

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 10 October,2014 Page No.8752-8764

Kamal Sheel Mishra
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8752-8764 Page 8752

Task Scheduling of Special Types of Distributed

Software in the Presence of Communication and

Computation Faults

Kamal Sheel Mishra
1
, Anil Kumar Tripathi

2

Department of Computer Science and Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India

ksmishra@smsvaranasi.com
1
 , aktripathi.cse@iitbhu.ac.in

2

ABSTRACT:

 This work is an extension of our previous work on task scheduling of a Distributed Computing Software in

the presence of faults [2] in which an attempt was made to identify the task scheduling algorithms used for

distributed environments that perform well in the presence of faults due to network failure or processor

failure in the distributed system. In this paper we give some extensive results for identifying the task

scheduling algorithms that perform well in the presence of communication and computation faults present in

some special task graphs like systolic array task graphs, Gaussian elimination task graphs, Fast Fourier

transform task graphs, and divide-and-conquer task graphs which can represent the distributed software. For

our study we have selected six task scheduling algorithms. We have compared these algorithms using three

comparison parameters like normalized schedule length, number of processors used and average running

time, and evaluated them on the above mentioned task graphs in the presence of communication and

computation faults. It is further evaluated under random and constant fault delays.

Keywords: Clustering, distributed computing, homogeneous systems, scheduling, task allocation, task scheduling

1. INTRODUCTION

Task scheduling is one of the important foundations for
distributed computing. Distributed computing software
can be represented as a task graph .Special task graphs
have their own characteristics and nature. The tasks are
allocated on distributed processors to exploit parallelism
and to reduce the execution time of the distributed
software. The communication and computation delays
due to faults play a vital role in the execution of the task.
Further if communication and computation faults are also
considered which is more practical ,then only effective
task execution in distributed environment may be
achieved. In this paper four special types of task graphs
are used: systolic array task graphs, Gaussian elimination
task graphs, Fast Fourier transform task graphs, and
divide-and-conquer task graphs. In all the task graphs,
communication and computation fault delays are injected
through emulators. The fault delays injected are further

categorized as constant and random fault delays. An
emulator gives the result very much similar to an actual
system. The emulator is of a fully connected distributed
system in which any two processors can directly
communicate. Here homogeneous nodes have been
considered.
The main objective of this experiment is to find out the
task scheduling algorithm that best performs in the
presence of communication fault delays and computation
fault delays as well as to identify the algorithm that
performs worst in the presence of above faults. For
experimental purpose we have taken only six task
scheduling algorithms out of many. Further,
communication fault delays may be constant or random.
Similarly computation fault delays may also be constant
or random. The above faults are evaluated under the
following three parameters: (i) normalized schedule
length, (ii) average number of processors used and (iii)
average running time. Using above parameters we
identify the algorithms that perform best as well as those
that perform worst in the presence of faults in the

http://www.ijecs.in/
mailto:ksmishra@smsvaranasi.com%201
mailto:aktripathi.cse@iitbhu.ac.in

Kamal Sheel Mishra
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8752-8764 Page 8753

distributed system. This paper is organized as follows.
Section 2 outlines the computation and communication
fault delays which may be present in the distributed
environments. Section 3 discusses the deferent task
scheduling algorithms used for performance evaluation.
In this paper we are considering only six task scheduling
algorithms for experimental purpose. In section 4
deferent performance evaluation parameters used are
discussed. Section 5 describes the special task graphs
used. Section 6 shows the related work done in this area.
Section 7 explains the experimental setup used in this
work. Sections 8, 9, 10, and 11 show the performance
results for systolic array task graphs, Gaussian elimina-
tion task graphs, fast Fourier transform task graphs and
divide-and-conquer task graphs respectively. Section 12
summarizes the performance results and the future work
to be done. Lastly section 13 gives the list of different
references used in completing this paper.

2. DELAYS DUE TO COMPUTATION AND

COMMUNICATION FAULTS IN DISTRIBUTED

SYSTEMS

In a distributed system, some computing nodes may fail.
To recover those computing node may take some time.
So this will introduce a computation fault delay. We may
also have a computation fault delay due to performance
degradation due to some temporary hardware faults.
Similarly, the links connecting the computing nodes may
become faulty. So this will introduce a communication
fault delay. In some of the cases we may have both
computation fault delay and communication fault delay. In
these situations we say that the distributed system is
having computation and communication fault delay.

3. TASK SCHEDULING ALGORITHMS USED FOR

PERFORMANCE EVALUATION

We have considered six task scheduling algorithms for
performance evaluation [1]:

1. CPPS algorithm: The Cluster Pair Priority Scheduling
[13] algorithm uses a cluster dependent priority function
of tasks.

2. DCCL algorithm: The Dynamic Computation
Communication Load Scheduling algorithm [14] is based
on a computation and communication load of the module
and current allocation.

3. DSC algorithm: The Dominant Sequence Clustering
algorithm [15] is based on the critical path of the graph.

4. EZ algorithm: The Edge Zeroing algorithm [16] is used
to minimize the communication delay. Based on the edge
weight it selects tasks for merging.

5. LC algorithm: The Linear Clustering algorithm [17] is
used to create clusters in a parallel system. It merges
nodes iteratively to form a single cluster based on critical
path.

6. RDCC algorithm: The Randomized Computation
Communication Load Scheduling [1] algorithm is the

dynamic priority version of the RCCL Randomized
Computation Communication Load [18] scheduling
algorithm.

4. PERFORMANCE EVALUATION PARAMETERS USED

1. NSL : Normalized Schedule Length [1] is the schedule
length over the sum
of computation cost on the critical path of the task graph.

 NSL = SL/ ∑ w(v)

v ԑ CP

where SL is the schedule length and w(v) is the
computation cost.

2. Average Number of Processor Used: It is the average
of the number of processors used in computation of the
task graph.

3. Average Running Time: It is the average of running
time used in computing the task in the presence of
computation fault, communication fault or both
(computation and communication fault) delay.

 5. A DESCRIPTION OF TASK GRAPHS USED

5.1. Systolic array task graphs

A systolic array effectively exploits parallelism. Systolic
arrays have balanced, uniform, grid-like architecture in
which each line represents a communication path and
each intersection represents a systolic element.
Technology advances, concurrent processing and
demanding scientific applications have contributed a lot
towards leading approach for handling computationally
intensive applications. Figure 1 shows a sample systolic

 Figure 1: A sample systolic array task graph for n = 3.

array task graph [19]. A systolic array task graph has n2

nodes and 2n(n - 1) edges where n is the number of
nodes on a path from the start node to the center node.
We have selected a total of 180 systolic array task
graphs.

Kamal Sheel Mishra
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8752-8764 Page 8754

5.2. Gaussian elimination task graphs:

Gaussian elimination method is a well known graph
theoretical model used in distributed architecture. Figure
2 shows a sample Gaussian elimination task graph [20].
A Gaussian elimination task graph has (n2

 + n + 4)/2
nodes and n2+1 edges where n is the number of nodes
on the task graph. We have selected a total of 180
random Gaussian elimination task graphs.

Figure 2: A sample Gaussian elimination task graph for n = 3.

5.3. Divide and conquer task graphs

Figure 3: A sample divides and conquer task graph for n = 3.

Divide and conquer task graph is an important task graph
based on multibranched recursion. A divide and conquer
algorithm works by recursively breaking a problem into
subproblems of the same type until it becomes simple to
solve directly. The sub problem solutions are combined to
solve the original problem. The correctness of this
algorithm is proved by mathematical induction and the
computational cost is determined by solving recurrence
relations. Figure 3 shows a sample divide and conquer
task graph [21]. A divide and conquer task graph has
3(2

n-1
) - 2 nodes and 2

n+1
 - 4 edges where n is the

number of nodes on a path from the start node to the
middle level of the task graph. We have selected
a total of 180 random divide and conquer task graphs.

5.4. Fast Fourier transform task graphs

Figure 4 shows a sample fast Fourier transform task
graph [22]. A fast Fourier transform task graph has 2 + (n
+ 1)2

n
 nodes and (n + 1)2

n+1
 edges where 2

n
 is the

number of nodes on the second level of the task graph.
We have selected a total of 180 fast Fourier transform
task graphs.

Figure 4: A sample Fast Fourier transform task graph for n = 2.

6. RELATED WORK

Goldsmith [3] worked on distributed computing and
communication in peer to peer networks. Amoura [4]
focused on scheduling algorithms for parallel Gaussian
elimination with communication costs. Sinnen [5]
elaborated the task scheduling for parallel systems.
Mishra et al. focused on a clustering heuristic for
multiprocessor environments using computation and
communication loads of modules. Tobita [7] worked on a
standard task graph set for fair evaluation of
multiprocessor scheduling algorithms. Bertsekas [8]
worked on parallel and distributed computation.

7. EXPERIMENTAL SETUP

The simulator Evaluate-Time is used to calculate the time
taken by a given clustering [6]. Event queue model is
used in which there is a queue of events. There can be
two types of possible events: computation completion
event, and communication completion event. Fault delays
are added in the task graph before simulation. Two types
of faults are simulated: constant delay, and random
delay. The random delay is added using a random
number generator.

Kamal Sheel Mishra
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8752-8764 Page 8755

8. PERFORMANCE RESULTS OF SYSTOLIC ARRAY TASK

GRAPHS FOR CONSTANT COMMUNICATION AND

COMPUTATION FAULT DELAY

Figure 5: Average NSL vs average communication computation fault
delay for constant communication computation fault delay. The
average percentage variation order of NSL is: CPPS < DSC < RDCC <
EZ < DCCL < LC.

Figure 5 shows the average NSL vs average
communication computation fault delay for constant
communication computation fault delay. Average per-
centage variation of NSL for CPPS ranges from -
58.030445 to 0.000000 with an average of -49.974980.
Average percentage variation of NSL for DCCL ranges
from -55.207558 to 0.000000 with an average of -
47.537540. Average percentage variation of NSL for DSC
ranges from -57.284315 to 0.000000 with an average of
-49.367017. Average percentage variation of NSL for EZ
ranges from -55.684356 to 0.000000 with an average of -
48.058303. Average percentage variation of NSL for LC
ranges from -54.426600 to 0.000000 with an average of -
47.141153. Average percentage variation of NSL for
RDCC ranges from -56.075015 to 0.000000 with an
average of -48.351840. The average percentage variation
order of NSL is: CPPS < DSC < RDCC < EZ < DCCL <
LC.

Figure 6: Average number of processors used vs average
communication computation fault delay for constant communication
computation fault delay. The average percentage variation order of
average number of processors used is: DSC < CPPS < DCCL < LC <
RDCC < EZ.

Figure 6 shows the average number of processors used
vs average communication computation fault delay for
constant communication computation fault delay.
Average percentage variation of number of processors

used by CPPS ranges from -9.072686 to 0.000000 with
an average of -5.217329. Average percentage variation
of number of processors used by DCCL ranges from -
2.259887 to 1.694915 with an average of -0.821777.
Average percentage variation of number of processors
used by DSC ranges from -36.210713 to 0.000000 with
an average of -30.830214. Average percentage variation
of number of processors used by EZ ranges from
0.000000 to 15.929204 with an average of 12.007241.
Average percentage variation of number of processors
used by LC ranges from 0.000000 to 0.000000 with an
average of 0.000000. Average percentage variation of
number of processors used by RDCC ranges from
0.000000 to 4.329004 with an average of 2.085793. The
average percentage variation order of average number of
processors used is: DSC < CPPS < DCCL < LC < RDCC
< EZ.

Figure 7 shows the average running time (in seconds) vs
average communication computation fault delay for
constant communication computation fault
Delay .Average percentage variation of execution time for
CPPS ranges from -2.608134 seconds to 58.335806
seconds with an average of 22.274306 seconds. Average
percentage variation of execution time for DCCL ranges
from -2.889328 seconds to 0.000000 seconds with an
average of -2.198489 seconds. Average percentage
variation of execution time for DSC ranges from -
48.688208 seconds to 0.000000 seconds with an
average of -31.002585 seconds. Average percentage
variation of execution time for EZ ranges from -2.850187
seconds to 0.194850 seconds with an average of -
1.524941 seconds. Average percentage variation of
execution time for LC ranges from -31.023250 seconds
to 52.328014 seconds with an average of 4.714710
seconds. Average percentage variation of execution time

Figure 7: Average running time (in seconds) vs average
communication computation fault delay for constant communication
computation fault delay. The average percentage variation order of
average running time (in seconds) is: DSC < RDCC < DCCL < EZ < LC
<CPPS.

for RDCC ranges from -3.277439 seconds to 0.000000
seconds with an average of -2.332842 seconds. The
average percentage variation order of average running
time (in seconds) is: DSC < RDCC < DCCL < EZ < LC <
CPPS.

8.1. Performance results of systolic array task graphs for
Random Communication and Computation Fault delay

Kamal Sheel Mishra
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8752-8764 Page 8756

Figure 8: Average NSL vs average communication computation fault
delay for random communication computation fault delay. The average
percentage variation order of average NSL is: CPPS < DSC < EZ <
RDCC < DCCL < LC.

Figure 8 shows the average NSL vs average
communication computation fault delay for random
communication computation fault delay. Average per-
centage variation of NSL for CPPS ranges from -
55.211285 to 0.000000 with an average of -45.917632.
Average percentage variation of NSL for DCCL ranges
from -51.413559 to 0.000000 with an average of -
43.293403. Average percentage variation of NSL for DSC
ranges from -54.121460 to 0.000000 with an average of
-44.642742. Average percentage variation of NSL for EZ
ranges from -52.520573 to 0.000000 with an average of -
43.860976. Average percentage variation of NSL for LC
ranges from -51.417506 to 0.000000 with an average of -
43.151901. Average percentage variation of NSL for
RDCC ranges from -52.539658 to 0.000000 with an
average of -43.726319. The average percentage variation
order of average NSL is: CPPS < DSC < EZ < RDCC <
DCCL < LC.

Figure 9: Average number of processors used vs average
communication computation fault delay for random communication
computation fault delay. The average percentage variation order of
average number of processors used is: DSC < CPPS < RDCC < DCCL
< LC <EZ.

Figure 9 shows the average number of processors used
vs average communication computation fault delay for
random communication computation fault delay. Average
percentage variation of number of processors used by
CPPS ranges from -14.145024 to 0.000000 with an
average of -7.937313. Average percentage variation of

number of processors used by DCCL ranges from -
3.389831 to 3.389831 with an average of 0.564972.
Average percentage variation of number of processors
used by DSC ranges from -36.520584 to 0.000000 with
an average of -22.580386. Average percentage variation
of number of processors used by EZ ranges from
0.000000 to 10.840708 with an average of 6.818182.
Average percentage variation of number of processors
used by LC ranges from 0.000000 to 4.852686 with an
average of 1.874902. Average percentage variation of
number of processors used by RDCC ranges from -
2.953586 to 0.843882 with an average of -0.652091. The
average percentage variation order of average number of
processors used is: DSC < CPPS < RDCC < DCCL < LC
< EZ.

Figure 10: Average running time (in seconds) vs average
communication computation fault delay for random communication
computation fault delay. The average percentage variation order of
running time (in seconds) is: RDCC < DCCL < EZ < CPPS < LC <
DSC.

Figure 10 shows the average running time (in seconds)
vs average communication computation fault delay for
random communication computation fault delay. Average
percentage variation of execution time for CPPS ranges
from -11.247626 seconds to 67.992507 seconds with an
average of 26.901226 seconds. Average percentage
variation of execution time for DCCL ranges from -
2.961047 seconds to 0.000000 seconds with an average
of -2.012974 seconds. Average percentage variation of
execution time for DSC ranges from 0.000000 seconds to
70.153580 seconds with an average of 30.707585
seconds. Average percentage variation of execution time
for EZ ranges from -1.596928 seconds to 1.202561
seconds with an average of -0.475513 seconds. Average
percentage variation of execution time for LC ranges
from -10.500741 seconds to 104.569735 seconds
with an average of 30.223975 seconds. Average
percentage variation of execution time for RDCC ranges
from -3.286028 seconds to 0.000000 seconds with an
average of -2.365309 seconds. The average percentage
variation order of running time (in seconds) is: RDCC <
DCCL < EZ < CPPS < LC < DSC.

Kamal Sheel Mishra
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8752-8764 Page 8757

9. PERFORMANCE RESULTS OF GAUSSIAN ELIMINATION TASK

GRAPHS FOR CONSTANT COMMUNICATION AND

COMPUTATION FAULT DELAY

Figure 11: Average NSL vs average computation communication fault
delay for constant computation communication fault delay. The
average percentage variation order of NSL is: DCCL < RDCC < EZ <
CPPS < LC < DSC.

Figure 11 shows the average NSL vs average
computation communication fault delay for constant
computation communication fault delay. Average
percentage
variation of NSL for CPPS ranges from -7.551641 to
0.000000 with an average of -6.467052. Average
percentage variation of NSL for DCCL ranges from -
9.288952 to 0.000000 with an average of -7.817920.
Average percentage variation of NSL for DSC ranges
from 0.000000 to 6.217408 with an average of 4.101296.
Average percentage variation of NSL for EZ ranges from
-7.750759 to 0.000000 with an average of -6.664127.
Average percentage variation of NSL for LC ranges
from -1.310508 to 2.916676 with an average of 1.468501.
Average percentage variation of NSL for RDCC ranges
from -8.418240 to 0.000000 with an average of -
6.766760. The average percentage variation order of
NSL is: DCCL <RDCC < EZ < CPPS < LC < DSC.

Figure 12: Average number of processors used vs average
computation communication fault delay for constant computation
communication fault delay. The average percentage variation
order of number of processors used is: EZ < CPPS < RDCC < LC <
DCCL < DSC.

Figure 12 shows the average number of processors used
vs average computation communication fault delay for

constant computation communication fault delay.
Average percentage variation of number of processors
used by CPPS ranges from -5.170886 to 0.000000 with
an average of -4.199079. Average percentage variation
of number of processors used by DCCL ranges from -
0.520833 to 2.604167 with an average of 1.373106.
Average percentage variation of number of processors
used by DSC ranges from 0.000000 to 2.255887 with an
average of 1.386165. Average percentage variation of
number of processors used by EZ ranges from -
17.028461 to 0.000000 with an average of -10.577556.
Average percentage variation of number of processors
used by LC ranges from 0.000000 to 0.000000 with an
average of 0.000000. Average percentage variation of
number of processors used by RDCC ranges from -
2.419355 to 2.016129 with an average of -0.733138. The
average percentage variation order of number of
processors used is: EZ < CPPS < RDCC < LC < DCCL <
DSC.

Figure 13: Average running time (in seconds) vs average computation
communication fault delay for constant computation communication
fault delay. The average percentage variation order of running time (in
seconds) is: EZ < RDCC < DSC < DCCL < LC < CPPS.

Figure 13 shows the average running time (in seconds)
vs average computation communication fault delay for
constant computation communication fault delay.
Average percentage variation of execution time for CPPS
ranges from 0.000000 seconds to 48.137222 seconds
with an average of 37.903072 seconds. Average
percentage variation of execution time for DCCL ranges
from -1.638895 seconds to 0.000000 seconds with an
average of -1.173872 seconds. Average percentage
variation of execution time for DSC ranges from -
24.181258 seconds to 20.886958 seconds with an
average of -2.435070 seconds. Average percentage
variation of execution time for EZ ranges from -
12.167287 seconds to 0.000000 seconds with
an average of -9.328306 seconds. Average percentage
variation of execution time for LC ranges from -
28.101012 seconds to 65.212792 seconds with an
average of 9.314070 seconds. Average percentage
variation of execution time for RDCC ranges from -
3.894122 seconds to 0.000000 seconds with an average
of -2.825527 seconds. The average percentage variation
order of running time (in seconds) is: EZ < RDCC < DSC
< DCCL < LC < CPPS.

9.1. Performance results of Gaussian elimination task
graphs for Random Communication and Computation
Fault delay

Kamal Sheel Mishra
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8752-8764 Page 8758

Figure 14: Average NSL vs average communication computation fault
delay for random communication computation fault delay. The average
percentage variation order of NSL is: DCCL < CPPS < RDCC < EZ <
LC < DSC.

Figure 14 shows the average NSL vs average
communication computation fault delay for random
communication computation fault delay. Average per-
centage variation of NSL for CPPS ranges from -
7.555230 to 0.000000 with an average of -5.549895.
Average percentage variation of NSL for DCCL ranges
from -9.230700 to 0.000000 with an average of -
6.295551. Average percentage variation of NSL for DSC
ranges from 0.000000 to 7.668250 with an average of
5.114242. Average percentage variation of NSL for EZ
ranges from -5.819980 to 0.000000 with an average of -
3.682232. Average percentage variation of NSL
for LC ranges from 0.000000 to 5.402467 with an
average of 2.803627. Average percentage variation of
NSL for RDCC ranges from -7.401646 to 0.000000
with an average of -5.108383. The average percentage
variation order of NSL is: DCCL < CPPS < RDCC < EZ <
LC < DSC.

Figure 15 shows the average number of processors used
vs average communication computation fault delay for
random communication computation fault delay. Average
percentage variation of number of processors used by
CPPS ranges from -12.044304 to 0.000000

Figure 15: Average number of processors used vs average
communication computation fault delay for random communication
computation fault delay. The average percentage variation order of
number of processors used is: CPPS < EZ < LC < DCCL < RDCC <
DSC.

with an average of -8.280783. Average percentage
variation of number of processors used by DCCL ranges
from -1.041667 to 1.562500 with an average of 0.094697.

Average percentage variation of number of processors
used by DSC ranges from 0.000000 to 6.421867 with an
average of 4.772241. Average percentage variation of
number of processors used by EZ ranges from -5.595755
to 0.289436 with an average of -2.784721. Average per
centage variation of number of processors used by LC
ranges from 0.000000 to 0.000000 with an average of
0.000000. Average percentage variation of number
of processors used by RDCC ranges from -0.823045 to
2.880658 with an average of 0.785634. The average
percentage variation order of number of processors
used is: CPPS < EZ < LC < DCCL < RDCC < DSC.

Figure 16: Average running time (in seconds) vs average
communication computation fault delay for random communication
computation fault delay. The average percentage variation order of
running time (in seconds) is: EZ < DSC < RDCC < DCCL < LC <
CPPS.

Figure 16 shows the average running time (in seconds)
vs average communication computation fault delay for
random communication computation fault delay. Average
percentage variation of execution time for CPPS ranges
from 0.000000 seconds to 122.850023 seconds with an
average of 83.225975 seconds. Average percentage
variation of execution time for DCCL ranges from -
1.085166 seconds to 0.148587 seconds with an average
of -0.305673 seconds. Average percentage variation of
execution time for DSC ranges from -21.684314 seconds
to 27.556533 seconds with an average of -5.885352
seconds. Average percentage variation of execution time
for EZ ranges from -8.545753 seconds to 0.000000
seconds with an average of -6.639976 seconds. Average
percentage variation of execution time for LC ranges
from -3.488695 seconds to 115.876492 seconds
with an average of 29.790331 seconds. Average
percentage variation of execution time for RDCC ranges
from -3.754037 seconds to 0.000000 seconds with an
average of -2.756291 seconds. The average percentage
variation order of running time (in seconds) is: EZ < DSC
< RDCC < DCCL < LC < CPPS.

10. PERFORMANCE RESULTS OF FAST FOURIER TRANSFORM

TASK GRAPHS FOR CONSTANT COMMUNICATION AND

COMPUTATION FAULT DELAY

Kamal Sheel Mishra
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8752-8764 Page 8759

Figure 17: Average NSL vs average computation communication fault
delay for constant computation communication fault delay. The
average percentage variation order of NSL is: CPPS < EZ < RDCC <
LC < DCCL < DSC.

Figure 17 shows the average NSL vs average
computation communication fault delay for constant
computation communication fault delay. Average
percentage variation of NSL for CPPS ranges from -
32.033450 to 0.000000 with an average of -26.582122.
Average percentage variation of NSL for DCCL ranges
from -26.893349 to 0.000000 with an average of -
22.238283. Average percentage variation of NSL for DSC
ranges from -26.227048 to 0.000000 with an average of
-21.716524. Average percentage variation of NSL for EZ
ranges from -31.734216 to 0.000000 with an average of -
26.208394. Average percentage variation of NSL
for LC ranges from -30.773233 to 0.000000 with an
average of -25.583130. Average percentage variation of
NSL for RDCC ranges from -31.017114 to 0.000000
with an average of -25.777003.The average percentage
variation order of NSL is: CPPS < EZ < RDCC < LC <
DCCL < DSC.

Figure 18 shows the average numbeer of processors
used vs average computation communication fault delay
for constant computation communication fault delay.
Average percentage variation of number of processors
used by CPPS ranges from -0.039888 to 0.026592 with
an average of -0.030218. Average percentage variation
of number of processors used by DCCL ranges from -
1.315789 to 0.000000 with an average of -0.538278.

Figure 18: Average number of processors used vs average
computation communication fault delay for constant computation fault
delay. The average percentage variation order of number of processors
used is: DCCL < CPPS < LC < RDCC < DSC < EZ.

Average percentage variation of number of processors
used by DSC ranges from 0.000000 to 17.281250 with an
average of 14.872159. Average percentage variation of
number of processors used by EZ ranges from 0.000000
to 29.525653 with an average of 20.575552. Average
percentage variation of number of processors used by LC
ranges from 0.000000 to 0.000000 with an average of
0.000000. Average percentage variation of number of
processors used by RDCC ranges from -1.507538 to
9.045226 with an average of 4.613979.The average
percentage variation order of number of processors used
is: DCCL < CPPS < LC < RDCC < DSC < EZ.

Figure 19: Average running time (in seconds) vs average computation
communication fault delay for constant computation communication
fault delay. The average percentage variation order of running time (in
seconds) is: EZ < CPPS < LC < DCCL < RDCC < DSC.

Figure 19 shows the average running time (in seconds)
vs average computation communication fault delay for
constant computation communication fault delay.
Average percentage variation of execution time for CPPS
ranges from -10.051132 seconds to 0.000000 seconds
with an average of -8.636224 seconds. Average
percentage variation of execution time for DCCL ranges
from -1.249324 seconds to 0.008873 seconds with an
average of -0.612947 seconds. Average percentage
variation of execution time for DSC ranges from -
7.625609 seconds to 65.342904 seconds with an
average of 17.515968 seconds. Average percentage
variation of execution time for EZ ranges from -
18.512653 seconds to 0.000000 seconds with an
average of -13.092788 seconds. Average percentage
variation of execution time for LC ranges from -
18.979249 seconds to 15.350542 seconds with an
average of -4.204960 seconds. Average percentage
variation of execution time for RDCC ranges from -
2.341522 seconds to 1.138953 seconds with an average
of -0.386761 seconds. The average percentage variation
order of running time (in seconds) is: EZ < CPPS < LC <
DCCL < RDCC < DSC.

10.1. Performance results of fast fourier transform task
graphs for Random Communication and Computation
Fault delay

Kamal Sheel Mishra
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8752-8764 Page 8760

Figure 20: Average NSL vs average computation communication fault
delay for random computation communication fault delay. The average
percentage variation order of NSL is: CPPS < EZ < LC < RDCC <
DCCL < DSC.

Figure 20 shows the average NSL vs average
computation communication fault delay for random
computation communication fault delay. Average per-
centage variation of NSL for CPPS ranges from -
28.286067 to 0.000000 with an average of -22.274371.
Average percentage variation of NSL for DCCL ranges
from -25.033410 to 0.000000 with an average of -
18.874905. Average percentage variation of NSL for DSC
ranges from -22.652459 to 0.000000 with an average of
-18.055520. Average percentage variation of NSL for EZ
ranges from -27.312959 to 0.000000 with an average of -
21.601798. Average percentage variation of NSL for LC
ranges from -26.683568 to 0.000000 with an average of -
21.338724. Average percentage variation of NSL for
RDCC ranges from -26.709171 to 0.000000 with an
average of -20.899349.The average percentage variation
order of NSL is: CPPS < EZ < LC < RDCC < DCCL <
DSC.

Figure 21 shows the average number of processors used
vs average computation communication fault delay for
random computation communication fault delay. Average
percentage variation of number of processors used by
CPPS ranges from -2.845366 to 0.000000 with an
average of -1.037096. Average percentage variation of
number of processors used by DCCL ranges from
0.000000 to 5.263158 with an average of 2.392344.
Average percentage variation of number of processors
used by DSC ranges from 0.000000 to 15.781250 with an
average of 12.403409.Average percentage variation of
number of processors used by EZ ranges from 0.000000

Figure 21: Average number of processors used vs average
computation communication fault delay for random computation

communication fault delay. The average percentage variation order of
number of processors used is: CPPS < LC < DCCL < RDCC < DSC <
EZ.

to 32.333011 with an average of 21.675614. Average
percentage variation of number of processors used by LC
ranges from 0.000000 to 0.000000 with an average of
0.000000. Average percentage variation of number
of processors used by RDCC ranges from 0.000000 to
13.297872 with an average of 8.945841.The average
percentage variation order of number of processors used
is: CPPS < LC < DCCL < RDCC < DSC < EZ.

Figure 22: Average running time (in seconds) vs average computation
communication fault delay for random computation communication
fault delay. The average percentage variation order of running time (in
seconds) is: LC < EZ < DCCL < RDCC < DSC < CPPS.

Figure 22 shows the average running time (in seconds)
vs average computation communication fault delay for
random computation communication fault delay .Average
percentage variation of execution time for CPPS ranges
from -8.925985 seconds to 25.984653 seconds with an
average of 9.314486 seconds. Average percentage
variation of execution time for DCCL ranges from -
1.149733 seconds to 0.566031 seconds with an average
of -0.390620 seconds. Average percentage variation of
execution time for DSC ranges from -15.451331 seconds
to 39.671315 seconds with an average of 3.396834
seconds. Average percentage variation of execution time
for EZ ranges from -11.858071 seconds to 0.000000
seconds with an average of -7.245864 seconds. Average
percentage variation of execution time for LC ranges
from -38.596667 seconds to 6.926753 seconds with
an average of -23.268047 seconds. Average percentage
variation of execution time for RDCC ranges from
0.000000 seconds to 1.996918 seconds with an average
of 0.891951 seconds. The average percentage variation
order of running time (in seconds) is: LC < EZ < DCCL <
RDCC < DSC < CPPS.

Kamal Sheel Mishra
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8752-8764 Page 8761

11. PERFORMANCE RESULTS OF DIVIDE-AND-CONQUER TASK

GRAPHS FOR CONSTANT COMMUNICATION AND

COMPUTATION FAULT DELAY

Figure 23: Average NSL vs average computation communication fault
delay for constant computation communication fault delay. The
average percentage variation order of NSL is: RDCC < DCCL < CPPS
< DSC < EZ < LC.

Figure 23 shows the average NSL vs average
computation communication fault delay for constant
computation communication fault delay. Average per-
centage variation of NSL for CPPS ranges from -
20.754456 to 0.000000 with an average of -17.467447.
Average percentage variation of NSL for DCCL ranges
from -25.275453 to 0.000000 with an average of -
21.102228. Average percentage variation of NSL for DSC
ranges from -14.943757 to 0.000000 with an average of
-12.740658. Average percentage variation of NSL for EZ
ranges from -13.478138 to 0.000000 with an average of -
11.511678. Average percentage variation of NSL for LC
ranges from -10.216266 to 0.000000 with an average of -
8.942914. Average percentage variation of NSL for
RDCC ranges from -25.906343 to 0.000000 with an
average of -21.398239.The average percentage variation
order of NSL is: RDCC < DCCL < CPPS < DSC < EZ <
LC.

Figure 24 shows the average number of processors used
vs average computation communication fault delay for
constant computation communication fault delay.
Average percentage variation of number of processors
used by CPPS ranges from -3.375887 to 0.000000 with
an average of -2.737589. Average percentage variation
of number of processors used by DCCL ranges from -
1.273885 to 1.910828 with an average of 0.173712.
Average percentage variation of number of processors
used by DSC ranges from 0.000000 to 0.323027 with an
average of 0.230734. Average percentage variation of
number of processors used by EZ ranges from -3.052632
to 0.000000 with an average of -2.258373. Average per-
centage variation of number of processors used by LC
ranges from 0.000000 to 0.000000 with an average

Figure 24: Average number of processors used vs average
computation communication fault delay for constant computation
communication fault delay. The average percentage variation
order of number of processors used is: CPPS < EZ < LC < DCCL <
DSC < RDCC.

of 0.000000. Average percentage variation of number
of processors used by RDCC ranges from 0.000000 to
4.739336 with an average of 2.455838. The average
percentage variation order of number of processors
used is: CPPS < EZ < LC < DCCL < DSC < RDCC.

Figure 25: Average running time (in seconds) vs average computation
communication fault delay for constant computation communication
fault delay. The average percentage variation order of running time (in
seconds) is: LC < DCCL < RDCC < EZ < DSC < CPPS.

Figure 25 shows the average running time (in seconds)
vs average computation communication fault delay for
constant computation communication fault delay.
Average percentage variation of execution time for CPPS
ranges from 0.000000 seconds to 65.871142 seconds
with an average of 49.417149 seconds. Average
percentage variation of execution time for DCCL ranges
from -1.414007 seconds to 0.000000 seconds with an
average of -0.756574 seconds. Average percentage
variation of execution time for DSC ranges from -
11.784990 seconds to 64.080460 seconds with an
average of 4.906571 seconds. Average percentage
variation of execution time for EZ ranges from -4.588138
seconds to 4.629644 seconds with an average of
0.450249 seconds. Average percentage variation of
execution time for LC ranges from -21.386323 seconds
to 8.187810 seconds with an average of -11.221015
seconds. Average percentage variation of execution time
for RDCC ranges from -1.383551 seconds to 0.297899
seconds with an average of -0.331793 seconds. The
average percentage variation order of running time (in
seconds) is: LC < DCCL < RDCC < EZ < DSC < CPPS.

Kamal Sheel Mishra
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8752-8764 Page 8762

11.1. Performance results of divide-and-conquer task
graphs for Random Communication and Computation
Fault delay

Figure 26: Average NSL vs average computation communication fault
delay for random computation communication fault delay. The average
percentage variation order of NSL is: RDCC < DCCL < CPPS < DSC <
LC < EZ.

Figure 26 shows the average NSL vs average
computation communication fault delay for random
computation communication fault delay. Average per-
centage variation of NSL for CPPS ranges from -
20.834341 to 0.000000 with an average of -15.424460.
Average percentage variation of NSL for DCCL ranges
from -22.242009 to 0.000000 with an average of -
16.487258. Average percentage variation of NSL for DSC
ranges from -12.059344 to 0.000000 with an average of
-9.425610. Average percentage variation of NSL for EZ
ranges from -11.636598 to 0.000000 with an average of -
8.764203. Average percentage variation of NSL for LC
ranges from -8.724656 to 0.000000 with an average of -
6.965674. Average percentage variation of NSL for
RDCC ranges from -22.043911 to 0.000000 with an
average of -17.342865.The average percentage variation
order of NSL is: RDCC < DCCL < CPPS < DSC < LC <
EZ.

Figure 27 shows the average number of processors used
vs average computation communication fault delay for
random computation communication fault delay. Average
percentage variation of number of processors used by
CPPS ranges from -10.879433 to 0.000000 with an
average of -6.308188. Average percentage variation of
number of processors used by DCCL ranges from -
5.732484 to 0.000000 with an average of -2.084540.
Average percentage variation of number of processors
used by DSC ranges from -0.184587 to 1.199815 with an
average of 0.469858. Average percentage variation of
number of processors used by EZ ranges from -0.842105
to 3.789474 with an average of 1.157895. Average per-
centage variation of number of processors used by LC
ranges from 0.000000 to 0.000000 with an average of
0.000000. Average percentage variation of number
of processors used by RDCC ranges from -2.392344 to
7.655502 with an average of 3.827751.

Figure 27: Average number of processors used vs average
computation communication fault delay for random computation
communication fault delay. The average percentage variation
order of number of processors used is: CPPS < DCCL < LC < DSC <
EZ < RDCC.

The average percentage variation order of number of
processors used is: CPPS < DCCL < LC < DSC < EZ <
RDCC.

Figure 28: Average running time (in seconds) vs average
computation communication fault delay for random computation
communication fault delay. The average percentage variation order of
running time (in seconds) is: LC < DSC < EZ < DCCL < RDCC <
CPPS.

Figure 28 shows the average running time (in seconds)
vs average computation communication fault delay for
random computation communication fault delay. Average
percentage variation of execution time for CPPS ranges
from 0.000000 seconds to 158.861740 seconds with an
average of 93.582661 seconds. Average percentage
variation of execution time for DCCL ranges from -
2.092929 seconds to 0.233569 seconds with an average
of -1.146830 seconds. Average percentage variation of
execution time for DSC ranges from -34.176645 seconds
to 11.433718 seconds with an average of -15.800717
seconds. Average percentage variation of execution time
for EZ ranges from -6.252946 seconds to 0.352861
seconds with an average of -2.470733 seconds. Average
percentage variation of execution time for LC ranges
from -48.319187 seconds to 0.000000 seconds
with an average of -33.140748 seconds. Average
percentage variation of execution time for RDCC ranges
from -0.665362 seconds to 0.900635 seconds with an

Kamal Sheel Mishra
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8752-8764 Page 8763

average of 0.001368 seconds. The average percentage
variation order of running time (in seconds) is: LC < DSC
< EZ < DCCL < RDCC < CPPS.

12. CONCLUSION

In this paper we performed the experiments on task
scheduling of special task graphs to identify its behavior
in the presence of communication and computation fault
delays for distributed environment. We evaluated six
algorithms namely CPPS, DCCL, DSC, EZ, LC and
RDCC for four types of task graphs (systolic array,
Gaussian elimination, fast Fourier transform and divide-
and-conquer) using three types of comparisons (average
NSL vs average computation and communication fault
delay, average number of processor used vs average
computation and communication fault delay and average
running time (in second) vs average computation and
communication fault delay). Each task graph is further
evaluated under two category (i) task graphs with random
fault delay and (ii) task graphs with constant fault delay.
From the above graphs and results it can be concluded
that in terms of average running time RDCC algorithm
gives the best result in systolic array whereas EZ
algorithm gives best result in Gaussian elimination and
fast Fourier transform task graphs and LC algorithm
gives best result in divide-and-conquer task graph. In
terms of number of processor used DSC algorithm gives
better performance in systolic array and Gaussian
elimination task graph and CPPS algorithm gives better
performance in fast Fourier transform and divide-and-
conquer task graphs. For future work we can consider
random faults with deferent types of probability
distributions like normal distribution, Poisson distribution,
Bernoulli distribution, etc.

13. REFERENCES

[1] Anil Kumar Tripathi, P.K. Mishra, Abhishek
Mishra,Kamal sheel Mishra, Benchmarking the clustering
algorithms for multiprocessor environments
using dynamic priority of modules, Elsevier Applied
Mathematical Modelling 36 (2012) 6243-6263.

[2] Kamal Sheel Mishra, Anil Kumar Tripathi, Task
Sheduling of a Distributed Computing Software in the
Presence of Faults, International journal of Computer
Applications Vol 72 (2013)No.13 0975 8887.

[3] Bradley Charles Goldsmith, distributed Computing and
Communication in Peer-to-peer Network,University of
Tasmania (2010)Bertsekas89.

[4] Amoura A.K., Scheduling algorithms for parallel
Gaussian elimination with communication costs, IEEE
Transactions ,Vol-9 issue:7 (1998).

[5] O sinnen, Task scheduling for parallel systems, Wiley-
Interscience (2007).

[6] P.K. Mishra, K.S. Mishra, A. Mishra, A clustering
heuristic for multiprocessor environments using
computation and communication loads of modules,

International Journal of Computer Science & Information
Technology, 2(5):170{182, 2010.

[7] T.Tobita,A standard task graph set for fail evaluation
of multiprocessor scheduling algorithm,J.Sched. 5 (2002)
379-394.

[8] D.P. Bertsekas, Parallel and Distributed Computation-
Numerical methods,Athena Sc., (1989).

[9] Y. K. Kwok, I. Ahmad, Benchmarking and comparison
of the task graph scheduling algorithms, Journal of
Parallel and Distributed Computing 59 (1999) 381{422.

[10] john A. Stankovic, K. Ramamritham, S.Cheng,
Evaluation of a Flexible task scheduling algorithm for
distributed hard real time systems, IEEE Transactions on
Computers Vol c-34 , no. 12 (1985) 1130{1143.

[11] V.S. Tondre, V.M.Thakare, S.S.Sherekar, R.V.
Dharaskar, Technical computation and communication
delay in distributed system, NCICT (2011) IJCA.

[12] R.C.Nunes,I.J. Porto, Modeling communication
delays in distributed systems using time series, IEEE
transactions (2002) 1060-9857/02, Brazil.

[13] A. Mishra, A.K. Tripathi, An extension of edge
zeroing heuristic for scheduling precedence constrained
task graphs on parallel systems using cluster dependent
priority scheme, J. Inform. Comput. Sci. 6 (2011) 83{96.
An extended abstract of this paper appears in the
Proceedings of IEEE International Conference on
Computer and Communication Technology, 2010, pp.
647{651.

[14] P.K. Mishra, K.S. Mishra, A. Mishra, A clustering
algorithm for multiprocessor environments using dynamic
priority of modules, Ann. Math. Inform. 38 (2011) 99{110.

[15] T. Yang, A. Gerasoulis, A fast static scheduling
algorithm for DAGs on an unbounded number of
processors, in: Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing, 1991, pp. 633{642.

[16] V. Sarkar, Partitioning and scheduling parallel
programs for multiprocessors, Research Monographs in
Parallel and Distributed Computing, MIT Press, 1989.
[17] S.J. Kim, J.C. Browne, A general approach to
mapping of parallel computation upon multiprocessor
architectures, in: Proceedings of 1988 International
Conference on Parallel Processing, 3, 1988, pp. 18.

[18] Mishra, P.K., Mishra, K.S., Mishra, A. and Tripathi,
A.K., A Randomized Scheduling Algorithm for
Multiprocessor Environments, Parallel Processing
Letters, Vol. Vol 22 No 4, pp 125005, 2012 , World
Scienti_c.

[19] O.H. Ibarra, S.M. Sohn, On mapping systolic
algorithms onto the hypercube, IEEE Trans. Parallel
Distrib. Syst. 1 (1990) 4863.

[20] D.P. Bertsekas, J.N. Tsitsiklis, Parallel and
Distributed Computation Numerical Methods, Athena Sci.
(1989).

Kamal Sheel Mishra
1
 IJECS Volume 3 Issue 10, October, 2014 Page No.8752-8764 Page 8764

[21] S. Madal, J.B. Sinclair, Performance of synchronous
parallel algorithms with regular structures, IEEE Trans.
Parallel Distrib. Syst. 2 (1991) 105116.

[22] J.P. Kitajima, Modles Quantitatifs dAlgorithmes
Parallles, Doctorate the sis, Institut National
Ploytechnique de Grenoble, 1992.

AUTHOR'S PROFILE

Anil Kumar Tripathi is Professor of Computer
Engineering at Indian Institute of Technology (Banaras
Hindu University), Varanasi, India. He received his Ph.D.
degree in Computer Engineering from Banaras Hindu
University; and M.Sc. Engg. (Computer) degree from
Odessa National Polytechnic University, Ukraine. His
research interests include parallel and distributing
computing, and software engineering. He has to his credit
more than 60 research papers in International journals.
He has co-authored two research monographs: one from
Springer USA and other from John Wiley USA .More than
Fifteen students have completed their Ph.D under his
supervision.

Kamal Sheel Mishra is M.Tech (Computer Engg.) and
working as Associate Professor and Dean ,Computer
Science department in the School of Management
Sciences , Varanasi, India. He is having more than 18
years of teaching experience. His research interests
include Software engineering, Parallel and Distributed
Computing. Currently he is Pursuing Ph.D. from
Department of Computer Science and Engineering,
Indian Institute of Technology (Banaras Hindu University),
Varanasi, India.

	PointTmp

