

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 10 October,2013 Page No. 2900-2902

Nidhi Sharma, IJECS Volume 2 Issue10 October,2013 Page No.2895-2899 Page 2900

Deadlock Detection and Removalin Distributed

Systems

Nidhi Sharma, Amol Parikh

Vellore Institute of Technology, Vellore, TamilNadu– 632014
Email: nidsharma1993@gmail.com

Vellore Institute of Technology Vellore, TamilNadu- 632014
Email: amol.chunky@gmail.com

Abstract

Advancement in information technology has been tremendous in the recent years. Distributed computing concepts are being applied to the

database systems as well, leading to the development of distributed databases.[5] A distributed database is a collection of multiple logically

interrelated databases distributed over a computer network. With the making of distributed databases rose the problem of deadlocks,

concurrency and management of databases. In an operating system, a deadlock is a situation which occurs when a process enters a

waiting state because a resource requested by it is being held by another waiting process, which in turn is waiting for another resource.[4] If a

process is unable to change its state indefinitely because the resources requested by it are being used by another waiting process, then the

system is said to be in a deadlock.Concurrency refers to the process of simultaneous accesses to the database by various processes. One needs

to synchronize the accesses to ensure consistency and avoid deadlocks.[4] In this paper, we discuss the various deadlock detection techniques

and explain a new approach developed to detect and solve deadlocks.

KEYWORDS

TWFG – Task Wait-For Graph

TRG – Task Resource Graph

RAG – Resource Allocation Graph

Deadlock Detection , Concurrency Control

1. INTRODUCTION

The advantages of distributed databases are sharing data among

various users, restricting unauthorized access, providing storage

structures for efficient query processing, providing backup and

recovery services, providing multiple interfaces to different classes

of users, representing complex relations among data etc. To fully

utilize these benefits of the database systems, we need to deal with

the problems of concurrency and deadlock.

 For a deadlock to occur there are four necessary conditions[1][4]:

(i) No Pre-emption

(ii) Mutual exclusion (resource can be accessed by only one

process at a time)

(iii) Blocked waiting (a process gets blocked while waiting

for a resource)

(iv) Hold and Wait (a process already holds some resources

while requesting new ones)

Concurrency issues are solved using lock-based algorithms while

deadlocks are solved using graphs. Two main graphs used here for

deadlock detection are Wait-for and Resource allocation.[1]

Wait-for graph: It is a mathematical tool used to express

deadlocks.[1][2] A systems state can be represented using Task

Wait-for graphs (TWFG). It is a directed simple graph in which an

edge directed from a task t1 to t2 represents that t1 is waiting for

t2. Another type of wait-for graph is Task resource graph

(TRG).[1] There are two types of nodes – resources and processes.

And there are two types of edges – request edge (directed from a

process to a resource when the process requests a certain resource)

and grant (directed from resource to the process representing that

the process is granted access to that resource).[1]

Resource allocation graph: Deadlock detection can be

represented by a RAG, which has two set of nodes namely

processor nodes and resource nodes. A node is a vertex and the

edges are used to show relations between various nodes. A node is

called a sink when all its edges are incoming, and it is called a

source if all its edges are outgoing. A path represents a sequence of

nodes. If a path starts and ends at the same node then a deadlock is

detected. [1]

http://www.ijecs.in/
mailto:nidsharma1993@gmail.com
mailto:amol.chunky@gmail.com
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Process_states
http://en.wikipedia.org/wiki/Resource

Nidhi Sharma, IJECS Volume 2 Issue10 October,2013 Page No.2895-2899 Page 2901

2. ALGORITHMS FOR DEADLOCK

DETECTION

The software solutions to the problems of deadlocks have been

implemented using different types of algorithms, namely

centralized, distributed and hierarchical. [1]

Centralized algorithms are implemented on the control site that has

the responsibility of global system state information and searching

for deadlocks whereas in distributed deadlock detection all nodes

cooperate to detect deadlocks. [1] In hierarchical algorithms, the

sites are organized in to hierarchy where each site is responsible

for detecting deadlocks for itself and its children.[1]

Some of the distributed deadlock detection algorithms are

discussed here.

(i).Path-Pushing algorithm:Basic idea is to construct a simplified

form of system state graph at each site that is sufficient to detect a

deadlock.[1] Here, after construction of these system graphs at

each site, they are sent to the neighbors where the graphs from

others and their own graphs are combined and sent to the next

neighbor. This way finally a node has enough information to detect

if a deadlock has occurred.

(ii).Edge-Chasing algorithm: In this algorithm, a node generates a

probe message which is propagated along the system state graph. If

the probe is finally received by its initiator then a cycle is

detected.[1] If a node is not waiting for any resource it simply

discards the probe message, others propagate it to the node whose

resource they are waiting for.

3. BRIEF EXPLANATIONS AND

COMPARISIONS OF SOME DEADLOCK

DETECTION ALGORITHMS:

3.1 Deadlock Detection and Solving Algorithm

A directed graph can be represented with an adjacency matrix.

Herethe adjacency matrix is modified a bit. The first column

represents all processes while first row represents all the resources.

The table is then filled according to RAG of the given system. The

r represents a request made by process P for some resource (whose

column is marked with ‘r’) R, and g represents a grant edge, i.e. the

resource is granted to the process.

Now we define a few terms that we would need to further explain

this algorithm.

Source is a process with n number of requests but no grants or

with a grant but no requests. Sink is a process with one or more

grants but no requests or one or more requests but no grants. Link

is a node that has exactly one incoming edge and one outgoing

edge. Branch is a node with one or more incoming and outgoing

edges. A cycle is an ordered sequence of vertices such that except

the first and the last ones no others are the same.[5]

Since the aim of the algorithm being discussed is detection and

also solving deadlocks certain steps need to be followed to achieve

the goal.

(i)Firstly a Resource Allocation Graph is constructed which shows

all the resources allocated to a process and asked for by a process.

 (ii) Next an algorithm is used to reduce this matrix as much as

possible. Run a loop until all the vertices up to the terminal

vertices are checked. Inside the loop, find the next state of the

process by applying the formula to it. Using this formula the rows

and columns containing all zeros, source and sink nodes are

removed.[1] The state obtained from this computation is made the

current state and the same computation is continued for all the

states.

(iii)If there are no rows and columns left in the graph it means that

no deadlock was detected. But if a row remains we detect at least

one deadlock in our graph.[1]

(iv)This detected deadlock is now solved by using another

algorithm. This algorithm also works in the same way as the one

mentioned in step (ii) , except for further reducing the graph here,

start removing the edges between the nodes(links and branches)

until we reach the last row. This algorithm solves deadlocks by

making processes to give up resources granted to them and also

take away the requests that these processes have made. This is

done until the deadlock detected is removed.

3.2 Two Phase Deadlock Detection Algorithm

In the original two-phase detection algorithm, every site maintains

a status table which records the requests and grants that its

processes have received (i.e. the transactions made by each process

are recorded in this table).[2] A control site periodically collects

these status tables from all the sites by broadcasting a message. It

then creates a Wait-for graph for the system. If it contains a cycle it

again takes the tables of all sites and considers only those nodes

that appeared in the cycle in first phase. If they again form the

same cycle, a deadlock is detected.[2]However, false deadlocks can

also be detected using this method. Hence a modified version of

this algorithm was made.

In this version each transaction’s edge has three values to describe

it- T, R, t, where T represents the transaction, R represents the

resource requested for or granted and t represents the local clock

value of the transaction. The rest of the algorithm goes the same

way as the original two-phase algorithm. This algorithm ensures

that no false deadlocks are detected.[2]

3.3 One Phase Algorithm:

The control site here requests the tables only once, but two types of

tables have to be transferred, namely transaction status table (of the

processes) and the resource status table (maintained by the

resource manager for each resource).[2] These tables are used to

construct a global system state which takes into consideration only

those nodes that appear in both the tables. Hence false deadlocks

are not detected here. After creating the global system state if any

cycles are found a deadlock is detected.[2]

In the modification of this one phase algorithm, each process

maintains three records in a table, R, s, T_block, where R is the

resource held /waited upon by the process, s is the status of the

process which is ‘a’ if the resource is assigned to it or ‘w’ if it is

Nidhi Sharma, IJECS Volume 2 Issue10 October,2013 Page No.2895-2899 Page 2902

waiting for the resource. T_block holds the value of time stamp at

which the process requested the resource if it is blocked.[2]

When a process requests a resource, the resource manager checks if

the resource is available, if yes, then the resource is assigned to the

process through the time stamp message to the process and a lock

is applied to the resource. Similarly when a process releases its

resource then the resourced is unlocked and further assigned to

another process if it was asked for; also the local time stamp of the

resource manager is updated.[2] The control site broadcasts its

request to all processes to send their time stamps, if the process is

blocked it sends its T_block along with the process table to the

control site. Here it is checked if the T_block received holds a

value higher than the previous known local time stamp of the node

by the control site.[2] If yes, then the edge P->R (process P waiting

for resource R) is added to the WFG being made. If a cycle is

formed then a deadlock is detected.[2]

The message complexity in this algorithm is halved from 2n in

original one phase to n. Also the deadlock can be detected faster in

this modified version as only process sends its graph to the control

site.

3.4 A Token Based Algorithm for Deadlock

Detection

This algorithm has a control process called the controller. This

process is associated with all processes. The job of this controller is

to coordinate with other controllers and help in the detection of

deadlocks in the processes.[3]

Each process P has an input buffer where all the messages

addressed to it are stored. This buffer is readable by the controller

also. Here, a virtual ring is established. A value token is generated

by the controller and passed on to the process next to it in the

virtual ring.[3] This token carries the names of set of processes as

PDs; these are the processes that the controller, according to its

current knowledge thinks are deadlocked. A process is removed

from the PD list only if it receives the token from the previous

node. The token moves around the ring. If the value for the PD

does not change when the token is monitored by the controller, it

detects that a deadlock exists. But if the set PD becomes empty it

concludes that no deadlock was there at the time t when it initiated

the token. A Boolean variable ‘cp’ is maintained here, this variable

if false indicates that a process P is active and if true means that the

process is waiting. The controller can check and detect for sure if a

process is active or not and accordingly set the value of ‘cp’ for

this process. A deadlock is detected only if ‘cp’ is true and also the

given process remained continuously passive since the last token

visit.

4. CONCLUSION

The paper discusses some hardware and software algorithms for

deadlock detection. These algorithms have some advantages like

detecting a true deadlock, reducing the time for deadlock detection,

implementing algorithms that solve these deadlocks etc, at the

same time they face certain disadvantages too. One needs to

carefully select an algorithm for implementation of deadlock

detection in the distributed systems so that properly functional and

efficient distributed databases can be built.

5.ACKNOWLEDGEMENTS

We would like to thank Prof Saritha. V for her expert advice in the

area of Database Systems and Deadlock Detection and

Concurrency Control

6. REFERENCES

[1]H. A. Ali, T. EL-DNAF, and M SALAH,A Proposed Algorithm

for Solving Deadlock Detection in Distributed Database Systems,

IEEE© 2004

[2]Ajay D Kshemkalyani, MukeshSinghal, Correct Two-Phase and

One-Phase Deadlock Detection Algorithms for Distributed

SystemsParallel and Distributed Processing, 1990. Proceedings of

the Second IEEE Symposium

[3].JersiBrezezinski, Jean-Michel Helary, Michel Raynal,

Deadlock Models and General Algorithms for Distributed

Deadlock Detection. Journal of Parallel and

DistributedComputingVolume 31, Issue 2, December 1995

[4].Silberschatz, Abraham (2006). Operating System Principles (7

ed.). Wiley-India. p. 237. Retrieved 29 January 2012.

[5] R. Elmasri, S.B. Navathe, “Fundamentals of Database

Systems”, Third Edition, 2000

http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science/journal/07437315
http://www.sciencedirect.com/science/journal/07437315
http://books.google.co.in/books?id=WjvX0HmVTlMC&dq=deadlock+operating+systems&source=gbs_navlinks_s

