

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 3 March,2014 Page No. 5078-5082

Priyanka Rana
1
IJECS Volume 3Issue 3March, 2014 Page No 5078-5082 Page 5078

EXPLORATORY STUDY FOR REGRESSION TEST SELECTION TECHNIQUES

IN PROCEDURAL AND OBJECT ORIENTED PROGRAMMING PARADIGM

Priyanka Rana
1
, Dr. Anita Ganpati2

1
Computer Science Department,

St Bede‟s College, Shimla, India.

Email-priyankarana.id@gmail.com

2
Computer Science Department,

Himachal Pradesh University, Shimla, India

Email-anitaganpati@gmail.com

Abstract: The most crucial phase in the software development life cycle is maintenance phase. Whether it is corrective, adaptive or

perfective maintenance it must be ensured that the modification does not affect other portions of the program. Therefore testing is

required. Regression testing is carried out after a software developer has attempted to fix a problem or has introduced source code to

software. An important research problem in regression testing is the selection of a suitable subset of test cases from existing test suite that

would reduce the regression testing time and effort without giving up the completeness of regression testing. Researchers have suggested

a number of regression test selection (RTS) techniques for different programming paradigms. In this paper an exploratory study of

regression test selection techniques was carried out for procedural and object-oriented programming paradigm. From the study it was

concluded that Specification Based RTS Technique is most effective as it does not depend on model-based or code based analysis.

Keywords: maintenance, regression testing, selection, procedural, object oriented

1. Introduction
Software maintenance activity consumes 40-70% of the cost of

the entire software life cycle. Software Maintenance is required

for error correction, enhancement of existing functionalities,

and deletion of obsolete capabilities. Whenever software is

changed for enforcement of maintenance activity, regression

testing is performed to retest the modified part of the software

and ensuring that no new errors have been introduced into the

previously tested code.

A successful test results in the discovery of errors and the

errors must be corrected. Whenever software is corrected, some

part of software configuration is changed. Regression testing is

the activity that helps to ensure that changes do not introduce

unintended behavior or additional errors [13].

A number of different approaches have been studied to aid the

regression testing process. The three major branches include

test suite minimization, test case selection and test case

prioritization. Test suite minimization is a process that seeks to

identify and then eliminate the obsolete or redundant test cases

from the test suite. Test case selection deals with the problem

of selecting a subset of test cases that will be used to test the

changed parts of the software. Finally, test case prioritization

concerns the identification of the „ideal‟ ordering of test cases

that maximizes early fault detection. This paper presents the

various types of regression test selection techniques proposed

by various researchers, their classifications in procedural and

object-oriented applications.

2. Regression test selection (RTS)
Various RTS techniques have been proposed by researchers

that select subset of test cases from an initial test suite to test

the affected but unchanged parts of a program. Effective

techniques for regression test selection can be helpful in

reducing the testing costs in environments where software

undergoes repeated changes. Regression test selection consists

of two main steps. The first steps identify unchanged parts of

the software that are affected by the modifications. The second

step identifies subset of test cases from the initial test suite

which can test the unchanged parts of the software.

Various RTS techniques have been described for procedural

and object-oriented programs. Each technique tries to reduce

the cardinality of a test suite. The problem of RTS has been

greatly investigated in the resent past; various techniques have

emerged with the newer programming paradigms.

2.1. RTS Techniques for Procedural Programs
RTS for procedural programs is vastly researched topic

therefore various techniques are proposed in the past. The

techniques proposed for procedural programming paradigm

includes, Data flow analysis techniques which gathers

information about the possible set of values calculated at

various points in a program. A program's control flow graph

(CFG) is used to determine those parts of a program to which a

particular value assigned to a variable might propagate.

Program slicing technique decomposes programs by analyzing

their data and control flow. Roughly speaking, a program slice

mailto:Email-priyankarana.id@gmail.com
mailto:Email-anitaganpati@gmail.com
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Control_flow_graph
http://en.wikipedia.org/wiki/Control_flow_graph

Priyanka Rana
1
IJECS Volume 3Issue 3March, 2014 Page No 5078-5082 Page 5079

consists of those program statements which are related to the

values computed at some program point and/or variable,

referred to as a slicing criterion. Firewall based technique; a

firewall is an imaginary boundary that limits the amount of

retesting of the modules which are affected by a change.

Differencing Based Techniques is analysis the differences for

the original and modified software. Control flow analysis

technique analyzes the input programs for their control flow

models while selecting regression test cases.

2.1.1. Dataflow Analysis-Based Techniques
Harrold and Soffa [11] suggested a dataflow coverage-based

RTS technique which can analyze changes occurring in

multiple procedures. In this approach the dataflow information

is processed, each change is processed by selecting test cases

for that change and accordingly the dataflow information and

test coverage information are updated. The process is iterated

for all the modifications one by one. In their approach CFG is

used, in which the nodes represent basic functional blocks.

Reduced size of the flow graph is achieved; this makes graph

analysis more efficient when compared with substituting

individual program statements as nodes.

2.1.2. Slicing-Based Techniques
Bates and Horwitz [14] suggested a PDG-based slicing based

technique. Binkley [2] proposal for inter-procedural RTS

technique was based on slicing SDG models of unmodified and

modified program. If the components executed same number of

times for any given input, the two components are said to carry

same execution patterns [2]. The technique of common

execution patterns [2] has been introduced as an extension in

the patterns suggested in [14]. Code elements are said to have a

same execution pattern when they have same execution pattern

during a call made to a procedure. Same execution patterns

identify the semantic differences between code elements [2].

The semantic differences among unmodified and modified

program are determined by comparing the modified version of

the two programs. The modified versions of the programs are

tested to determine affected program part which requires being

regression tested.

2.1.3. Firewall-Based Techniques
Leung and White [6] were the first to suggest firewall based

technique, which analysis data and control dependencies

between modules for procedural program. A firewall is a set of

modified modules of program and modules which interact with

changed modules. This technique uses a call graph to identify

control flow structure for a program [6].

2.1.4. Differencing Based Techniques
Chen et al. [17] suggest code entity-based RTS technique. The

program elements are decomposed into functional and non-

functional code entities. Code entities are identified as

function/ statement or non-executable parts such as global

variable or a macro. The unmodified program is executed with

each test case of original test suite. When the original program

is modified, all the code entities changed to create the modified

program are identified. Test cases that exercise any of the

modified entities are selected for regression testing.

2.1.5. Control Flow Analysis-Based Techniques

Laski and Szermer [8] suggested a cluster identification

technique; the program modification is localized into code

areas known as clusters. The Cluster identification based

approach uses control dependence information of the

unmodified and the modified procedures to compute the

clusters in the two graphs. When clusters have been defined as

CFGs, each cluster is displayed as single node to form a

reduced CFG. Reduced flow graphs are analyzed assuming that

complex program changes can be achieved by following one of

the three operations: inserting a cluster into the code, deleting a

cluster, or changing the functionality of a cluster. Test cases are

defined as local to the clusters and global to the entire program.

The former includes test cases which execute modified clusters,

and the latter includes test cases which execute other areas of

the program affected due to the changed clusters based on

control dependencies. The information of test coverage is used

for regression test selection.

Rothermel and Harrold[4] have suggested RTS technique

which traversal the CFGs for the unmodified and the modified

programs . This technique involves constructing separate CFGs

for unmodified and modified programs. The execution

information for each test case is recorded. Modification

revealing test cases are assumed execute the set of identified

dangerous edges. Therefore, a test case is selected for retesting

modified program.

Ball [16] has suggested RTS technique by modeling CFG for

unmodified program as a deterministic finite state automaton

(DFA). The technique introduces intersection graph model for

a pair of unmodified and modified CFGs. Edge coverage

criterion is used as the basis for RTS analysis.

Figure: 1 summarizes the RTS techniques for procedural

programming paradigm.

Figure: 1

2.2. RTS Techniques for Object-Oriented

Programs
Object-oriented programming is an approach to designing

modular, reusable software systems. These modules regularly

undergo modifications to remove errors and enhance the

functionalities; therefore effective regression test cases

selection is required. Various RTS techniques for object-

Priyanka Rana
1
IJECS Volume 3Issue 3March, 2014 Page No 5078-5082 Page 5080

oriented programs are categories. Firewall based RTS

techniques, determines the affected classes for the changed

version of the software. A firewall is defined to be a set of all

the affected classes that need to be retested. These techniques

select all test cases which exercise at least one class from

within the firewall. Program Model Based Technique analyzes

program models for selecting regression test cases. Design

model-based techniques have become very popular with the

advent of the model-driven development paradigm. In the

model-driven development (MDD) paradigm, a design model is

usually refined to obtain the code. Specification-Based RTS

Techniques eliminated practical difficulty in RTS i.e. the

testers may not have access to the source code of software

under test. In such case, model-based or code based testing is

not possible. Therefore researchers developed RTS techniques

which are based on specifications that are made available to the

testers.

2.2.1. Firewall-Based Techniques
Kung et al. [3] suggested a firewall-based RTS technique.

Three models were proposed to show dependencies between

various elements of a C++ program:

Object Relation Diagram (ORD): shows inheritance,

aggregation and association relations, and captures the static

dependencies among classes. An edge in an ORD is that it

defines the type of relationship (inheritance, association,

aggregation) that exists between the ends nodes associated with

that edge.

Block Branch Diagram (BBD): shows the interface and the

control structure for a method of the class, and the relationship

for the class with the other classes in the program.

Object State Diagram (OSD): is designed to determine the

dynamic behavior of the class.

Revision to data items, methods and class definitions of the

original program are identified by analyzing the three models

related to unmodified and modified program. When a class C is

modified, the technique selects all the test cases that exercise

one or more classes within the firewall for Class.

Jang et al. [19] represented change impact analysis approach

for selecting regression test cases in C++ programs. The

technique recognizes procedure for retesting and analyzes all

affected methods. The researchers have determined certain

common types of changes that are possible for a C++ program

and a method level firewall is designed for each change to

analyze the result of the changes.

2.2.2. Program Model-Based Techniques
Rothermel et al. [5] suggested RTS technique for C++

programs based on the study of control flow representations of

unmodified and the modified programs by continuing the

technique proposed in [4]. Inter-procedural Control Flow

Graph (ICFG) and Class Control Flow Graph (CCFG) have

been introduced to represent control flow of multi-function

programs and object-oriented programs respectively. An ICFG

for unmodified program is made up of CFGs for each method.

An ICFG is used to model single entry point programs, whereas

a class can have multiple entry points [5]. A CCFG is used to

model classes, and has individual CFGs for all methods of a

class. For the graph models of the original and the modified

programs, the RTS algorithm [5] extends the graph walk-based

approach [4] to pass through the models and select relevant

regression test cases.

Harrold et al. [10] suggested RTS technique for Java programs

based on control flow analysis. The technique is an adaptation

of the graph walk techniques suggested in [4, 5]and can handle

various object oriented features such as inheritance,

polymorphism, dynamic binding and exception handling. This

technique selects test cases on the basis of the dangerous edges

identified during graph traversal.

Orso et al. [1] suggested a two-phase partitioning approach for

RTS for large Java programs.

2.2.3. Design Model-Based Techniques
Ali et al. [15] suggested an RTS technique that analyzes UML

classes and sequence diagrams. This technique analyzes class

and sequence diagrams at the level of class attributes and

operations. The sequence and the corresponding class diagrams

are analyzed and an extended concurrent control flow graph

(ECCFG) is constructed to model the program. The

information about which attributes of a class receive messages

in a sequence diagram is derived from the corresponding class

diagrams, and is represented in the ECCFG. The ECCFG

models for the unmodified and the modified version of the

application are then analyzed to find out the changes between

program versions, this knowledge is further used to optimize

regression test cases.

Briand et al. [9] suggested an RTS technique based to analyze

UML design models. The design and test cases are tracked.

This helps to club the modifications of design models to the

test cases which need to be executed for affected parts of the

design. Their approach involves analysis of use case, class and

sequence diagrams. The paper defines test cases as obsolete,

retest able and reusable during the analysis.

2.2.4. Specification-Based RTS Techniques
Chen et al. [18] suggested a specification based RTS technique

that uses UML activity diagrams in modeling potentially

affected requirements and system behavior. They classified

regression test cases as target and safety test cases for selection.

Target test cases identify the affected requirements and safety

test cases tries to achieve a pre-defined coverage target. A

traceability matrix is defined to capture the relation among

requirements and the test cases. The changes to the original

program can result in change of specification. Chen et al. [5]

extended the RTS technique to handle changes which lead to

the changes in specifications. Safety test cases are selected with

a target to mitigate risks. The idea is to more thoroughly test

those parts of the code for which the probability of a fault

being present and its cost is high [2].

Chittimalli and Harrold [12] suggested specification based RTS

approach. The technique is based on finding out specifications

being tested by which test case from original test suite. This

information results in requirement coverage matrix among the

set of requirements and the test cases. The technique proposed

by [1] is utilized in identifying affected parts of the code, and

later the set of requirements affected due to modifications are

also discovered. These are defined as affected requirements.

The knowledge gathered from requirement coverage matrix is

used in selection of the test cases which will executes on

affected requirements.

Figure: 2 summarizes RTS techniques for object oriented

paradigm.

Priyanka Rana
1
IJECS Volume 3Issue 3March, 2014 Page No 5078-5082 Page 5081

Figure: 2

3. Research Methodology
The paper is an exploratory study of regression test selection

techniques in procedural and object oriented programming

paradigm. The research methodology used in the paper is a

comprehensive study of the work by various scholars through

their research papers published in different e-journals,

acclaimed publications and reference books. The research

study in also conducted through different websites, online

portals and forums.

4. Analysis and Conclusion
The paper is an exploratory study of regression test selection

techniques suggested by different researchers in the procedural

and object oriented paradigm. The paper further categories

regression test selection techniques respectively as explained

by the researchers.

From the exploratory study analyzed for procedural

programming paradigm the Dataflow Analysis based

Technique is based on dataflow and structural coverage criteria

which can analyze both intra and inter-procedural

modifications. Slicing Based Techniques is based on slicing of

programs or dependence graph models which can analyze both

inter and intra procedural modifications. Firewall Based

Technique is based on analyzing dependencies among modules

of source code of only modified modules. Differencing Based

Technique is based on textual differencing of C programs, it is

safe and easy to implement. Control Flow Analysis Based

technique is based on analysis of control flow model, it is safe

and precise procedural technique.

For object oriented programming paradigm the Firewall Based

Techniques analyzes dependencies among modules which

provide computational efficiency. Program Model Based

Technique analyses dependencies among class elements, which

is safe and precise, it is applicable for both modified classes

and classes derived from the modified classes. Program Model

Based Technique which is based on control flow models

analysis is efficient and safe RTS technique for C++ programs.

Program Model based Technique which is based on analysis of

control flow models is a two phase technique which is safe and

precise for Java programs. Design Model Based Technique is

based on analysis of different UML design model, assumes that

traceability exists between the design model, the source code

and he test cases, suited to model driven development

environments. It is suited for RTS for large programs, analysis

is at a higher level of abstraction, and is independent of the

implementation. Specification Based Technique; analysis the

requirement models, it assumes complete traceability from the

specifications to test cases. This technique is platform

independent and can be easily extended to a wide class of

programs. The paper analyzed that specification based

technique is one of the most efficient technique as tester do not

have source code of the software under test with them.

Therefore specification based technique facilitates the tester to

create test cases on the basis of specification provided.

Regression Test Selection has many facets some of them have

been discussed in this paper the study can be extended further

to uncover various techniques in different paradigms.

References
[1] A. Orso, N. Shi, and M. Harrold. Scaling regression testing

to large software systems. In Proceedings of the 12th ACM

SIGSOFT Twelfth International Symposium on Foundations of

Software Engineering, November 2004.

[2] D. Binkley. Semantics guided regression test cost reduction.

IEEE Transactions on Software Engineering, August 1997.

[3] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C.

Chen. On regression testing of object oriented programs.

Journal of Systems and Software, January 1996.

[4] G. Rothermel and M. Harrold. A safe, efficient regression

test selection technique. ACM Transactions on Software

Engineering and Methodology, April 1997.

[5] G. Rothermel, M. Harrold, and J. Dedhia. Regression test

selection for C++ software. Software Testing, Verification and

Reliability June 2000.

[6] H. Leung and L. White. A study of integration testing and

software regression at the integration level.In Proceedings of

the Conference on Software Maintenance.

[7] H. Leung and L. White. Insights into regression testing .In

Proceedings of the Conference on Software Maintenance.

[8] J. Laski and W. Szermer. Identification of program

modifications and its applications in software maintenance. In

Proceedings of the Conference on Software Maintenance.

[9] L. Briand, Y. Labiche, and S. He. Automating regression

test selection based on UML designs. Information and Software

Technology, January2009.

[10] M. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M.

Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi. Regression

test selection for Java software. In Proceedings of the 16th

ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages and Applications.

[11] M. Harrold and M. Soffa. An incremental approach to unit

testing during maintenance. In Proceedings of the International

Conference on Software Maintenance.

[12] P. Chittimalli and M. Harrold. Regression test selection on

system requirements. In ISEC ‟08: Proceedings of the 1st

conference on India software engineering conference.

[13] R. Pressman. Software Engineering: A Practitioner‟s

Approach. McGraw-Hill, New York, 2002.

[14] S. Bates and S. Horwitz. Incremental program testing

using program dependence graphs. In Conference Record of

20th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages.

Priyanka Rana
1
IJECS Volume 3Issue 3March, 2014 Page No 5078-5082 Page 5082

[15] Sebastian Elbaum, Praveen Kallakuri, Alexey G.

Malishevsky, Gregg Rothermel, SatyaKanduri, “Understanding

the Effects of Changes on the Cost-Effectiveness of Regression

Testing Techniques,” Journal of Software Testing, Verification,

and Reliability.

[16] T. Ball On the limit of control flow analysis for regression

test selection. In ISSTA ‟98: Proceedings of the 1998 ACM

SIGSOFT international symposium on Software testing and

analysis.

[17] Y. Chen, D. Rosenblum, and K. Vo. Test Tube: A system

for selective regression testing. In Proceedings of the 16th

International Conference on Software Engineering.

 [18] Y. Chen, R. Probert, and D. Sims. Specification based

regression test selection with risk analysis. Proceedings of the

2002 conference of the Centre for Advanced Studies on

Collaborative research.

[19] Y. Jang, M. Munro, and Y. Kwon. An improved method

of selecting regression tests for C++ programs.

