

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 2 Issue 9 September 2013 Page No. 2861-2865

Anjali Patil, IJECS Volume 2 Issue 9 September, 2013 Page No. 2861-2865 Page 2861

Sensitive Data Storage in Wireless Devices Using

AES Algorithm

Anjali Patil
1
, Rajeshwari Goudar

2

1Maharashtra Academy of Engineering, Department of Computer Engineering,

Alandi Road, Pune-411056, India

 anjalimpatil21@gmail.com

2 Maharashtra Academy of Engineering, Department of Computer Engineering,

Alandi Road, Pune-411056, India

rmgoudar66@gmail.com

Abstract: Nowadays, Mobile devices like cellular phones are widely used by most people. This rapid growth in mobile technology makes the

delivery of healthcare data on mobile phones. The healthcare data is very sensitive and hence, it must be protected against unauthorized

access. Mobile device have two constraints: Memory and Processing Power. AES is well-known standard algorithm for encryption. AES is a

block cipher.AES provides flexibility, simplicity, easiness of implementation and high throughput.

Keywords: Security, AES , Encryption, Decryption.

1. Introduction

Mobile devices have reached more people in developing

countries as compared to road system, power grid, water works

etc.Mobile devices can not carry physically drugs, doctors and

equipment between location but can carry and process

information in various ways The personal mobile device may

also be used to store information. Applications e.g. mobile

electronic payment , secure messaging have an inherent need

for security. In information security , cryptography algorithms

plays an important role. Embedded systems have mainly 2

constraints[1]: Low memory and Low Processor Capacity.

Embedded systems are those which are complete devices often

including mechanical parts and hardware. Eg: Mobile phones ,

digital watches , videogame console , MP3 players , wireless

sensor nodes, GPS receivers etc.

 Many encryption algorithms are widely available and used

in information security. They can be categorized into

Symmetric (private) and Asymmetric (public) keys Encryption.

In Symmetric keys encryption or secret key encryption, only

one key is used to encrypt and decrypt data. DES uses one 64-

bits key. Triple DES (3DES) uses three 64- bits keys.AES is

Advanced Encryption Standards designed from larger

collection of Rijndael algorithm. AES has 3 flavors AES-128,

AES-192, AES-256 with block size 128 and number of rounds

is 10, 12, and 14 respectively. This Paper describes effective

security for data storage in mobile devices by implementing

AES algorithm for encryption and decryption.

2. Related Work

To give more prospective about the performance of the

compared algorithms, this section discusses the results obtained

from other resources. In [2] it is found that after only 600

encryptions of a 5 MB file using Triple-DES the remaining

battery power is 45% and subsequent encryptions are not

possible due to battery dies rapidly. In [3] it is concluded that

AES is faster and more efficient than other encryption

algorithms. When the transmission of data is considered there

is insignificant difference in performance of different

symmetric key schemes. Under the scenario of data transfer it

would be better to use AES scheme in case the encrypted data

is stored at the other end and decrypted multiple times.

3. Current Security Issues

The use of public-key encryption at the application layer has

proved to be unsuitable in embedded environments[4]. This is

due to the significant amount of processing and resources

required. These resource requirements can lead to intolerable

response times in enterprise wireless applications. On the other

hand, AES symmetric ciphering has proved to be very efficient

in terms of speed and size, and suitable for hardware or

software implementations on mobile devices [5].

 Choosing J2ME as development platform was due to the

following reasons: the portability of Java code, the ability to

reduce the network traffic by making use of the processing

power of the Java phone to process data locally, and the ability

 to establish a kind of a differential security policy on the client

Anjali Patil, IJECS Volume 2 Issue 9 September, 2013 Page No. 2861-2865 Page 2862

that will perform the encryption operations according to the

content and sensitivity of network data rather than encrypting

everything. This methodology helped to utilize the embedded

device processing power very efficiently. Furthermore, J2ME

mobile information device applications (MIDlets) can operate

over, and make use of the WAP stack to perform HTTP

network interaction, without requiring TCP/IP. A side-effect of

devising a general application-layer security solution using

J2ME is that it provides a feasible solution to the traditional

security gap in the WAP gateway [6]. This security gap is due

to the security protocol conversion mechanism taking place in

the WAP gateway between secure sockets layer (SSL)

encryption and the WAP wireless transport layer security

(WTLS) encryption protocols. WTLS is used for securing data

between the mobile phone and the WAP gateway, while SSL

secures the communication between the WAP gateway and the

Internet web server.

4. AES Algorithm

Cryptography plays an important role in the security of data. It

enables us to store sensitive information or transmit it across

insecure networks so that unauthorized persons cannot read it.

 The basic unit for processing in the AES algorithm is a byte

(a sequence of eight bits), so the input bit sequence is first

transformed into byte sequence. In the next step a two

dimensional array of bytes (called the State) is built. The State

array consists of four rows of bytes, each containing Nb bytes,

where Nb is the block size divided by 32 (number of words).

All internal operations (Cipher and Inverse Cipher) of the AES

algorithms are then performed on the State array, after which

its final value is copied to the output.

 The input and output for the AES algorithm each consist of

sequences of 128 bits (digits with values of 0 or 1). These

sequences will sometimes be referred to as blocks and the

number of bits they contain will be referred to as their length.

The Cipher Key for the AES algorithm is a sequence of 128,

192 or 256 bits. In AES , there are number of processing

rounds. These rounds are based on the key size. If the key

length is 128 bits,AES will perform nine processing rounds. If

key is of 192 bits, AES perform 12 rounds and if the key size is

256 bits then AES perform 14 processing rounds[7]. Each

processing round involves four steps –

· Substitute bytes

· Shift rows

· Mix columns

· Add round key

AES is an iterated symmetric block cipher, which means that:

 AES works by repeating the same defined steps

multiple times.

 AES is a secret key encryption algorithm.

 AES operates on a fixed number of bytes.

AES as well as most encryption algorithms is reversible. This

means that almost the same steps are performed to complete

both encryption and decryption in reverse order. The AES

algorithm operates on bytes, which makes it simpler to

implement and explain.

 The AES encryption procedure is shown in Figure 1. The

AES decryption procedure is shown in Figure 2. AES

algorithm contain of two parts:

Figure 1: 128 bit encryption AES algorithm

Figure 2: 128 bit decryption AES algorithm

4.1 Round Function

This part consisting of different transformations: subBytes,

shiftrows, mixColumns and addroundkey the four

transformation are described briefly as follows[8]:

Anjali Patil, IJECS Volume 2 Issue 9 September, 2013 Page No. 2861-2865 Page 2863

4.2 Structure of Key and Input Data

Both the key and the input data (also referred to as the state)

are structured in a 4x4 matrix of bytes. Figure 3 shows how the

128-bit key and input data are distributed into the byte

matrices.

Figure 3: Structure of the Key and the State

4.3 SubstituteBytes(Subbytes Operation)

There are different ways of interpreting the Subbytes

operation. In this application , it is sufficient to consider the

Subbytes step as a lookup in a table. With the help of this

lookup table, the 16 bytes of the state (the input data) are

substituted by the corresponding values found in the lookup

table (Figure 4.)

Figure 4: Sub byte Operation

In the S-Box Substitution step, each byte in the matrix is

reorganized using an 8-bit substitution box. This substitution

box is called the Rijndael S-box[9]. This operation provides the

non-linearity in the cipher. The S-box used is derived from the

multiplicative inverse over GF (28), known to have good non-

linearity properties[10].

4.4 Shift Rows(Shiftrows Operation)

As implied by its name, the Shiftrows operation processes

different rows. A simple rotate with a different rotate width is

performed. The second row of the 4x4 byte input data (the

state) is shifted one byte position to the left in the matrix, the

third row is shifted two byte positions to the left, and the fourth

row is shifted three byte positions to the left. The first row is

not changed.

Figure 5: Shiftrows Operation

4.5 Mix Columns(Mix Columns Operation)

Opposed to the Shiftrows operation, which works on rows in

the 4x4 state matrix, the Mix columns operation processes

columns. Transformation in the Cipher that takes all of the

columns of the State and mixes their data (independently of one

another) to produce new columns shown in Figure 6.

Figure 6: Mixcolumns Operation

4.6 Add Round Key(Addroundkey Operation)

A round key is added to a state. In this operation round key is

applied to the state by a simple bit wise XOR. The round key is

extracted from the cipher key by means of key schedule. The

operation is viewed as a column wise operation between the

4byte of a state column and word of the round key, it can also

be viewed as a byte-level operation.

Figure 7: Add Round Key Operation

4.6 Key Expansion

Key expansion refers to the process in which the 128 bits of the

original key are expanded into eleven 128-bit round keys. To

compute round key (n+1) from round key (n) these steps are

performed: Compute the new first column of the next round

key as shown in Figure 8:

First all the bytes of the old fourth column have to be

substituted using the Subbytes operation. These four bytes are

shifted vertically by one byte position and then XORed to the

old first column.

The result of these operations is the

 [new second column] = [new first column] XOR

 [old second column]

 [new third column] = [new second column] XOR

 [old third column]

 [new fourth column] = [new third column] XOR

 [old fourth column]

Anjali Patil, IJECS Volume 2 Issue 9 September, 2013 Page No. 2861-2865 Page 2864

Figure 8: Expanding First Column of Next Round Key

Figure 9: Expanding Other Columns of Next Round Key

5. Notations , Conventions and Mathematical

Background

The input and output for the AES algorithm consists of

sequences of 128 bits. These sequences are referred to as

blocks and the numbers of bits they contain are referred to as

their length. The Cipher Key for the AES algorithm is a

sequence of 128, 192 or 256 bits. The basic unit of processing

in the AES algorithm is a byte, which is a sequence of eight bits

treated as a single entity[11].

b7 x8 + b6 x7 + b5 x6 + b4 x5 + b3 x4 + b2x3 + b1 x2 +

b0 x=Σbixi (1)

 Internally, the AES algorithm’s operations are performed on a

two-dimensional array of bytes called the State. The State consists

of four rows of bytes. Each row of a state contains Nb numbers of

bytes, where Nb is the block length divided by 32. In the State

array, which is denoted by the symbol S, each individual byte

has two indices. The first byte index is the row number r,

which lies in the range 0 ≤ r ≤ 3 and the second byte index is

the column number c, which lies in the range 0 ≤ c ≤ Nb−1.

Such indexing allows an individual byte of the State to be

referred to as Sr,c or S[r,c]. At the beginning of the Encryption

and Decryption the input, which is the array of bytes

symbolized by in0in1···in15 is copied into the State array. The

Encryption or Decryption operations are conducted on the State

array[12].

 Every byte in the AES algorithm is interpreted as a finite

field element using the notation. All Finite field elements can

be added and multiplied. The addition of two elements in a

finite field is achieved by “adding” the coefficients for the

corresponding powers in the polynomials for the two elements.

The addition is performed through use of the XOR operation.

Multiplying the binary polynomial defined in equation with the

polynomial x results, can be implemented at the byte level as

shift and a subsequent conditional bitwise XOR with left . This

operation on bytes is denoted by xtime(). Multiplication by

higher powers of x can be implemented by repeated application

of xtime(). Through the addition of intermediate results,

multiplication by any constant can be implemented [13].

Conclusion

Embedded systems like Mobile phones, GPS receivers,

Wireless Sensor Nodes etc handle sensitive data, hence

requires data security mechanisms. AES algorithm which is a

standard algorithm for data encryption is suitable for such

scenarios where memory and processing power constraints are

very high.

References

[1] Embedded Software, Edward A. Lee, Advances in

Computers, Academic Press London 2002

[2] Ruangchaijatupon, P. Krishnamurthy, „‟ Encryption and Power

Consumption in Wireless LANs-N,‟‟ The Third IEEE

Workshop on Wireless LANs -September 27-28, 2001- Newton,

Massachusetts.

[3] Nagesh Kumar, Jawahar Thakur, Arvind Kalia on

“PERFORMANCE ANALYSIS OF SYMMETRIC KEY

CRYPTOGRAPHY ALGORITHMS:DES , AES and

BLOWFISH “ in An International Journal of Engineering

Sciences ISSN: 2229-6913 Issue Sept 2011, Vol. 4 ,pp.28-37

[4] Harbitter and D. Menasce, “The Performance of Public

Key-Enabled Kerberos Authentication in Mobile

Computing Applications,” in Proceedings of the 8th ACM

conference on Computer and Communications

Security,2001

[5] G. Keating, “Performance Analysis of AES Candidates on

the 6805 CPU Core,” URL

http://members.ozemail.com.au/~geoffk/aes-

6805/paper.pdf, April 1999

[6] M. Soriano and D. Ponce, “A Security and Usability

Proposal for Mobile Electronic Commerce,” IEEE

Communications, August 2002

[7] Himani Agrawal and Monisha Sharma, “Implementation

and analysis of various symmetric cryptosystems”,

Indian Journal of Science and Technology Vol. 3 No.12,

December 2010

[8] D. Atnafu, “Optimizing AES Implementation for High

Speed Embedded Application,” Feb 2008 Addis Ababa

[9] Rohan Rayrikar,Sanket Upadhyay and Priyanka Pimpale,

“SMS Encryption using AES Algorithm on Android”,

International Journal of Computer Applications Vol. 50–

No.19, July 2012

[10] J. Yenuguvanilanka and O. Elkeelany, “Performance

Evaluation of Hardware Models of Advanced Encryption

Standard (AES) Algorithm, ,” Southeastcon, 2008 IEEE,

pp.222-225,2008

[11] William Stallings, “Cryptogrphy and network Security

principles and practices”,2007 pp 134-165

[12] Luby, M. G., Mitzenmacher, M., Shokrollahi, M. A.,and

Spielman, D. A. Efficient erasure correcting codes. IEEE

Transactions on Information Theory,47,2(Feb.2001)569-

583

Anjali Patil, IJECS Volume 2 Issue 9 September, 2013 Page No. 2861-2865 Page 2865

[13] FIPS 197,“Advanced Encryption Standard (AES)”,

November 26, 2001

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Author Profile

Anjali M. Patil is currently pursuing masters degree program in
computer engineering in Maharashtra Academy of Engg , Pune
University, India .
E-mail: anjalimpatil21@gmail.com

Prof.R.M.Goudar M.E Computer Engg., Maharashtra Academy of
Engg. Pune University, India..
E-mail: rmgoudar66@gmail.com

