual labor charge of developers, the data reduction 

for bug triage has two goals decreasing the data scale and 

enhancing the accuracy of bug triage. 

 In disparity to exhibiting the textual content of bug 

information in prevailing work (e.g., [1], [6], [9]), we target 

to augment the data set to construct a preprocessing 

methodology, which can be applied before an prevailing bug 

triage approach. We describe the two goals of data reduction 

as follows.  

 

a) Decreasing the Data Scale 

 We reduce scales of data sets to protect the manual 

labor charge of developers.  

 Bug dimension. As mentioned above, the aim of 

bug triage is to allocate developers for bug deception. Once 

a developer is allocated to a new bug report, the developer 

can inspect historically fixed bugs to custom a solution to 

the existing bug report [6], [14]. For example, historical 

bugs are checkered to detect whether the new bug is the 

replica of a prevailing one [25]; moreover, existing results to 

bugs can be searched and applied to the new bug [12]. Thus, 

we consider reducing replica and raucous bug reports to 

reduce the number of historical bugs. In practice, the manual 

labor charge of developers (i.e., the cost of examining 

historical bugs) can be avoided by subsiding the number of 

bugs based on instance selection.  

 Word dimension. We use feature selection to 

remove noisy or replica words in a data set. Based on 

feature selection, the reduced data set can be controlled 

more easily by automatic methods (e.g., bug triage 

approaches) than the original data set. In addition to bug 

triage, the reduced data set can be further used for other 

software tasks after bug triage (e.g., severity identification, 

time prediction, and reopened bug analysis).  

 

b) Enhancing the Accuracy 

 Accuracy is an essential evaluation measure for 

bug triage. In our work, data reduction discovers and 

removes noisy or duplicate information in data sets.  

 Bug dimension. Instance selection can remove 

unhelpful bug information; meanwhile, we can notice that 

the accuracy may be reduced by removing bug reports.  

 Word dimension. By removing unhelpful words, 

feature selection recovers the accuracy of bug triage. 

III. METHODOLOGY AND MEASURES 

1) Instance Selection 

 Instance selection approaches related with data 

mining jobs such as classification and clustering 

It’s a non-trivial procedure of finding usable, new, 

hypothetically valuable, and at last comprehensible 

patterns in Original bug Data Reduced  

 Original bug selecting a subset of records to attain 

the original determination of a data mining 

application as if the entire records are used. 

 The ultimate result of instance selection is model 

independent.  

P (Ms)  P (Mw)  

Evaluation measures: 

 Direct Measure 

 Keep as much similarity as possible amongst a 

selection of data and the original data.  

 Ex) Entropy, moments, and histograms.  

Indirect Measure 

 For example, a classifier can be used to 

checker whether instance selection outcomes 

in enhanced, equal, or worse analytical 

precision. 

 Conventional evaluation methods in sampling, 

classification, and clustering can be castoff in 



DOI: 10.18535/ijecs/v5i6.12 
 

S.Amritha
1 IJECS Volume 5 Issue 6 June 2016 Page No.16800-16804 Page 16802 

evaluating the performance of instance 

selection. 

 Ex) Precision, recall.  

 

2) Feature Selection 

 It chooses a smallest set of features such that the 

chance of distribution of dissimilar classes 

specified the values for those features is as close as 

possible to the original distribution given the values 

of all features [1]. 

 Decrease # of patterns in the patterns, understand at 

ease. 

 Create new features that can capture the essential 

data in a records set much more proficiently than 

the original features. 

 Use the least illustration which is adequate to 

resolve the task.  

 

Heuristic methods: 

 Step-wise forward selection 

 Step-wise backward elimination  

 Create new features that can detect the significant 

facts in a records set much more proficiently than 

the original features 

 Three general methods: 

 Feature extraction  

 domain-specific 

 Mapping data to new space  

 
3) PSO algorithm 

PSO is prepared with a set of random elements 

(solutions) and then pursuit for optimum by apprising 

generations. Elements move over the result space, and are 

appraised according to some fitness condition after each 

time period. In every repetition, each element is updated by 

resulting two "best" values. The first one is the best result 

(fitness) it has attained so far (the fitness value is also 

stored). This value is called elements best value. Another 

"best" value that is traced by the PSO is the best value 

attained so far by any element in the population.  This 

second best value is a global best. When an element takes 

part of the population as its topological neighbors, the 

second best value is a local best. Neighborhood bests permit 

parallel consideration of the search space and reduce the 

vulnerability of PSO to subsiding into local minima. 

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * 

(gbest[] - present[])………………… (a) 

 

present[] = persent[] + v[]………………….. (b) 

 

where, 

v[] is the particle velocity,  

persent[] is the current particle (solution).  

pbest[] and gbest[] are well-defined as specified before.  

rand () is a random number between (0,1). 

c1, c2 are learning factors(usually c1 = c2 = 2.)  

4) Graph Module 

 

Fig. 3 Graph of bug reports 

Figure 3 shows four parts as follow:  

1) Firstly it will display how many bugs are not allocated to 

any developer. It will give ample status about the bugs to the 

supervisor so that he will come to recognize which bugs are 

not allocated yet.  

2) Secondly it will display how many bugs are not allocated 

to any developer. It will give ample status about the bugs to 

the supervisor so that he will come to recognize which bugs 

are not allocated.  

3) Thirdly it will display how many bugs are corrected by 

the developers. It will give ample status about the bugs to 

the supervisor so that he will come to recognize which bugs 

are corrected entirely.  

4) Fourthly it will display how many bugs are not corrected 

by the developers. It will give ample status about the bugs to 

the supervisor so that he will come to know which bugs are 

not corrected yet.  

 

IV. RELATED WORK 

  In this section, we analyze prevailing work on 

modeling bug data, bug triage, and the quality of bug data 

with defect prediction. 

 

1) Modeling Bug Data  

 To explore the associations in bug data, Sandusky 

et al. [20] form a bug report system to inspect the 

dependence among bug reports. In addition to learning 

associations among bug reports, Hong et al. [8] construct a 

developer social network to inspect the relationship among 

developers based on the bug data in Mozilla project. This 

developer social network is supportive to understand the 

developer’s civic and the project growth. By recording bug 

priorities to developers, Xuan et al. [28] recognize the 

developer prioritization in open source bug sources. The 

developer prioritization can differentiate developers and 

help tasks in software maintenance.  

 To explore the quality of bug data, Zimmermann et 

al. [31] plan surveys to developers and users in three open 

source projects. Based on the enquiry of surveys, they 

illustrate what makes a good bug report and train a classifier 

to find whether the quality of a bug report should be 

enriched. Identical bug reports deteriorate the quality of bug 

data by deferring the cost of managing bugs. To identify 



DOI: 10.18535/ijecs/v5i6.12 
 

S.Amritha
1 IJECS Volume 5 Issue 6 June 2016 Page No.16800-16804 Page 16803 

replica bug reports, Wang et al. [25] propose a natural 

language processing method by matching the execution 

facts; Sun et al. [22] propose an identical bug detection 

method by enhancing a recovery function on multiple 

features. 

 To enhance the quality of bug reports, Breu et al. 

[5] have manually investigated 600 bug reports in open 

source projects to search for unnoticed data in bug data. 

Based on the analysis on the quality between bugs and 

requirements, Xuan et al. [26] handover bug data to 

requirements databases to increase the lack of open data in 

requirements engineering.  

 In this paper, we also emphasis the quality of bug 

data. In contrast to prevailing work on studying the features 

of data quality (e.g., [5], [31]) or aiming on identical bug 

reports (e.g., [7], [9]), our work can be used as a 

preprocessing technique for bug triage, which both increases 

data quality and decreases data scale.  

 

2) Bug Triage   

 Bug triage targets to allocate an suitable developer 

to fix a new bug, i.e., to decide who should fix a bug. 

Cubrani c and Murphy [6] suggest the difficulties of 

automatic bug triage to decrease the charge of manual bug 

triage. They put on text classification techniques to guess 

related developers. Anvik et al. [1] inspect multiple methods 

on bug triage, including data preparation and typical 

classifiers. Anvik and Murphy [2] prolong above work to 

decrease the effort of bug triage by creating development-

oriented recommenders.  

 Jeong et al. [9] discover that over 37 percent of bug 

reports have been reallocated in manual bug triage. They 

suggest a tossing graph technique to decrease-allocation in 

bug triage. To sidestep low- 

 

quality bug reports in bug triage, Xuan et al. [27] train a 

semi-supervised classifier by joining unlabeled bug reports 

with labeled ones. Park et al. [18] alter bug triage into an 

optimization delinquent and offer a collaborative filtering 

methodology to decreasing the bug- fixing time. 

 For bug data, numerous other tasks happen once 

bugs are triaged. For example, severity identification [14] 

targets to identify the status of bug reports for further 

scheduling in bug management; time expectation of bugs 

[29] models the time cost of bug deception and expects the 

time rate of specified bug reports; reopened-bug analysis 

[20], [30] finds the wrongly fixed bug reports to evade 

deferring the software release. 

 In data mining, the difficulties of bug triage narrate 

to the problems of expert finding (e.g., [6], [24]) and ticket 

routing (e.g., [16], [19]). In contrast to the broad areas in 

professional outcome or ticket routing, bug triage only 

focuses on allocating developers for bug reports. Moreover, 

bug reports in bug triage are relocated into forms (not 

keywords in expert result) and bug triage is a kind of 

content-based classification (not sequence-based in ticket 

routing).  

 

3) Data Quality in Defect Prediction  

 In our work, we discourse the difficulties of data 

reduction for bug triage. To our understanding, no 

prevailing work has examined the bug data sets for bug 

triage. In an associated problem, defect prediction, some 

effort has focused on the data eminence of software defects. 

In contrast to multiple-class classification in bug triage, 

defect expectation is a binary class classification problem, 

which targets to predict whether a software piece (e.g., a 

source code file, a class, or a module) contains errors 

according to the mined features of the piece.  

 In software production, defect prediction is a kind 

of work on software metrics. To enhance the data quality, 

Khoshgoftaar et al. [11] and Gao et al. [7] inspect the 

methods on feature selection to manage imbalanced defect 

records. Shivaji et al. [23] suggests a structure to inspect 

multiple feature selection algorithms and eliminate noise 

features in classification-based defect prediction. Besides 

feature selection in defect prediction, Kim et al. [13] present 

how to measure the noise confrontation in defect prediction 

and how to perceive noise data. Moreover, Bishnu and 

Bhattacherjee [4] practice the defect records with quad tree 

based k-means clustering to support defect prediction.  

 In this paper, in contrast to the above effort, we 

report the difficulties of data reduction for bug triage. Our 

work can be observed as an extension lead of software 

metrics. In our work, we calculate a value for a set of 

software pieces while prevailing work in software metrics 

calculate a value for an individual software piece. 

 

V. CONCLUSIONS 

 Bug triage is an exclusive step of software 

maintenance in both manual labor charge and time rate. In 

this paper, we syndicate feature selection with instance 

selection to decrease the scale of bug data sets as well as 

enhance the data quality. To decide the order of applying 

instance selection and feature selection for a new bug 

records set, we abstract features of each bug records set and 

train an analytical model based on historical records sets. 

We empirically examine the data reduction for bug triage in 

bug sources of two huge open source projects, namely 

Eclipse and Mozilla. Our work affords a method to 

leveraging procedures on data processing to form reduced 

and high-quality bug data in software development and 

maintenance. 

In future work, we plan on enlightening the effects 

of data reduction in bug triage to discover how to formulate 

a high quality bug data set and block a domain-specific 

software task. For predicting reduction orders, we plan to 

pay efforts to find out the potential correlation between the 



DOI: 10.18535/ijecs/v5i6.12 
 

S.Amritha
1 IJECS Volume 5 Issue 6 June 2016 Page No.16800-16804 Page 16804 

features of bug data sets and the reduction orders. 

 

REFERENCES 

 
[1] J. Anvik, L. Hiew, and G. C. Murphy, ―Who should fix this 

bug?‖ in Proc. 28th Int. Conf. Softw. Eng., May 2006, pp. 361–

370. 

[2] J. Anvik and G. C. Murphy, ―Reducing the effort of bug report 

triage: Recommenders for development-oriented decisions,‖ 

ACM Trans. Soft. Eng. Methodol., vol. 20, no. 3, article 10, 

Aug. 2011. 

[3] K. Balog, L. Azzopardi, and M. de Rijke, ―Formal models for 

expert finding in enterprise corpora,‖ in Proc. 29th Annu. Int. 

ACM SIGIR Conf. Res. Develop. Inform. Retrieval, Aug. 2006, 

pp. 43–50. 

[4] P. S. Bishnu and V. Bhattacherjee, ―Software fault prediction 

using quad tree-based k-means clustering algorithm,‖ IEEE 

Trans. Knowl. Data Eng., vol. 24, no. 6, pp. 1146–1150, Jun. 

2012. 

[5] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, 

―Information needs in bug reports: Improving cooperation 

between developers and users,‖ in Proc. ACM Conf. Comput. 

Supported Cooperative Work, Feb. 2010, pp. 301–310. 

[6] D. Cubrani c and G. C. Murphy, ―Automatic bug triage using 

text categorization,‖ in Proc. 16th Int. Conf. Softw. Eng. Knowl. 

Eng., Jun. 2004, pp. 92–97. 

[7] K. Gao, T. M. Khoshgoftaar, and A. Napolitano, ―Impact of data 

sampling on stability of feature selection for software 

measurement data,‖ in Proc. 23rd IEEE Int. Conf. Tools Artif. 

Intell., Nov. 2011, pp. 1004–1011. 

[8] Q. Hong, S. Kim, S. C. Cheung, and C. Bird, ―Understanding a 

developer social network and its evolution,‖ in Proc. 27th IEEE 

Int. Conf. Softw. Maintenance, Sep. 2011, pp. 323–332. 

[9] G. Jeong, S. Kim, and T. Zimmermann, ―Improving bug triage 

with tossing graphs,‖ in Proc. Joint Meeting 12th Eur. Softw. 

Eng. Conf. 17th ACM SIGSOFT Symp. Found. Softw. Eng., 

Aug. 2009, pp. 111–120. 

[10] Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou, 

Zhongxuan Luo, and Xindong Wu,‖ Towards Effective Bug 

Triage with Software Data Reduction Techniques‖ ieee 

transactions on knowledge and data engineering, vol. 27, no. 1, 

january 2015 

[11] T. M. Khoshgoftaar, K. Gao, and N. Seliya, ―Attribute selection 

and imbalanced data: Problems in software defect prediction,‖ 

in Proc. 22nd IEEE Int. Conf. Tools Artif.  

Intell., Oct. 2010, pp. 137–144. 

[12] S. Kim, K. Pan, E. J. Whitehead, Jr., ―Memories of bug fixes,‖ 

in Proc. ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2006, 

pp. 35–45. 

[13] S. Kim, H. Zhang, R. Wu, and L. Gong, ―Dealing with noise in 

defect prediction,‖ in Proc. 32nd ACM/IEEE Int. Conf. Softw. 

Eng., May 2010, pp. 481–490. 

[14] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, 

―Predicting the severity of a reported bug,‖ in Proc. 7th IEEE 

Working Conf. Mining Softw. Repositories, May 2010, pp. 1–

10. 

[15] Mamdouh Alenezi and Kenneth Magel, Shadi Banitaan 

―Efficient Bug Triaging Using Text Mining‖ © 2013 academy 

publisher 

[16] G. Miao, L. E. Moser, X. Yan, S. Tao, Y. Chen, and N. 

Anerousis, ―Generative models for ticket resolution in expert 

networks,‖ in Proc. 16th ACM SIGKDD Int. Conf. Knowl. 

Discovery Data Mining, 2010, pp. 733–742. 

[17] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, 

―The design of bug fixes,‖ in Proc. Int. Conf. Softw. Eng., 2013, 

pp. 332– 341. 

[18] J. W. Park, M. W. Lee, J. Kim, S. W. Hwang, and S. Kim, 

―Costriage: A cost-aware triage algorithm for bug reporting 

systems,‖ in Proc. 25th Conf. Artif. Intell., Aug. 2011, pp. 139–

144. 

[19] Q. Shao, Y. Chen, S. Tao, X. Yan, and N. Anerousis, ―Efficient 

ticket routing by resolution sequence mining,‖ in Proc. 14th 

ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 

2008, pp. 605–613. 

[20] R. J. Sandusky, L. Gasser, and G. Ripoche, ―Bug report 

networks: Varieties, strategies, and impacts in an F/OSS 

development community,‖ in Proc. 1st Intl. Workshop Mining 

Softw. Repositories, May 2004, pp. 80–84. 

[21] E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. 

Adams, A. E. Hassan, and K. Matsumoto, ―Predicting re-opened 

bugs: A case study on the eclipse project,‖ in Proc. 17th 

Working Conf. Reverse Eng., Oct. 2010, pp. 249–258. 

[22] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, ―Towards more 

accurate retrieval of duplicate bug reports,‖ in Proc. 26th 

IEEE/ACM Int. Conf. Automated Softw. Eng., 2011, pp. 253–

262. 

[23] S. Shivaji, E. J. Whitehead, Jr., R. Akella, and S. Kim, 

―Reducing features to improve code change based bug 

prediction,‖ IEEE Trans. Soft. Eng., vol. 39, no. 4, pp. 552–569, 

Apr. 2013. 

[24] J. Tang, J. Zhang, R. Jin, Z. Yang, K. Cai, L. Zhang, and Z. Su, 

―Topic level expertise search over heterogeneous networks,‖ 

Mach. Learn., vol. 82, no. 2, pp. 211–237, Feb. 2011. 

[25] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, ―An approach 

to detecting duplicate bug reports using natural language and 

execution information,‖ in Proc. 30th Int. Conf. Softw. Eng., 

May 2008, pp. 461–470. 

[26] J. Xuan, H. Jiang, Z. Ren, and Z. Luo, ―Solving the large scale 

next release problem with a backbone based multilevel 

algorithm,‖ IEEE Trans. Softw. Eng., vol. 38, no. 5, pp. 1195–

1212, Sept./Oct. 2012. 

[27] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, ―Automatic bug 

triage using semi-supervised text classification,‖ in Proc. 22nd 

Int. Conf. Softw. Eng. Knowl. Eng., Jul. 2010, pp. 209–214. 

[28] J. Xuan, H. Jiang, Z. Ren, and W. Zou, ―Developer prioritization 

in bug repositories,‖ in Proc. 34th Int. Conf. Softw. Eng., 2012, 

pp. 25– 35. 

[29] H. Zhang, L. Gong, and S. Versteeg, ―Predicting bug-fixing 

time: An empirical study of commercial software projects,‖ in 

Proc. 35th Int. Conf. Softw. Eng., May 2013, pp. 1042–1051. 

[30] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, 

―Characterizing and predicting which bugs get reopened,‖ in 

Proc. 34th Int. Conf. Softw. Eng., Jun. 2012, pp. 1074–1083. 

[31] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. 

Schroter, € and C. Weiss, ―What makes a good bug report?‖ 

IEEE Trans. Softw. Eng., vol. 36, no. 5, pp. 618–643, Oct. 2010. 


