

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 2 Issue 9 September 2013 Page No. 2737-2744

A.Ravali, IJECS Volume 2 Issue 9 September, 2013 Page No. 2737-2744 Page 2737

Multi-criteria Recommender systems for Open

Authorization

A.Ravali, G. sudhakar
M.Tech (Computer Science) School of IT, JNTU Hyderabad, India.

ankamravali87@gmail.com

Lecturer in CSE School of IT, JNTU Hyderabad, India.

sudhakar4321@gmail.com

Abstract: Online social networks such as Twitter, Flickr, or the Facebook have experienced exponential growth in membership in recent

years. These networks offer attractive means for interaction and communication, but also raise privacy and security concerns. These

online platforms allow third-party applications such as games, and productivity applications access to user online private data. Such

accesses must be authorized by users at installation time. The Open Authorization protocol (OAuth) was introduced as a secure and

efficient method for authorizing third-party applications without releasing a user’s access credentials but fails to provide fine-grained

access control. We propose an extension to the OAuth 2.0 authorization that enables the provisioning of fine-grained authorization

recommendations when granting permissions to third party applications using multi-criteria recommender system. The Recommender

system utilizes application based, user-based, and category-based collaborative filtering mechanisms. Our collaborative filtering (CF)

uses the known preferences of a group of users to make recommendations or predictions of the unknown preferences for other users.

We implemented our proposed OAuth extension as a browser extension that allows users to easily configure their privacy settings at

application installation time, provides recommendations on requested privacy permissions, and collects data regarding user preferences.

Keywords: OAuth, collaborative filtering, social networks;

I. INTRODUCTION

Social networking sites have become rich grounds

for third-party applications that utilize user online data to

provide various services. Before using applications, users are

required to authorize them and grant them access to certain

permissions they request, e.g., access to a user’s e-mail,

location, etc. With the pervasiveness of such applications,

protecting the user’s online private data becomes a necessity.

In the traditional client-server authentication model, the client

requests an access restricted resource (protected resource) on

the server by authenticating with the server using the resource

owner's credentials. In order to provide third-party

applications access to restricted resources, the resource owner

shares its credentials with the third-party. This creates several

problems and limitations:

 Third-party applications are required to store the

resource owner's credentials for future use, typically a

password in clear-text.

 Servers are required to support password

authentication, despite the security weaknesses

inherent in passwords.

 Third-party applications gain overly broad access

to the resource owner's protected resources, leaving

resource owners without any ability to restrict

duration or access to a limited subset of resources.

 Resource owners cannot revoke access to an

individual third-party without revoking access to all

third-parties, and must do so by changing their

password.

 Compromise of any third-party application results

in compromise of the end-user's password and all of

the data protected by that password.

 OAuth addresses these issues by introducing an

authorization layer and separating the role of the client from

that of the resource owner. In OAuth, the client requests

access to resources controlled by the resource owner and

hosted by the resource server, and is issued a different set of

credentials than those of the resource owner.

Instead of using the resource owner's credentials to access

protected resources, the client obtains an access token - a

string denoting a specific scope, lifetime, and other access

attributes. Access tokens are issued to third-party clients by an

authorization server with the approval of the resource owner.

The client uses the access token to access the protected

resources hosted by the resource server.

For example, an end-user (resource owner) can grant a printing

service (client) access to her protected photos stored at a photo

sharing service (resource server), without sharing her

A.Ravali, IJECS Volume 2 Issue 9 September, 2013 Page No. 2737-2744 Page 2738

username and password with the printing service. Instead, she

authenticates directly with a server trusted by the photo

sharing service (authorization server), which issues the

printing service delegation-specific credentials (access token).

OAuth , however does not provide necessary fine-grained

access control, nor it provides any recommendation i.e., which

access control decisions are most appropriate .so, in order to

overcome these problems we need a recommender system

which allow users to decide whether to allow individual

applications to access these sensitive resources. Time-of-use

systems prompt users to approve permissions as needed by

applications at runtime, and install-time systems ask

developers to declare their applications permission

requirements up-front so that users can grant them during

installation.

In this paper, we propose a browser Extension that implements

a multi-criteria recommender-system, enables users to make

important privacy decisions at the time of third-party

application installation, and integrates into the existing OAuth

2.0 authorization flow. Recommendations give users

confidence in making their decisions, especially that many

privacy requests do not clearly convey the accesses requested.

The decisions that users make are their own of course, but our

algorithm and model provides a mechanism to inform them

and provide recommendations based on the collaborative

decisions (grant/deny) on similar privacy requests within the

user’s larger social network.

a) Facebook 3rd party App Requesting Permissions.

II. PROBLEM STATEMENT

OAuth 2.0 standard provides a mechanism for third-party

service providers to access end-user resources without

releasing the user’s access credentials to service provider.

However, this does not provide fine-grained access control nor

any recommendations to user before installation. An example

we use throughout this paper is one of the free Facebook

online games application available through Zynga Poker. The

ZyngaPoker Facebook application requests the following

extended permissions when a user first installs the application:

access to the user’s e-mail address, ability to publish status and

post messages to the user’s wall, and the ability to enumerate

the online presence status of other users(within the first user’s

social network).

Once the user grants these extended permissions they cannot

be realistically revoked .For example, once users provide

Zynga Poker access to their e-mail addresses, they cannot

realistically remove that e-mail address from Zynga Pokers’s

servers and databases by preventing further access to the

information through Facebook’s application privacy settings.

We find there are several user attributes that are practically

irrevocable once granted, since the attributes are generally

immutable (i.e., birthday) or generally change with very little

frequency (i.e., hometown locations, religious and political

views). (See Fig. 1a) We view the permanent loss of personal

attributes as only one part of the problem; should a method be

devised to permit users a “last line of defense” against such

information loss, how may they know best what decisions to

take. Can users benefit from a community of knowledge

to better inform their own decision making?

Our proposed approach provides both the

aforementioned “last line of defense” mechanism and a

recommender system based on the decisions of other users

within the community, and the previous decisions of an

individual user.

III. PRELIMINARIES

Major online platforms such as Facebook, Google, and

Twitter provide an open API which allows third-party

applications to directly interact with their platform. APIs

provide a

mechanism to read, write, or modify user data on such

platforms through other thirdparty applications on behalf of

the users themselves. An API comes with a set of methods,

each representing a certain user interaction executed through a

third-party application. It is important to note that third-party

applications can potentially execute any API call on behalf of

a user, relying on the type and scope of permissions granted to

these apps. The full set of permissions available to third-party

apps are defined by the online platforms, and it is up to third-

party applications to request the proper subset of permissions

required. We believe users should have the final decision on

which permissions to grant or deny.

A. OAuth 2.0

With an increasing trend toward offering online services that

provide third-party applications the ability to interact through

open APIs and access user resources, OAuth was introduced

as a secure and efficient mechanism for authorizing third-party

applications. Traditional authentication models such as the

client-server model require third-party applications to

authenticate with online services using the resource owner’s

private credentials, typically a username and password. This

requires users to present their credentials to third-party

applications, hence granting them broad access to all their

online resources with no restrictions. A user may revoke

access from a third-party application by changing her

credentials, but doing so subsequently revokes access from all

third-party applications that continue to use her previous

credentials. These issues are amplified given the high number

of third-party applications that potentially get access to a

user’s online resources.

A.Ravali, IJECS Volume 2 Issue 9 September, 2013 Page No. 2737-2744 Page 2739

 OAuth uses a mechanism where the roles of third-

party applications and resource owners are separated. It does

not require users to share their private credentials with third-

party applications, instead it issues a new set of credentials for

each application. These new set of credentials are per

application, and reflect a unique set of permissions to a user’s

online resources. In OAuth, these new credentials are

represented via an Access Token. An Access Token is a string

which denotes a certain scope of permissions granted to an

application, it also denotes other attributes such as the duration

the Access Token is considered valid. We are mainly

interested in the scope attribute within an Access Token.

Access Tokens are issued by an authorization server after the

approval of the resource owner. In this paper, we extend upon

this authorization stage of the OAuth 2.0 protocol. When a

third-party application needs to access a user’s protected

resources, it presents its Access Token to the service provider

hosting the resource (e.g., Facebook, Twitter) which in turn

verifies the requested access against the scope of permissions

denoted by the Token. For example,Alice (resource owner) on

Facebook (service provider and resource server) can grant the

Zynga Poker application (client) access to her e-mail address

on her Facebook profile without ever sharing her username

and password with Zynga Poker. Instead, she authenticates the

Zynga Poker application with Facebook (authorization server)

which in turn provides Zynga Poker with a proper Access

Token that denotes permission to access Alice’s e-mail

address.

OAuth provides multiple authorization flows depending on the

client (third-party application) type (e.g., webserver, native

applications). In this paper, we focus on the Authorization

Code flow shown in Fig. 2 and detailed in the OAuth 2.0

specification. The authorization code flow is used by third-

party applications that are able to interact with a user’s web

browser, and are able to receive incoming requests via

redirection. The authorization flow process consists of three

parties:

 1) End-user (resource owner) at browser,

 2) Client (third-party application), and

 3) Authorization server (e.g., Facebook).

Our main focus is on steps “(A)” and “(B)” within the

authorization code flow.

Step “(A)” is where third-party applications initiate the flow

by redirecting a user’s browser to the authorization server and

pass along the requested scope of permissions. In step “(B),”

the authorization server authenticates the end user, and

establishes her decision on whether to grant or deny the third-

party application’s access request.

Fig 2. Authorization code for OAuth flow.

One of the main reasons behind OAuth was to increase user

privacy by separating the role of users from that of third party

applications. OAuth uses the concept of Access Tokens, where

a token denotes a set of credentials granted to third-party

applications by the resource owners. This avoids the need for

users to share their private credentials such as their username

and password. It also allows users to revoke access to a

specific third-party application by revoking its Access Token.

OAuth 2.0 allows third-party applications to request a set of

permissions via the scope attribute, and for users to grant/deny

such requests. If a user grants a third-party application’s

request, then an Access Token (denoting the scope) is issued

for that application, hence granting it the scope of permissions

requested. The scope attribute represents the set of permissions

requested by third-party applications, and is our main focus in

this paper. In the authorization code, OAuth flow seen in Fig.

2, the scope parameter is part of the request URI that is

generated by third-party applications (Step “(A)” in Fig. 2).

The scope is a list of space-delimited strings, each string

mapped to a certain permission or access level. For example,

the Zynga Poker application requests permission to post to a

user’s Facebook feed/wall, to access her e-mail address, and to

check her friend’s online/offline presence. Zynga Poker

requests these permissions with a scope attribute value of

“publish_stream, xmpp_login, e-mail,

friends_online_presence.” The scope value becomes part of

the OAuth request URI sent to the authorization server

(Facebook’s OAuth implementation uses commas rather than

spaces to separate each requested permission). Step “(B)” of

Fig. 2 is where users grant/deny the requested scope value.

 We propose an extension to the OAuth 2.0 authorization

code flow detailed in Section 1.4.1 of the OAuth 2.0

specification. Before users make their decision on the

requested scope of permissions, we introduce a new level of

awareness and control to the user via in-house developed

browser extension..

B. Collaborative Filtering

Recommender systems are that which try to assist users in

evaluating and making decisions on items by providing them

opinions and prediction values as a set of recommendations.

As one of the most successful approaches to building

recommender systems, collaborative filtering (CF) uses the

known preferences of a group of users to make

recommendations or predictions of the unknown preferences

A.Ravali, IJECS Volume 2 Issue 9 September, 2013 Page No. 2737-2744 Page 2740

for other users. Collaborative Filtering is widely used and

accepted as highly successful technique in recommender

systems.

In this paper, as we are interested in the context of access

control and user privacy, items in a collaborative filtering

technique can be mapped onto individual user privacy

attributes or permissions. Users can make decisions on privacy

attributes, i.e., grant/deny them to third-party applications.

Users have their own privacy preferences, but may benefit

from the community’s collaborative privacy decisions to make

their own, especially if they lack the knowledge to make good

privacy decisions.

In this paper, we propose a collaborative filtering model that

utilizes community decisions in providing recommendations to

users who install third-party applications requesting access to

their privacy attributes.

IV. EXTENDED OAUTH FLOW

We propose a new flow by extending the existing OAuth flow

by adding two new modules:

1. Permission Guide: This module guides the users through the

requested permissions, and shows them a set of

recommendations on each of the requested permissions.

2.Recommender System: This retrieves a set of

recommendations for requested permissions by following a

Collaborative filtering technique.

Our extended OAuth focuses on step “(A)” of the

authorization code flow in OAuth 2.0. We revise step “(A)” to

become a six stage process as shown in Fig. 3 and explained in

the following steps:

A1. The client redirects the browser to the end-user

authorization endpoint by initiating a request URI that

includes a scope parameter.

A2. The Permission Guide extension captures the scope value

from the request URI and parses the requested permissions.At

this step the extension allows users to choose a subset of the

permissions requested.

A3.The Permission Guide extension requests a set of

recommendations on the parsed permissions. This is achieved

by passing the set of permissions to our Recommendation

Service.

A4. The Recommendation Service returns a set of

recommendations for the permissions requested by the client.

A5. Using the set of returned recommendations, the extension

presents the permissions with their respective

recommendations in a user-friendly manner.

A6. The Permission Guide extension redirects the end user’s

browser to a new request URI with a new scope (scope´),

assuming the user chooses to modify the requested

permission.

Fig 3., Extended OAuth Flow

A. Permission Guide

The Permission Guide is represented by a browser extension

that integrates into the authorization process by capturing the

scope parameter value within the request URI generated by a

third-party application. Once the scope is captured, the

extension parses the requested permissions and presents them

in a user-friendly manner as shown in Fig. 8.

The extension also shows users a set of recommendations for

the requested permissions. For each permission, there is a

thumbs-up and thumbs-down recommendation value. These
recommendations represent prediction values that we
calculate following our model in Section 4.2. These prediction

values represent the likeliness of a user to grant or deny a

certain permission based on her previous decisions and on the

collaborative decisions of other users. Users who have not

made any decisions yet are shown recommendations based on

other user decisions.

The extension also allows users to customize the requested

permissions by checking or unchecking individual

permissions, where a checked permission is one the user

wishes to grant to the third-party application and an unchecked

permission is one she wishes to deny access to. Once a user

decides on the permissions she wishes to grant and deny, she

simply needs to click a Set Permissions button on the

extension (blue button in Fig. 8). This will trigger the

extension to generate a new request URI with a new scope

scope´, and forward the user’s browser to this new request

URI. scope´ will always be a subset of the original requested

scope. An example scope´ for the Zynga Poker application

could be as follows:

scope´ = post on behalf of you.

Our Permission Guide extension also collects the

user’s decisions on the requested permissions, hence allows us

to generate a data set of decisions to be used in our

recommendation model explained in Section 4.2. That is, our

Recommender System as seen in Fig. 3 will utilize these

decisions in making its recommendation predictions. These

A.Ravali, IJECS Volume 2 Issue 9 September, 2013 Page No. 2737-2744 Page 2741

decisions are uploaded to our servers once a user sets her

desired permissions within the extension, i.e., clicks the Set

Permissions button.

This provides a simple user interface for interacting with

permission requests, hence increasing user awareness and

providing an easy mechanism for guiding users in making

their decisions.

B. Recommender System

We propose a Recommender System component that extends

upon our Permission Guide extension. Let A, U, and P

represent the set of applications, users, and permissions,

respectively. A user ui ϵ U can make a decision di ϵ {grant,

deny} on a permission pj ϵ P for an application ak ϵ A. An

application ak which requests permissions p1; . . . ; pm is

mapped to a set of decisions d1; . . . ; dm made by the user

installing ak.

 C. Collaborative Filtering

We use a multi-criteria recommender system where user

recommendations are calculated per criterion. The model

utilizes the set of permissions P as a set of criteria, i.e., each

permission pj ϵ P represents an individual criterion within the

model. The multi-criteria approach fits our model as decisions

are made per permission (criteria) rather than an application as

a whole.

We model a user’s utility for a given application with the

user’s decisions d1; . . . ; dm on each individual permission p1; .

. . ; pm using Function (1).

D : Users _ Applications → d1 x....x dm (1)

 Function(1) represents a user’s overall decision on a certain

application via the set of decisions made on individually

requested permission. That is, a user ui makes a decision di on

an application ak with respect to an individual permission. For

each permission pj, there exists a matrix Cpj representing user

decisions on pj for each application ak ϵ A, see Fig. 5. A matrix

entry di with a value of 1 denotes a user has granted ak the

permission pj, whereas a 0 denotes a deny. Entries with “?”

values denote the user is yet to make a decision on permission

pj for application ak. Our model provides recommendations to

users that guide them in making these future decisions.

Applications that do not request a permission pj have an empty

entry in Cpj and are handled properly in our

implementation.For example, let p1 = birthday, p2 = e _ mail,

and p3 =location, where each represents a single criterion

within a three-criteria model. Let u1=Alice who installed

application a1 that requests

Fig 4., Collaborative Filtering Model

access to the permissions birthday, e-mail, and location. As

illustrated in Fig. 5, Alice has granted a1 the permissions

birthday and location (d1 = grant; d3 = grant), whereas denied

e-mail (d3 = deny). Alice has yet to make a decision on a2,

i.e., a single decision on each requested permission ϵ set of

{birthday, e – mail, location}. Our proposed model utilizes the

decisions for each Cpj , hence providing a recommendation

that fits each criterion.

Fig. 4 illustrates our overall collaborative model. The model

relies on decisions made by the community users, and utilizes

them in building the multi-criteria matrices C for each of the

permission. By utilizing the C matrices, we generate two

probability matrices, GA and GU, as seen in Fig. 4. GA is app

based, whereas GU is user based. GA captures the probability of

a certain application being granted certain permission, whereas

GU captures the probability of a certain user granting certain

permission.

Fig. 6 shows an example GA matrix, with a set of applications

(a1, a2, a3, a4, a5), permissions (birthday, e-mail, location,

sms, photos) and their corresponding GA(j, k) values. For

example, GA(location, a2) = 0.15, denotes a low probability of

the permission location being granted to application a2 by

users who installed a2. Our proposed collaborative technique

adopts an item-based and user-based collaborative filtering

process. In our model, items are applications; hence, we refer

to item-based filtering as application-based filtering. User-

based filtering utilizes the user-based probability values of GU,

whereas application-based filtering utilizes the app-based

probabilities of GA as seen in Fig. 4.

A.Ravali, IJECS Volume 2 Issue 9 September, 2013 Page No. 2737-2744 Page 2742

Fig 5., A three-permission (multi-criteria) model with Cp1 , Cp2 , and Cp3 .

User decisions on applications made per permission..

Fig 6. Example GA(j, k) values.

i) Application-Based Filtering

Our application-based filtering process relies on the app-based

probability values of GA shown in Fig. 4. Each entry GA(j, k) in

GA represents the overall probability of permission pj being

granted to application ak. To generate recommendations on the

requested permissions, we first detect the nearest neighbors for

the target application requesting the permissions. The nearest

neighbors in app-based filtering are the applications most

similar to the target application. Collaborative filtering

algorithms have mainly been based on one of two popular

similarity measures namely the Pearson Correlation and

Cosine similarity. We measure similarities between

applications using the GA values, and by calculating the

Pearson correlation values between them. Equation (2)

represents our application-based similarity measure, which is

the Pearson correlation value between applications ai and aj,

where P is the set of all permissions in our system and A(ai)

is the average probability for application ai being granted a

permission in P.

sim(i, j)

= (2)

Applications that don’t request a certain permission pj have a

GA(j,i) of zero. Applications which are similar and highly

correlated re those which request a similar set of permissions,

and have similar GA(j,i) values for each of their requested

permissions. For example, if both applications a1 and a2

requested the same set of permissions {p1,p2}, and they have a

GA{p1, a1} = GA{p1, a2} and a GA{p2 ,a1}=GA{p2, a2}, then a1

and a2 are considered highly correlated and their application-

similarity value sim(i j) will be close to 1. When predicting

recommendation values for permissions of application ai, we

make sure they are based on ai’s nearest neighbors, that is, the

set of applications where sim(ai,aj) is highest. With

application-based filtering, users collaborate toward increasing

or decreasing the GA(j, k) values, hence filtering applications

according to the willingness of users to grant them certain

permissions.

ii) User-Based Filtering

User-based filtering relies on the GU values, where each entry

GU(j, k) in GU represents the overall probability of permission

pj being granted by a focus user uk. Permission

recommendations in this case are based on the focus user’s

nearest neighbors, that is, the users most similar to the focus

user. Similar to application-based filtering, we use the Pearson

correlation to measure similarities between users. Equation (3)

represents our user-based similarity measure, which in terms is

the Pearson correlation value between users ui and uj, where

(ui) is the average probability of user ui granting a permission

in P.

 sim(i,j)

= (3)

With user-based filtering, a focus user ui is given

recommendations based on those users most similar to

him/her. Users with more similar probabilities of granting a

certain permission will be more similar, hence, potentially

reflect a similar willingness to grant/deny a certain permission.

We use both application-based and user-based filtering to

calculate a recommendation value on permissions requested by

application ai on behalf of user ui.

D. Prediction Model

When a user ui, say Alice, wants to install application ak, we

calculate a set Rk, where ri,j ϵ Rk is a prediction value for

permission pj requested by ak. ri,j ϵ Rk is a prediction of how

likely Alice would be willing to grant pj to ak. The

recommendation value ri,j is based on either our app-based

filtering or user-based filtering approaches. That is, the

recommendations are either based on ai’s nearest neighbors

(most similar applications) or ui’s nearest neighbors (most

similar users). Equations (4) and (5) show Fig. 6 the

recommendation value for app-based and user-based filtering,

respectively. Note that we calculate ri,j for each pj requested by

an application ak..

 (4)

 (5)

In (4), reflects the average probability that permission pj is

granted over all applications in A, and is easily calculated via

its corresponding row in the GA matrix. Similarly, in (5), GU

(pj) represents the average probability that permission pj is

granted over all users in U, and is calculated via its

corresponding row in the GU matrix. Note that both

)(jA pG and)(jU pG are driven by all users within our

system. In both equations, N represents the target application’s

nearest neighbors and the focus user’s nearest neighbors,

respectively. The size of N depends on the similarity measures

used, and can be adjusted to follow a preset threshold within

the implementation, e.g., only include neighbors with a

similarity above 0.8.

Finally, dj,a in (4) represents ui’s (focus user) previous

decisions on permission pj for each application aϵN. In (5), dj,ak

is a neighboring user’s decision on pj for the focus application

A.Ravali, IJECS Volume 2 Issue 9 September, 2013 Page No. 2737-2744 Page 2743

ak. Note that the sim(ui,u) value will either increase or decrease

the effect of a neighboring user’s decision, based on how

similar the neighboring user is to the focus user. Both dj,a and

dj,ai are captured via the Cpj matrix explained earlier (see Fig.

5).

Notice that the prediction values calculated are based

on a user’s previous decisions and on the decisions of other

users, hence capturing the essence of collaborative filtering. In

cases of insufficient data, prediction models could refrain from

generating predictions, or utilize collaborative filtering

systems based on probabilistic, hybrid, or clustering

approaches for generating predictions. We decided not to

provide predictions in such cases.

i. Category-Based Predictions

To further enhance the results of our recommendation

predictions, we propose a category-based model that takes into

consideration an application’s category. Example application

categories include Games, Utilities, Entertainment, etc.

Categories can increase the precision of our predictions

especially for applications that request similar permissions for

different purposes. For example, two applications might

request access to a user’s e-mail address, where the first

application is a game and the second is a task manager. In this

example scenario, a user’s e-mail could be used for different

purposes, i.e., a task manager could use it for sending

reminder e-mails, whereas a game could use it to send

promotions for other games. A user would probably be more

willing to grant e-mail permission to the task manager as it

could be of more benefit to the user. Granting or denying

certain permission will be driven by the user’s perception of

the requested permission. We believe that similar permissions

requested by apps within the same category will be perceived

similarly by users. Hence, by providing recommendation

predictions based on application categories, we can reflect

more precise user perceptions within our recommendations.

When generating category-based predictions, we

follow a modified version of our application-based filtering

model for calculating similarities. To calculate the set of

nearest neighbors for a certain application ai, we only consider

other applications that fall into the same category as ai. Fig. 7

shows two probability matrices G and , which are

extracted from the overall GA matrix explained

previously. and represent the permission

probabilities for applications within the categories k and j,

respectively. Let be the set of applications

that belong to category k, and Ni be ai’s nearest neighbors

where. Note that ai’s nearest neighbors can be found by

calculating the similarities between ai and applications within

Fig. 7. Application category probability matrices. Recommendations per app

category.

Ak rather than all applications in A. For example, in Fig. 7, the

nearest neighbors for ay are found among the set of apps {ax . .

. ay}, and the similarities are calculated using GAj. For

application ai ϵ A that belongs to category k, we calculate

recommendation predictions following:

 (6)

where reflects the average probability that permission pj is

granted over applications in Ak, i.e., apps that fall within ai’s

category. Category-based predictions are more efficient in that

they do not rely on all applications within our system, but

rather on a smaller subset of categorized applications. This

allows for faster prediction calculations, in addition to the

potentially more precise recommendations.

IV CONCLUSION

Usable privacy configuration tools are essential in providing

user privacy and protecting their data from third-party

applications in social networks. We proposed an extension to

the authorization code flow of OAuth 2.0 and implemented a

browser extension that integrates into the existing OAuth flow,

and allows users to easily configure their privacy settings for

applications at installation time. We also proposed a multi-

criteria recommendation model which adopts three

collaborative filtering techniques: app-based, user-based, and

category-based, each incorporating the decisions of the

community and previous decisions of an individual user.

Based on this model, our browser extension provides users

with recommendations on permissions requested by

applications. Proposed multi-criteria recommender system

leads to the preservation of irrevocable, immutable private

identity attributes and the preventing of their uninformed

disclosure during application installation.

REFERENCES

A.Ravali, IJECS Volume 2 Issue 9 September, 2013 Page No. 2737-2744 Page 2744

[1] G. Adomavicius and Y. Kwon, “Multi-Criteria

Recommender Systems,” Recommender Systems Handbook:

A Complete Guide for Research Scientists and Practitioners,

Springer, 2010.

[2] G.-J. Ahn, M. Ko, and M. Shehab, “Privacy-Enhanced

User-Centric Identity Management,” Proc. IEEE Int’l Conf.

Comm. (ICC), pp. 1-5, 2009.

[3] A. Besmer, J. Watson, and H.R. Lipford, “The Impact of

Social Navigation on Privacy Policy Configuration,” Proc.

Sixth Symp. Usable Privacy and Security (SOUPS

’10),July2010.

[4] W. Bin, H.H. Yuan, L.X. Xi, and X.J. Min, “Open Identity

Management Framework for Saas Ecosystem,” Proc. IEEE

Int’l Conf. e-Business Eng. (ICEBE ’09), pp. 512- 517, 2009.

[5] D. Carrie and E. Gates, “Access Control Requirements for

Web 2.0 Security and Privacy,” Proc. Workshop Web 2.0

Security & Privacy (W2SP ’07), 2007.

[6] D. Goldberg, D. Nichols, B.M. Oki, and D. Terry, “Using

Collaborative Filtering to Weave an Information Tapestry,”

Comm. ACM, vol. 35, no. 12, pp. 61-70, 1992.

[7] K.K. Gollu, S. Saroiu, and A. Wolman, “A Social

Networking- Based Access Control Scheme for Personal

Content,” Proc. 21
st
 ACM Symp. Operating Systems

Principles (SOSP ’07), 2007.

[8] R. Gross and A. Acquisti, “Information Revelation and

Privacy in Online Social Networks,” Proc. ACM Workshop

Privacy in the Electronic Soc. (WPES ’05), pp. 71-80, 2005.

[9] J.L. Herlocker, J.A. Konstan, A. Borchers, and J. Riedl,

“An Algorithmic Framework for Performing Collaborative

Filtering,” Proc. Int’l ACM SIGIR Conf. (SIGIR ’99), pp.

230-237,1999.

[10] J.L. Herlocker, J.A. Konstan, L.G. Terveen, and J.T.

Riedl, “Evaluating Collaborative Filtering Recommender

Systems,” ACM Trans. Information Systems, vol. 22, pp. 5-

53, Jan. 2004.

[11] A. Herzog and N. Shahmehri, “User Help Techniques for

Usable Security,” Proc. Symp. Computer Human Interaction

for the Management of Information Technology (CHIMIT

’07), 2007.

[12] M. Jenkin and P. Dymond, “A Plugin-Based Privacy

Scheme for World-Wide Web File Distribution,” Proc. 31st

Hawaii Int’l Conf. System Sciences, vol. 7, pp. 621-627, Jan.

1998.

