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Abstract: Online social networks such as Twitter, Flickr, or the Facebook have experienced exponential growth in membership in recent 

years. These networks offer attractive means for interaction and communication, but also raise privacy and security concerns. These 

online platforms allow third-party applications such as games, and productivity applications access to user online private data. Such 

accesses must be authorized by users at installation time. The Open Authorization protocol (OAuth) was introduced as a secure and 

efficient method for authorizing third-party applications without releasing a user’s access credentials but fails to provide fine-grained 

access control. We propose an extension to the OAuth 2.0 authorization that enables the provisioning of fine-grained authorization 

recommendations when granting permissions to third party applications using multi-criteria recommender system. The Recommender 

system utilizes application based, user-based, and category-based collaborative filtering mechanisms. Our collaborative filtering (CF) 

uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users. 

We implemented our proposed OAuth extension as a browser extension that allows users to easily configure their privacy settings at 

application installation time, provides recommendations on requested privacy permissions, and collects data regarding user preferences. 
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I. INTRODUCTION  

Social networking sites have become rich grounds 

for third-party applications that utilize user online data to 

provide various services. Before using applications, users are 

required to authorize them and grant them access to certain 

permissions they request, e.g., access to a user’s e-mail, 

location, etc. With the pervasiveness of such applications, 

protecting the user’s online private data becomes a necessity. 

In the traditional client-server authentication model, the client 

requests an access restricted resource (protected resource) on 

the server by authenticating with the server using the resource 

owner's credentials.  In order to provide third-party 

applications access to restricted resources, the resource owner 

shares its credentials with the third-party.  This creates several 

problems and limitations: 

 Third-party applications are required to store the 

resource owner's credentials for future use, typically a 

password in clear-text. 

 Servers are required to support password 

authentication, despite the security weaknesses 

inherent in passwords.  

 Third-party applications gain overly broad access 

to the resource owner's protected resources, leaving 

resource owners without any ability to restrict 

duration or access to a limited subset of resources. 

 Resource owners cannot revoke access to an 

individual third-party without revoking access to all 

third-parties, and must do so by changing their 

password. 

 Compromise of any third-party application results 

in compromise of the end-user's password and all of 

the data protected by that password. 

 

 OAuth addresses these issues by introducing an 

authorization layer and separating the role of the client from 

that of the resource owner.  In OAuth, the client requests 

access to resources controlled by the resource owner and 

hosted by the resource server, and is issued a different set of 

credentials than those of the resource owner. 

Instead of using the resource owner's credentials to access 

protected resources, the client obtains an access token - a 

string denoting a specific scope, lifetime, and other access 

attributes.  Access tokens are issued to third-party clients by an 

authorization server with the approval of the resource owner.  

The client uses the access token to access the protected 

resources hosted by the resource server. 

For example, an end-user (resource owner) can grant a printing 

service (client) access to her protected photos stored at a photo 

sharing service (resource server), without sharing her 
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username and password with the printing service.  Instead, she 

authenticates directly with a server trusted by the photo 

sharing service (authorization server), which issues the 

printing service delegation-specific credentials (access token). 

OAuth , however does not provide necessary fine-grained 

access control, nor it provides any recommendation i.e., which 

access control decisions are most appropriate .so, in order to 

overcome these problems we need a recommender system 

which allow users to decide whether to allow individual 

applications to access these sensitive resources. Time-of-use 

systems prompt users to approve permissions as needed by 

applications at runtime, and install-time systems ask 

developers to declare their applications permission 

requirements up-front so that users can grant them during 

installation. 

In this paper, we propose a browser Extension that implements 

a multi-criteria recommender-system, enables users to make 

important privacy decisions at the time of third-party 

application installation, and integrates into the existing OAuth 

2.0 authorization flow. Recommendations give users 

confidence in making their decisions, especially that many 

privacy requests do not clearly convey the accesses requested. 

The decisions that users make are their own of course, but our 

algorithm and model provides a mechanism to inform them 

and provide recommendations based on the collaborative 

decisions (grant/deny) on similar privacy requests within the 

user’s larger social network. 

 
 

a) Facebook 3rd party App Requesting Permissions. 

II. PROBLEM  STATEMENT 

OAuth 2.0 standard provides a mechanism for third-party 

service providers to access end-user resources without 

releasing the user’s access credentials to service provider. 

However, this does not provide fine-grained access control nor 

any recommendations to user before installation. An example 

we use throughout this paper is one of the free Facebook 

online games application available through Zynga Poker. The 

ZyngaPoker Facebook application requests the following 

extended permissions when a user first installs the application: 

access to the user’s e-mail address, ability to publish status and 

post messages to the user’s wall, and the ability to enumerate 

the online presence status of other users(within the first user’s 

social network). 

Once the user grants these extended permissions they cannot 

be realistically revoked .For example, once users provide 

Zynga Poker access to their e-mail addresses, they cannot 

realistically remove that e-mail address from Zynga Pokers’s 

servers and databases by preventing further access to the 

information through Facebook’s application privacy settings. 

We find there are several user attributes that are practically 

irrevocable once granted, since the attributes are generally 

immutable (i.e., birthday) or generally change with very little 

frequency (i.e., hometown locations, religious and political 

views). (See Fig. 1a) We view the permanent loss of personal 

attributes as only one part of the problem; should a method be 

devised to permit users a “last line of defense” against such 

information loss, how may they know best what decisions to 

take. Can users benefit from a community of knowledge 

to better inform their own decision making? 

Our proposed approach provides both the 

aforementioned “last line of defense” mechanism and a 

recommender system based on the decisions of other users 

within the community, and the previous decisions of an 

individual user. 

 

 

III. PRELIMINARIES 

Major online platforms such as Facebook, Google, and 

Twitter provide an open API which allows third-party 

applications to directly interact with their platform. APIs 

provide a 

mechanism to read, write, or modify user data on such 

platforms through other thirdparty applications on behalf of 

the users themselves. An API comes with a set of methods, 

each representing a certain user interaction executed through a 

third-party application. It is important to note that third-party 

applications can potentially execute any API call on behalf of 

a user, relying on the type and scope of permissions granted to 

these apps. The full set of permissions available to third-party 

apps are defined by the online platforms, and it is up to third-

party applications to request the proper subset of permissions 

required. We believe users should have the final decision on 

which permissions to grant or deny. 

A.  OAuth 2.0 

With an increasing trend toward offering online services that 

provide third-party applications the ability to interact through 

open APIs and access user resources, OAuth was introduced 

as a secure and efficient mechanism for authorizing third-party 

applications. Traditional authentication models such as the 

client-server model require third-party applications to 

authenticate with online services using the resource owner’s 

private credentials, typically a username and password. This 

requires users to present their credentials to third-party 

applications, hence granting them broad access to all their 

online resources with no restrictions. A user may revoke 

access from a third-party application by changing her 

credentials, but doing so subsequently revokes access from all 

third-party applications that continue to use her previous 

credentials. These issues are amplified given the high number 

of third-party applications that potentially get access to a 

user’s online resources. 
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 OAuth uses a mechanism where the roles of third-

party applications and resource owners are separated. It does 

not require users to share their private credentials with third-

party applications, instead it issues a new set of credentials for 

each application. These new set of credentials are per 

application, and reflect a unique set of permissions to a user’s 

online resources. In OAuth, these new credentials are 

represented via an Access Token. An Access Token is a string 

which denotes a certain scope of permissions granted to an 

application, it also denotes other attributes such as the duration 

the Access Token is considered valid. We are mainly 

interested in the scope attribute within an Access Token. 

Access Tokens are issued by an authorization server after the 

approval of the resource owner. In this paper, we extend upon 

this authorization stage of the OAuth 2.0 protocol. When a 

third-party application needs to access a user’s protected 

resources, it presents its Access Token to the service provider 

hosting the resource (e.g., Facebook, Twitter) which in turn 

verifies the requested access against the scope of permissions 

denoted by the Token. For example,Alice (resource owner) on 

Facebook (service provider and resource server) can grant the 

Zynga Poker application (client) access to her e-mail address 

on her Facebook profile without ever sharing her username 

and password with Zynga Poker. Instead, she authenticates the 

Zynga Poker application with Facebook (authorization server) 

which in turn provides Zynga Poker with a proper Access 

Token that denotes permission to access Alice’s e-mail 

address. 

OAuth provides multiple authorization flows depending on the 

client (third-party application) type (e.g., webserver, native 

applications). In this paper, we focus on the Authorization 

Code flow shown in Fig. 2 and detailed in the OAuth 2.0 

specification. The authorization code flow is used by third-

party applications that are able to interact with a user’s web 

browser, and are able to receive incoming requests via 

redirection. The authorization flow process consists of three 

parties: 

 1) End-user (resource owner) at browser,  

 2) Client (third-party application), and 

 3) Authorization server (e.g., Facebook).  

Our main focus is on steps “(A)” and “(B)” within the 

authorization code flow.  

Step “(A)” is where third-party applications initiate the flow 

by redirecting a user’s browser to the authorization server and 

pass along the requested scope of permissions. In step “(B),” 

the authorization server authenticates the end user, and 

establishes her decision on whether to grant or deny the third-

party application’s access request. 

 

 
Fig 2.  Authorization  code for OAuth flow. 

 

One of the main reasons behind OAuth was to increase user 

privacy by separating the role of users from that of third party 

applications. OAuth uses the concept of Access Tokens, where 

a token denotes a set of credentials granted to third-party 

applications by the resource owners. This avoids the need for 

users to share their private credentials such as their username 

and password. It also allows users to revoke access to a 

specific third-party application by revoking its Access Token. 

OAuth 2.0 allows third-party applications to request a set of 

permissions via the scope attribute, and for users to grant/deny 

such requests. If a user grants a third-party application’s 

request, then an Access Token (denoting the scope) is issued 

for that application, hence granting it the scope of permissions 

requested. The scope attribute represents the set of permissions 

requested by third-party applications, and is our main focus in 

this paper. In the authorization code, OAuth flow seen in Fig. 

2, the scope parameter is part of the request URI that is 

generated by third-party applications (Step “(A)” in Fig. 2). 

The scope is a list of space-delimited strings, each string 

mapped to a certain permission or access level. For example, 

the Zynga Poker application requests permission to post to a 

user’s Facebook feed/wall, to access her e-mail address, and to 

check her friend’s online/offline presence. Zynga Poker 

requests these permissions with a scope attribute value of 

“publish_stream, xmpp_login, e-mail, 

friends_online_presence.” The scope value becomes part of 

the OAuth request URI sent to the authorization server 

(Facebook’s OAuth implementation uses commas rather than 

spaces to separate each requested permission). Step “(B)” of 

Fig. 2 is where users grant/deny the requested scope value. 

     We propose an extension to the OAuth 2.0 authorization 

code flow detailed in Section 1.4.1 of the OAuth 2.0 

specification. Before users make their decision on the 

requested scope of permissions, we introduce a new level of 

awareness and control to the user via in-house developed 

browser extension.. 

 

B. Collaborative Filtering 

Recommender systems are that which try to assist users in 

evaluating and making decisions on items by providing them 

opinions and prediction values as a set of recommendations. 

As one of the most successful approaches to building 

recommender systems, collaborative filtering (CF) uses the 

known preferences of a group of users to make 

recommendations or predictions of the unknown preferences 
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for other users. Collaborative Filtering is widely used and 

accepted as highly successful technique in recommender 

systems. 

In this paper, as we are interested in the context of access 

control and user privacy, items in a collaborative filtering 

technique can be mapped onto individual user privacy 

attributes or permissions. Users can make decisions on privacy 

attributes, i.e., grant/deny them to third-party applications. 

Users have their own privacy preferences, but may benefit 

from the community’s collaborative privacy decisions to make 

their own, especially if they lack the knowledge to make good 

privacy decisions. 

In this paper, we propose a collaborative filtering model that 

utilizes community decisions in providing recommendations to 

users who install third-party applications requesting access to 

their privacy attributes.  

 

IV. EXTENDED OAUTH FLOW 

We propose a new flow by extending the existing OAuth flow 

by adding two new modules: 

1. Permission Guide: This module guides the users through the 

requested permissions, and shows them a set of 

recommendations on each of the requested permissions. 

2.Recommender System: This retrieves a set of 

recommendations for requested permissions by following a 

Collaborative filtering technique. 

Our extended OAuth focuses on step “(A)” of the 

authorization code flow in OAuth 2.0. We revise step “(A)” to 

become a six stage process as shown in Fig. 3 and explained in 

the following steps: 

A1. The client redirects the browser to the end-user 

authorization endpoint by initiating a request URI that 

includes a scope parameter. 

A2. The Permission Guide extension captures the scope value 

from the request URI and parses the requested permissions.At 

this step the extension allows users to choose a subset of the 

permissions requested. 

A3.The Permission Guide extension requests a set of 

recommendations on the parsed permissions. This is achieved 

by passing the set of permissions to our Recommendation 

Service. 

A4. The Recommendation Service returns a set of 

recommendations for the permissions requested by the client. 

A5. Using the set of returned recommendations, the extension 

presents the permissions with their respective 

recommendations in a user-friendly manner. 

A6. The Permission Guide extension redirects the end user’s 

browser to a new request URI with a new scope (scope´), 

assuming the user chooses to modify the requested  

permission. 

Fig 3., Extended OAuth Flow 

A.  Permission Guide 

 

The Permission Guide is represented by a browser extension 

that integrates into the authorization process by capturing the 

scope parameter value within the request URI generated by a 

third-party application. Once the scope is captured, the 

extension parses the requested permissions and presents them 

in a user-friendly manner as shown in Fig. 8.  

The extension also shows users a set of recommendations for 

the requested permissions. For each permission, there is a 

thumbs-up and thumbs-down recommendation value. These 
recommendations represent prediction values that we 
calculate following our model in Section 4.2. These prediction 

values represent the likeliness of a user to grant or deny a 

certain permission based on her previous decisions and on the 

collaborative decisions of other users. Users who have not 

made any decisions yet are shown recommendations based on 

other user decisions.  

The extension also allows users to customize the requested 

permissions by checking or unchecking individual 

permissions, where a checked permission is one the user 

wishes to grant to the third-party application and an unchecked 

permission is one she wishes to deny access to. Once a user 

decides on the permissions she wishes to grant and deny, she 

simply needs to click a Set Permissions button on the 

extension (blue button in Fig. 8). This will trigger the 

extension to generate a new request URI with a new scope 

scope´, and forward the user’s browser to this new request 

URI. scope´ will always be a subset of the original requested 

scope. An example scope´ for the Zynga Poker application 

could be as follows: 

scope´ = post on behalf of you. 

Our Permission Guide extension also collects the 

user’s decisions on the requested permissions, hence allows us 

to generate a data set of decisions to be used in our 

recommendation model explained in Section 4.2. That is, our 

Recommender System as seen in Fig. 3 will utilize these 

decisions in making its recommendation predictions. These 
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decisions are uploaded to our servers once a user sets her 

desired permissions within the extension, i.e., clicks the Set 

Permissions button. 

This provides a simple user interface for interacting with 

permission requests, hence increasing user awareness and 

providing an easy mechanism for guiding users in making 

their decisions. 

 

B.  Recommender System 

 

We propose a Recommender System component that extends 

upon our Permission Guide extension. Let A, U, and P 

represent the set of applications, users, and permissions, 

respectively. A user ui ϵ U can make a decision di ϵ {grant, 

deny} on a permission pj ϵ P for an application ak ϵ A. An 

application ak which requests permissions p1; . . . ; pm is 

mapped to a set of decisions d1; . . . ; dm made by the user 

installing ak. 

 

  C.  Collaborative Filtering 

 

We use a multi-criteria recommender system where user 

recommendations are calculated per criterion. The model 

utilizes the set of permissions P as a set of criteria, i.e., each 

permission pj ϵ P represents an individual criterion within the 

model. The multi-criteria approach fits our model as decisions 

are made per permission (criteria) rather than an application as 

a whole. 

We model a user’s utility for a given application with the 

user’s decisions d1; . . . ; dm on each individual permission p1; . 

. . ; pm using Function (1). 

 

D : Users _ Applications → d1 x....x dm       (1) 

 

 Function(1) represents a user’s overall decision on a certain 

application via the set of decisions made on individually 

requested permission. That is, a user ui makes a decision di on 

an application ak with respect to an individual permission. For 

each permission pj, there exists a matrix Cpj representing user 

decisions on pj for each application ak ϵ A, see Fig. 5. A matrix 

entry di with a value of 1 denotes a user  has granted ak the 

permission pj, whereas a 0 denotes a deny. Entries with “?” 

values denote the user is yet to make a decision on permission 

pj for application ak. Our model provides recommendations to 

users that guide them in making these future decisions. 

Applications that do not request a permission pj have an empty 

entry in Cpj and are handled properly in our 

implementation.For example, let p1 = birthday, p2 = e _ mail, 

and p3 =location, where each represents a single criterion 

within a three-criteria model. Let u1=Alice who installed 

application a1 that requests                                                                                                                                                                                                                                                       

 
 
Fig 4., Collaborative Filtering Model

 

access to the permissions birthday, e-mail, and location. As 

illustrated in Fig. 5, Alice has granted a1 the permissions  

birthday and location (d1 = grant; d3 = grant), whereas denied 

e-mail (d3 = deny). Alice has yet to make a decision on a2,     

i.e., a single decision on each requested permission ϵ set of 

{birthday, e – mail, location}. Our proposed model utilizes the 

decisions for each Cpj , hence providing a recommendation 

that fits each criterion. 

Fig. 4 illustrates our overall collaborative model. The model 

relies on decisions made by the community users, and utilizes 

them in building the multi-criteria matrices C for each of the 

permission. By utilizing the C matrices, we generate two 

probability matrices, GA and GU, as seen in Fig. 4. GA is app 

based, whereas GU is user based. GA captures the probability of 

a certain application being granted certain permission, whereas 

GU captures the probability of a certain user granting certain 

permission. 

Fig. 6 shows an example GA matrix, with a set of applications 

(a1, a2, a3, a4, a5), permissions (birthday, e-mail, location, 

sms, photos) and their corresponding GA(j, k) values. For 

example, GA(location, a2) = 0.15, denotes a low probability of 

the permission location being granted to application a2 by 

users who installed a2. Our proposed collaborative technique 

adopts an item-based and user-based collaborative filtering 

process. In our model, items are applications; hence, we refer 

to item-based filtering as application-based filtering. User-

based filtering utilizes the user-based probability values of GU, 

whereas application-based filtering utilizes the app-based 

probabilities of GA as seen in Fig. 4. 
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Fig 5., A three-permission (multi-criteria) model with Cp1 , Cp2 , and Cp3 . 

User decisions on applications made per permission.. 

 

 
Fig 6. Example GA(j, k) values. 

 

i) Application-Based Filtering 

 

Our application-based filtering process relies on the app-based 

probability values of GA shown in Fig. 4. Each entry GA(j, k) in 

GA represents the overall probability of permission pj being 

granted to application ak. To generate recommendations on the 

requested permissions, we first detect the nearest neighbors for 

the target application requesting the permissions. The nearest 

neighbors in app-based filtering are the applications most 

similar to the target application. Collaborative filtering 

algorithms have mainly been based on one of two popular 

similarity measures namely the Pearson Correlation and 

Cosine similarity. We measure similarities between 

applications using the GA values, and by calculating the 

Pearson correlation values between them. Equation (2) 

represents our application-based similarity measure, which is 

the Pearson correlation value between applications ai and aj, 

where P is the set of all permissions in our system and   A(ai) 

is the average probability for application ai being granted a 

permission in P. 

 

sim(i, j) 

=        (2) 

 

Applications that don’t request a certain permission pj have a 

GA(j,i) of zero. Applications which are similar and highly 

correlated re those which request a similar set of permissions, 

and have similar GA(j,i) values for each of their requested 

permissions. For example, if both applications a1 and a2 

requested the same set of permissions {p1,p2}, and they have a 

GA{p1, a1} = GA{p1, a2}  and a GA{p2 ,a1}=GA{p2, a2}, then a1 

and a2 are considered highly correlated and their application-

similarity value sim(i j) will be close to 1. When predicting 

recommendation values for permissions of application ai, we 

make sure they are based on ai’s nearest neighbors, that is, the 

set of applications where sim(ai,aj) is highest. With 

application-based filtering, users collaborate toward increasing 

or decreasing the GA(j, k) values, hence filtering applications 

according to the willingness of users to grant them certain 

permissions. 

ii) User-Based Filtering 

 

User-based filtering relies on the GU values, where each entry 

GU(j, k) in GU represents the overall probability of permission 

pj being granted by a focus user uk. Permission 

recommendations in this case are based on the focus user’s 

nearest neighbors, that is, the users most similar to the focus 

user. Similar to application-based filtering, we use the Pearson 

correlation to measure similarities between users. Equation (3) 

represents our user-based similarity measure, which in terms is 

the Pearson correlation value between users ui and uj, where   

(ui) is the average probability of user ui granting a permission 

in P. 

 sim(i,j) 

=       (3)  

 

With user-based filtering, a focus user ui is given 

recommendations based on those users most similar to 

him/her. Users with more similar probabilities of granting a 

certain permission will be more similar, hence, potentially 

reflect a similar willingness to grant/deny a certain permission. 

We use both application-based and user-based filtering to 

calculate a recommendation value on permissions requested by 

application ai on behalf of user ui. 

 

D. Prediction Model 

 

When a user ui, say Alice, wants to install application ak, we 

calculate a set Rk, where ri,j ϵ Rk is a prediction value for 

permission pj requested by ak. ri,j ϵ Rk is a prediction of how 

likely Alice would be willing to grant pj to ak. The 

recommendation value ri,j is based on either our app-based 

filtering or user-based filtering approaches. That is, the 

recommendations are either based on ai’s nearest neighbors 

(most similar applications) or ui’s nearest neighbors (most 

similar users). Equations (4) and (5) show Fig. 6 the 

recommendation value for app-based and user-based filtering, 

respectively. Note that we calculate ri,j for each pj requested by 

an application ak.. 

 

            (4) 

 

            (5) 
 

In (4), reflects the average probability that permission pj is 

granted over all applications in A, and is easily calculated via 

its corresponding row in the GA matrix. Similarly, in (5), GU 

(pj) represents the average probability that permission pj is 

granted over all users in U, and is calculated via its 

corresponding row in the GU matrix. Note that both 

)( jA pG and )( jU pG are driven by all users within our 

system. In both equations, N represents the target application’s 

nearest neighbors and the focus user’s nearest neighbors, 

respectively. The size of N depends on the similarity measures 

used, and can be adjusted to follow a preset threshold within 

the implementation, e.g., only include neighbors with a 

similarity above 0.8. 

Finally, dj,a in (4) represents ui’s (focus user) previous 

decisions on permission pj for each application aϵN. In (5), dj,ak 

is a neighboring user’s decision on pj for the focus application 
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ak. Note that the sim(ui,u) value will either increase or decrease 

the effect of a neighboring user’s decision, based on how 

similar the neighboring user is to the focus user. Both dj,a and 

dj,ai are captured via the Cpj matrix explained earlier (see Fig. 

5).  

Notice that the prediction values calculated are based 

on a user’s previous decisions and on the decisions of other 

users, hence capturing the essence of collaborative filtering. In 

cases of insufficient data, prediction models could refrain from 

generating predictions, or utilize collaborative filtering 

systems based on probabilistic, hybrid, or clustering 

approaches for generating predictions. We decided not to 

provide predictions in such cases. 

 

i. Category-Based Predictions 

 

To further enhance the results of our recommendation 

predictions, we propose a category-based model that takes into 

consideration an application’s category. Example application 

categories include Games, Utilities, Entertainment, etc. 

Categories can increase the precision of our predictions 

especially for applications that request similar permissions for 

different purposes. For example, two applications might 

request access to a user’s e-mail address, where the first 

application is a game and the second is a task manager. In this 

example scenario, a user’s e-mail could be used for different 

purposes, i.e., a task manager could use it for sending 

reminder e-mails, whereas a game could use it to send 

promotions for other games. A user would probably be more 

willing to grant e-mail permission to the task manager as it 

could be of more benefit to the user. Granting or denying 

certain permission will be driven by the user’s perception of 

the requested permission. We believe that similar permissions 

requested by apps within the same category will be perceived 

similarly by users. Hence, by providing recommendation 

predictions based on application categories, we can reflect 

more precise user perceptions within our recommendations. 

When generating category-based predictions, we 

follow a modified version of our application-based filtering 

model for calculating similarities. To calculate the set of 

nearest neighbors for a certain application ai, we only consider 

other applications that fall into the same category as ai. Fig. 7 

shows two probability matrices G  and  , which are 

extracted from the overall GA matrix explained 

previously.  and   represent the permission 

probabilities for applications within the categories k and j, 

respectively. Let  be the set of applications 

that belong to category k, and Ni be ai’s nearest neighbors 

where. Note that ai’s nearest neighbors can be found by 

calculating the similarities between ai and applications within  

 
Fig. 7.  Application category probability matrices. Recommendations per app 

category. 

 

Ak rather than all applications in A. For example, in Fig. 7, the 

nearest neighbors for ay are found among the set of apps {ax . . 

. ay}, and the similarities are calculated using GAj. For 

application ai ϵ A that belongs to category k, we calculate 

recommendation predictions following: 

 

                 (6) 

 

where reflects the average probability that permission pj is 

granted over applications in Ak, i.e., apps that fall within ai’s 

category. Category-based predictions are more efficient in that 

they do not rely on all applications within our system, but 

rather on a smaller subset of categorized applications. This 

allows for faster prediction calculations, in addition to the 

potentially more precise recommendations. 

 

IV CONCLUSION 
 

Usable privacy configuration tools are essential in providing 

user privacy and protecting their data from third-party 

applications in social networks. We proposed an extension to 

the authorization code flow of OAuth 2.0 and implemented a 

browser extension that integrates into the existing OAuth flow, 

and allows users to easily configure their privacy settings for 

applications at installation time. We also proposed a multi-

criteria recommendation model which adopts three 

collaborative filtering techniques: app-based, user-based, and 

category-based, each incorporating the decisions of the 

community and previous decisions of an individual user. 

Based on this model, our browser extension provides users 

with recommendations on permissions requested by 

applications. Proposed multi-criteria recommender system 

leads to the preservation of irrevocable, immutable private 

identity attributes and the preventing of their uninformed 

disclosure during application installation.  
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