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Abstract: 

In this paper, the results of combining support vector machine (SVM) learning with discrete wavelet transform and contourlet transform in 

image compression are compared. The algorithm combines SVM learning with the discrete wavelet transform (DWT) and contourlet transform 

(CCT) of the image. An SVM selects the minimum number of training points, called support vectors which ensure modeling of the data within 

the specified level of accuracy. It is this property that is exploited as the basis for an image compression algorithm. Now, the SVMs learning 

algorithm performs the compression in a spectral domain of DWT and CCT coefficients.  

 
Peak signal to noise ratio (PSNR) is computed for the images compressed using wavelet and contourlet transforms. Results show that contourlet 

transform based image compression is more effective in capturing smooth contours (due to anisotropy property) than wavelet transform based 

compression. 
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I. INTRODUCTION 

 The main aim of image compression is to reduce the 

redundancy and remove unnecessary information in the image 

in order to store or transmit the data in an efficient form. There 

are two kinds of image compression, lossy and lossless 

compression. Lossy compression is also known as noisy or 

irreversible compression, as some amount of data is lost or in 

other words all original data cannot be obtained when the 

image is uncompressed. This technique is commonly used in 

compressing multimedia data such as audio or video, in 

applications such as tele-videoconferencing. Lossless 

compression is also known as noiseless or reversible 

compression because no data is lost and all the original data 

can be obtained when the image is uncompressed. Lossless 

technique is used document and medical imaging and 

facsimile transmission. 

 

In image compression, the wavelet transforms produces less 

blocking artifacts than the DCT. They perform well in image 

de-noising too. However, 2D wavelet transform is a tensor- 

product implementation of the 1D wavelet transform. It 

provides local frequency representation of image regions over 

a range of spatial scales. It does not represent 2D singularities 

effectively. Therefore it does not work well in retaining the 

directional edges in the image, and it is not sufficient in 

representing the contours that are not horizontal and vertical 

[6]. 

 

The Contourlet transform (CTT) is a true 2-D geometrical 

image based transform, which was introduced by M.N.Do and 

M. Vetterli [5]. It overcomes the difficulty in exploring the 

geometry in digital images due to the discrete nature of the 

image data. It possesses the important properties of 

directionality and anisotropy which wavelet do not possesses. 

It can represent a smooth contour with fewer coefficients 

compared with wavelets [6]. 

 

SVM are used for classification, regression, and density 

estimation. Typically, the training vectors are mapped to a 

higher-dimensional space using a kernel function, and the 

linear separating plane with the maximal margin between 

classes is found in this space. SVM training involves 

optimizing over several parameters.  SVMs can also be 

applied to regression problems. An input parameter to a SVM 

is an insensitivity zone (tolerance). The goal of the SVM is to 

produce an output which is within this insensitivity zone. 

 

In the algorithm presented in this paper, SVM learning is 

applied after mapping the image to frequency domain. The 

PSNR and MSE of the compressed images when SVM 

learning is applied to image after mapping it to frequency 

domain using DWT and CCT are compared. These quality 

measurement values are also drawn for images compressed 

using DWT and CCT without the application of SVM 
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learning. As the results show the image compressed by 

applying SVM learning to contourlet co-efficient have a better 

quality compared to others. 

 

This paper is organized as follows: Section II discusses the 

basics of Discrete Wavelet Transform (DWT). Section III has 

basics of contourlet transform (CCT). Section IV gives an 

overview of image compression using SVM. Section V 

describes the implementation. The results are included in 

section VI, and conclusions are drawn in section VII.             

 

II. DISCRETE WAVELET TRANSFORM 

The wavelet transform is widely used in signal processing and 

image compression. Image coding standard, JPEG-2000, is 

based on DWT. Wavelet transform decomposes a signal into a 

set of basis functions. These basis functions are called 

wavelets. All wavelets are obtained from a single wavelet, 

called mother wavelet by dilations and shifting. The DWT has 

been introduced as a highly efficient and flexible method for 

sub-band decomposition of signals. In DWT, signal energy 

concentrates on specific wavelet co-efficients. This 

characteristic is useful for compressing images. 

 

Wavelets convert the image into a series of wavelets that can 

be stored more efficiently than pixel blocks. Wavelets have 

rough edges; they are able to render pictures better by 

eliminating the blockiness. In DWT, a time-scale 

representation of the digital signal is obtained using digital 

filtering techniques. 

 

The signal to be analyzed is passed through filters with 

different cut-off frequencies at different scales. A 2-D DWT 

can be seen as a 1-D wavelet scheme which transform along 

the rows and then a 1-D wavelet transform along the columns. 

The 2-D DWT operates in a straight forward manner by 

inserting array transposition between the two 1-D DWT. The 

rows of the array are processed first with only one level of 

decomposition. This essentially divides the array into two 

vertical halves, with the first half storing the average 

coefficients, while the second vertical half stores the detail 

coefficients. This process is repeated again with the columns, 

resulting in four sub-bands. 

 

Image consists of pixels that are arranged in two dimensional 

matrix, each pixel represents the digital equivalent of image 

intensity. In spatial domain, adjacent pixel values are highly 

correlated and hence redundant. In order to compress images, 

these redundancies existing among pixels needs to be 

eliminated. DWT processor transforms the spatial domain 

pixels into frequency domain information that are represented 

in multiple sub-bands, representing different time scale and 

frequency points. One of the prominent features of JPEG2000 

standard, providing it the resolution scalability, is the use of 

the 2D-DWT to convert the image samples into a more 

compressible form. 

 

III. CONTOURLET TRANSFORM 

The contourlet transform (CCT) is the two-dimensional 

extension of the wavelet transform using multi-scale and 

directional filter banks. The contourlet expansion is composed 

of basis images oriented at various directions in multiple 

scales, with flexible aspect ratio. The main difference between 

contourlets and other multi-scale directional systems is that the 

contourlet transform allows for different and flexible number 

of directions at each scale, while achieving nearly critical 

sampling. 

 
Contourlet representation contains basis elements oriented at 

variety of directions much more than few directions that are 

offered by other separable transform technique. One way to 

obtain a sparse expansion for images with smooth contours is first 

apply a multistage wavelet like transform to capture the edge 

points, and then local directional transform to gather the nearby 

edge points into contour segments. With this insight, one can 

construct a double filter bank structure where the laplacian 

pyramidal (LP) filter is used to capture the point discontinuities, 

followed by a directional filter bank (DFB) to link point 

discontinuities into linear structures.  

 
 
                         Fig 1 PDFB Filters 

 

The LP decomposition at each level generates a down sampled 

low pass version of the original and the difference between the 

original and the prediction, resulting in a band pass image.  

This process is continued to obtain a set of band-pass filtered 

images. Thus the Laplacian pyramid is a set of band pass filters 

(as shown in Fig 2). 

  

 
                           
                              Fig 2 Laplacian Pyramid 

 

The directional filter bank is a critically sampled filter bank that 

can decompose images into any power of two’s number of 

directions (as shown in Fig 3.). 

 
              

 Fig 3. Directional Filter 

 

 The overall result is an image expansion using basic elements 

like contour segments, and thus it is named contourlet transform. 
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The combination of this double filter bank is named pyramidal 

directional filter bank (PDFB). 

IV. IMAGE COMPRESSION USING SVM 

SVM is an algorithm introduced by Vapnik and his coworkers 

[7]. It is originally developed for the problems of classification 

and tries to find the optimal hyper-plane by solving a linearly 

constrained quadratic programming (QP) problem. Then, with 

the introduction of -insensitive loss function, SVM has been 

extended to solve a nonlinear regression estimation problem, 

called the SVR. Moreover, the SVR approach with the -

insensitive loss function can use a small subset of the training 

data, namely the SVs, to approximate the unknown functions 

within a tolerance epsilon band.[10] 

The general regression problem is to approximate an unknown 

function f (x) from a given set of (input, output) data 

(x1,y1),…, (xl, yl) X ×Y, where X  
d
 and Y  R. In the SV 

methods, the nonlinear regression problem in the input space 
d
 is considered as a linear one f (x) = w

T
 (x) + b in some 

feature space F that induced by the nonlinear mapping  

 : x1 (x), where wF is a normal vector, and b  a bias 

term. Thus the standard formulation of the SVR given by 

Vapnik is stated as the following (1), where i, i
*
 and C are, 

respectively, positive slack variables to deal with training 

samples with a prediction error larger than (>0) and the 

penalization applied to these samples. The C>0 determines the 

trade-off between the flatness of f and the amount up to which 

deviations larger than  are tolerated. This corresponds to 

dealing with the so-called -insensitive loss function || 

described by (2).  

 
 

 

 
 

 
 

By introducing a dual set of variables, a Lagrange function is 

constructed from the objective function and the corresponding 

constraints. It can be shown that this function has a saddle 

point with respect to the primal and dual variables at the 

solution. Then the primal problem is typically transformed into 

the dual optimization problem, as shown in (3). And its 

solution is given by (4), where i and i
*
 are the Lagrange 

multipliers corresponding to i and i
*
, l is the number of SVs 

and k (xi, x) is the kernel function. The Gaussian RBF kernels 

k (xi, x) = k (xi, x,) = exp(-|| xi - x||
2 

/2
2
) are very popular for 

their universal approximation in the widely used kernels. Note 

that only samples with non-zero Lagrange i and i
*
 are 

counted in the solution and are called support vectors. The 

immediate advantage of the method is that good 

approximating functions can be obtained with a (relatively) 

small set of SVs, leading to the concept of sparsity and, in 

turn, to the idea of inherent compression.[10] 

  

 

 

 

 

V. IMPLEMENTATION 

Input image is decomposed into approximate and detailed 

coefficients by employing DWT. After decomposing the 

image into sub bands, each sub band represents the image in 

different frequency range. Most of the energy will be 

compacted in low frequency sub bands as it is sensitive to 

human eyes. Image reconstruction is possible by using only 

the low frequency wavelet coefficients, however, to get a 

better quality of picture SVM regression is used to compress 

other sub-bands which represents the finer details, this SVM 

regression is applied to coefficients of finer detail sub-bands to 

approximate the wavelet coefficients using support vectors and 

weights.  

 

The same is done for the input image which is decomposed 

into different sub-bands according to contourlet transform. 

The PSNR value is calculated for each of these images 

compressed using DWT and CCT, and conclusions are drawn.   

VI. RESULTS 

In this section, experimental results are tabulated. The PSNR 

values for images compressed using DWT or CCT and with or 

without SVM are compared.  

 

The SVM parameters used are: gaussian kernel is used,   is 

0.001 and C = 1000. With these parameters the PSNR value 

for the given image is found to be maximum.  The results are 

tabulated for different images in Table 1. 

 

 

Image  
PSNR (in dB) 

DWT CCT DWT with SVM  CCT  with  SVM 

Lena.png 24.65 26.43 27.68 31.05 

Zoneplate.png 22.57 24.77 25.69 30.88 

Peppers.png 26.42 27.21 28.86 30.91 

 Table 1.  PSNR values for different images compressed using DWT or CCT  
 

As an example, lena.png images are shown. Fig(4) shown is 

the original image. Fig (5) and Fig (6) is the 2 level 

decomposition using contourlet transform and wavelet 

transform respectively,  Fig (7) and Fig (8) represent the 

compressed images using contourlet and dwt transform 

respectively. Fig(9) and Fig (10) are the images compressed 

combining CCT and SVM, and DWT and SVM respectively. 
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Fig 4. Lena.png (original image) 

 

 

 
Fig 5 Contourlet coefficients 

 

 
Fig 6. Wavelet coefficients 

 

 

 
    Fig 7. CCT compression              Fig 8. DWT Compression 

 

 
   Fig 9. CCT with SVM Compression   Fig 10. DWT with SVM Compression 

 

VII. CONCLUSION 

We have presented image compression algorithm which takes 

advantage of SVM learning. The algorithm exploits the trend 

of the DWT/CCT coefficients after the image has been 

transformed from the spatial domain to the frequency domain 

via the DWT/CCT. SVM learning is used to estimate the 

DWT/CCT coefficients within a predefined error. The SVM is 

trained on the absolute magnitude of the DWT/CCT 

coefficients as these values require less SVs to estimate the 

underlying function. The net result of the SVM learning is to 

compress the DWT/CCT coefficients much further.  

 

We have presented results showing that by combining SVM 

learning with CCT produces better results compared to SVM 

learning applied to DWT. The results show that PSNR value is 

better for the former method than the latter. Also by applying 

SVM learning to CCT/DWT coefficients the PSNR and MSE 

values are found to be improved. 
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