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Abstract: Information processed in a distributed cluster is shared among a cluster of distributed tasks or users by the virtue of message 

passing protocols (e.g., Message Passing Interface MPI) or confidential data transmitted to and from cluster computing nodes. In a public 

network, when a number of clusters connected to each other is increased becomes a potential threat to security applications running on the 

clusters. To deal with this, a Message Passing Interface (MPI) is developed to preserve security services in an unsecured network. The 

proposed work focuses on MPI rather than other protocols because MPI is one of the most popular communication protocols on distributed 

clusters. Generally AES algorithm is used for encryption/decryption and interpolation polynomial algorithm is used for key management. 

But, in this research work, Twisted Edwards-Form Elliptic Curve Cryptography is used. This Twisted Edwards-Form Elliptic Curve 

Cryptography is integrated with Message Passing Interface Chameleon version 2 (MPICH2) with standard MPI interface that becomes ES-

MPICH2. This approach provides better security with less overhead and fast when compared with the existing techniques.  
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1. Introduction 

Due to the fast development of the internet and web, number 

of universities and companies are connecting their cluster 

computing systems to public networks to provide high 

performance. Those clusters connecting to the internet can be 

accessed by anyone from anywhere. Information processed in 

a distributed cluster is shared among a group of distributed 

tasks or users by the virtue of message passing protocols or 

confidential data transmitted to and from cluster computing 

nodes. Preserving data and information security in a message 

passing environment over an untrusted network is critical for 

a wide spectrum of security aware MPI applications. The 

unauthorized access to the security sensitive messages by 

untrusted process can lead to series security breaches. In this 

study, focus on MPI rather than other protocols. MPI is one of 

the most popular communication protocols for cluster 

computing.  

     MPICH2 developed by the Argonne National Lab. It is one 

of the important communication protocol for transferring data. 

The design goal of MPICH2 a widely used MPI 

implementation is to combine portability with high 

performance. Here integrated encryption and decryption 

algorithms into the MPICH2 library. Data confidentiality of 

MPI applications will be easily defended without a demand to 

change the program into the corresponding product version, 

after all provide a security enhanced MPI library with the 

standard message passing interface. 

2. Related work 

The Message Passing Interface (MPI) [2] is being wide 

accustomed develop parallel programs on computing systems 

like clusters. ES-MPICH2 [1] shows the MPI with enhanced 

security using AES and 3DES. This can be proved by a 

superfluity of MPI applications across several disciplines and 

activities, like natural philosophy, bioinformatics, forecasting, 

and money modeling [3]. As clusters continue to be a major 

component of High Performance Computing (HPC) 

environments [5], MPI is becoming increasingly prevalent. 

Despite the success of MPI, many MPI library 

implementations [4], [6], [7], [8] has suffered from software 

bugs (also referred to as software defects). As an example, 
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more than 2,000 bug tickets have been formed for various 

versions of Open MPI [9] since 2006. Same about 700 bug 

tickets have been reported for MPICH2 [4] since August 

2008. The bugs in MPI libraries differently impact the 

productivity of an outsized range of users (users of MPI 

libraries refer to MPI application developers).  

      To detect and locate software bugs in MPI libraries [9]. To 

locate such a bug that occurs at users‘ sites, library developers 

have to be compelled to reproduce the bug at their own sites. 

This performance is formidable due to platform variations 

(e.g., architectures and system scales) between users‘ and 

developers‘ sites. Usually certain bugs solely occur on large-

scale systems [10]. Much research has been conducted to 

detect software bugs in HPC systems at runtime. Among 

previous studies, many [11], [12], [13], [14], [15] focus on 

MPI applications. For example, Umpire [14] dynamically 

checks MPI function calls against certain rules such as ―all 

members of one process group must execute collective 

operations over the same communicator in the same order.‖ 

Similarly, Intel Message Checker [10] traces MPI calls at 

runtime and detects incorrect usage of MPI functions based on 

the traces. In recent years, researchers have explored temporal 

or spatial similarity exhibited in HPC systems for bug 

detection [16], [17]. The basic idea is to extract program 

runtime invariants [18], [19] within one process or across 

multiple processes, and to detect software system by 

identifying abnormal method behaviors. 

3. Threats 

A geographically distributed cluster system is one within 

which computing elements at local cluster computing 

platforms communicate and coordinate their actions by 

passing messages through public networks just like the web. 

To ingress the safety of clusters connected to the general 

public networks, one could build a personal network to attach 

an array of local clusters to create an outsized scale cluster. 

Building a personal network, however, is not a cheap way to 

product distributed clusters system. The Internet a large 

distributed system can be used to support large-scale cluster 

computing. Being a public network, the web becomes a 

possible threat to distributed cluster computing environments. 

Here first describe the confidentiality side of security in 

clusters followed by three specific attack instances. 

3.1 Sniffing message traffic 

Message traffic of associate MPI program is often sniffed. As 

an example, once MPCH2 is deployed in a cluster connected 

by a Gigabit local area network, hackers will sniff original 

text messages transmitted through the TCP protocol socket. 

Message sniffing can reveal metadata, security sensitive data 

and information.  

3.2 Snooping on message buffer 

In associate MPI program, buffers are engaged to send and 

receive information. Despite specific MPI implementations, 

message buffers are generated before the send and receive 

primitives are adjure. Hackers who snoop into the message 

buffers in memory can access information without being 

given specific access privileges.  

3.3 Message traffic profiling 

Message traffic profiling attacks look for to use time stamps, 

message size, message type and other metadata to investigate 

message exchange patterns and kinds of protocols being 

employed in message transmissions. As an example, an 

attacker and hackers can monitor the network connection of a 

cluster running associate MPI program. If a message has been 

frequently transmitted, the attacker will speculate the 

importance of the message and intercept the content of the 

message.  

     Confidentiality services will effectively counter the same 

threats in MPI applications running on clusters connected by a 

public network. During this analysis, the code messages 

encoded with the TEC (twisted Edwards form elliptic curve 

cryptography) algorithm. 

4. Possible Approaches  

There are three possible approaches to improving security of 

MPI applications. In initial approach, the application 

programmers can add source code to address the issue of 

message confidentiality. As an example, the programmers 

may await on external libraries to enforced secure 

applications. Alike an application-level security approach not 

only makes the MPI applications error prone, also reduces the 

flexibility and portability of the MPI applications. Then the 

second approach, MPI interface can be extended in the way 

that new security-aware APIs are designed and implemented 

(see, for example, MPI Sec I/O [23]). This MPI-interface-

level solution enables programmers to write secure MPI 

applications with minimal changes to the interface. Admitting 

the second approach is higher than the initial one, MPI-

interface level result typically requires an extra code to deal 

with data confidence. In the third approach a channel level 

result is proposed in this study to address the drawbacks of the 

above two approaches. Channel-level solution aims at 

providing information confidentiality in a communication 

channel that implements the Channel Interface 3 (CH3) in 

MPICH2 (see Fig. 1).  

 

Figure 1: Hierarchical Structure of MPICH2 

5. Existing System 

In the existing system AES (Advanced encryption standard) 

and 3DES (Triple Data encryption standard) algorithm was 

used for the security purpose. Algorithm was integrated in the 

MPICH2 library for the encryption and decryption process. 

The Advanced Encryption Standard (AES) is formal 

encryption method adopted by the National Institute of 

Standards and Technology of the US Government, and is 

accepted worldwide. This paper introduces AES and key 

management, and discusses some important topics related to a 

good data security strategy. 

     The AES encryption algorithm is a block cipher that uses 

an encryption key and a several rounds of encryption. A block 
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cipher method is an encryption algorithm that works on a 
single block of information data at a time. Within the case of 

standard AES encipher the block is 128 bits, or 16 bytes, in 

key length. 

     Triple DES is the common name for the Triple Data 

Encryption Algorithm (TDEA or Triple DEA) block cipher, 

which applies the Data Encryption Standard (DES) cipher 

algorithm three times to each data block. 

5.1 Drawbacks of AES and 3DES 

 Need for secure channel for secret key 

exchange: Sharing the secret key in the starting is a 

problem in symmetric key encipherment process. It 

has to be exchanged during a approach that ensures 

it remains secret. 

 Too many keys: A new shared key has to be 

generated for communication with every different 

party. This makes a problem with managing and 

ensuring the security of all these keys. 

 Origin and authenticity of message cannot be 

guaranteed: Since both sender and receiver use the 

same secret key, messages cannot be checked to 

have come from a particular user. This will be a 

problem if there is a dispute. 

  In the process of designing ES-MPICH2, to overcome the 

above said drawbacks, Twisted Edwards Curves (TEC) 

algorithm is integrated with the MPICH2 library. 

6. The Design of ES-MPICH2 

6.1 Scope of ES-MPICH2  

Confidentiality, availability, integrity, and authentication are 

four necessary security problems to be addressed in clusters 

connected by an unsecured public network. Rather than 

addressing all the production problems, here pay specific 

attention to confidentiality services for messages passed 

among computing nodes in an unsecured cluster network. 

Although productive confidentiality is our primary concern, 

an integrity checking service may be promptly incorporated 

into our security framework by applying a public-key 

cryptography procedure. MPI framework equipped with the 

public-key theme, transmitting nodes can encrypt messages 

using their private keys. In the data receiving techniques, any 

nodes will use public keys corresponding to the private keys 

to decrypt messages. If anyone alters the data, the cipher text 

cannot be decrypt correctly using public keys corresponding 

to the private keys. Thus, the receiving nodes will perform 

message integrity check without the secure exchange of secret 

keys.  

6.2 Design Issues 

The goal of the development of the ES-MPICH2 mechanism 

is to enable application programmers to easily implement 

secure enhanced MPI applications without additional code for 

data-confidentiality protection. With ES-MPICH2 in place, 

secure MPI application programmers are able to flexibly 

choose a cryptographic algorithm, data block size and key 

size, for each MPI application that needs data confidentiality 

protection. ES-MPICH2 offers message confidentiality in an 

MPI programming environment by incorporating MPICH2 

with encryption and decryption algorithms.  

6.2.1 Message confidentiality 

ES-MPICH2 plans to secure data confidentiality from 

unauthorized persons by untrusted processes.  

6.2.2 Complete transparency 

Product data confidentiality in MPICH2 is perfectly 

transparent to application programmers. That confidentiality 

transparency is suitable and the reason is two-fold. Initially, 

the encryption and decipher processes can be make in the 

MPICH2 library at the channel transmission layer. Second, 

control the same interface as the APIs of the MPICH2 

operation. Therefore, it is not necessary to change MPI 

programs to adapt ES-MPICH2. 

6.2.3 Compatibility and portability 

ES-MPICH2 needs to be comfortably ported from one 

platform to another with no addition to the operation source 

code. ES-MPICH2 is a development of MPICH2. ES-

MPICH2 must have the same level of portability and 

compatibility as MPICH2. However, it is difficult to achieve 

high portability in ES-MPICH2, because it has to implement a 

cryptographic subsystem in each channel in the CH3 layer in 

MPICH2. 

6.2.4 Extensibility  

ES-MPICH2 must permit application programmers to choose 

any cryptographic techniques and keys incorporated in 

MPICH2. This form goal makes it possible for programmers 

to flexibly select any cryptographic algorithm implemented in 

ES-MPICHI2.  

7. Proposed TEC in MPICH2 

Harold Edwards introduced a normal form for elliptic curves 

in July 2007 along with a simple symmetric addition law. 

Bernstein and Lange [21] established the connexion of 

Edwards‘ work for elliptic curve cryptography and came up 

with a lot of efficient formulas for point addition and doubling 

using standard projective coordinates. Here additionally 

extended Edwards‘ curve definition to a lot of general form 

that covers a much larger category of elliptic curves. In formal 

terms, a supposed Edwards curve over a prime field Fp will be 

described by the equation
1
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      With d € Fp\ {0, 1} Edwards curves have some attractive 

properties for practical use, most notably efficiency of the 

point arithmetic and completeness of the addition law when d 

is not a square in Fp. Completeness means the addition 

formula is valid for all P, Q € (Fp), including the special cases 

P = Q, P = -Q, P = 0 and Q = 0. Bernstein and Lange [21] also 

showed that every Edwards curve contains a point of order 4 

and, thus, has a co-factor of h ≥ 4. In 2008, Bernstein et al 

[20] introduced twisted Edwards‘s curves as a generalization 

of Edwards‘s curves. Formally, a twisted Edwards curve over 

a prime field Fp is defined via the equation  
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         (2) 

      Where ‗a‘ and‗d‘ are distinct, non-zero elements of Fp. 

Bernstein et al observed empirically that the twisted Edwards 

form covers much more curves than the ―original‖ Edwards 

form2 based on Equation 1. Furthermore, as demonstrated in 

[20], every twisted Edwards curve over a non-binary field Fq 

is birationally equivalent over Fq to a Montgomery curve (i.e. 

every twisted Edwards curve can be transformed to a 
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Montgomery curve, and vice versa). Bernstein et al [20] also 

presented explicit formulas for addition and doubling on a 

twisted Edwards curve; these formulas are complete if ‗a‘ is a 

square and d a non-square in the underlying field.  

7.1 Advantages of TEC 

 No Need for secure channel for secret key exchange. 

 Too many keys. Low power and timing 

consumption. 

 Origin and authenticity of message can be 

guaranteed 

 Faster execution (i.e. take small time for execution in 

terms of iteration times). 

8. Experimental Evaluation 

     To evaluate the performance and features of ES-MPICH2, 

enforced ES-MPICH2 and deployed it on two clusters with 

completely different configurations. The primary cluster has 

six nodes of 2.2 GHz Intel processors with two GB memory. 

The second cluster contains 10 nodes. The master node have a 

3.0 GHz Intel Pentium Core two Duo processor with one GB 

memory, whereas the 9 slave nodes have 333 MHz Intel 

Pentium II processors with sixty four MB memory.  

     We run the Intel MPI Benchmarks and the Sandia Micro 

Benchmarks and to evaluate and compare the performance of 

MPICH2 and ES-MPICH2. When test ES-MPICH2 in each 

experiment, set the cryptographic service to TEC respectively. 

The length of data encryption keys generated and distributed 

in ES-MPICH2 is 192-bit.  

8.1 SMB: Sandia Micro Benchmark 

     The Sandia National Laboratory developed the Sandia 

Micro Benchmark Suite (a.k.a., SMB) to evaluate and test 

high-performance network interfaces and protocols. The 

Table 1 described the four performance metrics used in the 

SMB benchmark suite.  

 

Table 1: 

Performance metrics in the Sandia micro benchmark suite 

Metric Explanation 

Iter -t 

work -t 

 

overhead -t 

 

 

base-t 

Total amount of time for the loop to 

complete. 

For every repetition of the post work wait 

loop 

The amount of work performed. 

The length of time that a used processor is 

engaged in the reception or transmission of 

each message. 

The message transfer time arithmetic 

threshold. 

 

These metrics include total execution time (i.e., iter_t), CPU 

execution time for iterations (i.e., work_t), message passing 

overhead (i.e., overhead_t), and message transfer time 

calculation threshold (i.e., threshold or base_t). The detailed 

information on these metrics can be found at 

http://www.cs.sandia.gov/smb. Note that the message passing 

overhead can be derived by subtracting the CPU execution 

time from the total execution time. Each benchmark has 1,000 

iterations. Fig. 2 shows the total execution time of the SMB 

benchmark running on the original MPI implementation (i.e., 

MPICH2), AES-based ES-MIPCH2, 3DESbased ES-MPICH2 

and the proposed Twisted Elliptic Curve (TEC) based ES-

MPICH2. It is observed from this figure that when the 

message size is small (e.g., 2 KB), the performance of 

ESMPICH2 is very close to that of MPICH2. These results 

indicate that ES-MPICH2 can preserve confidentiality of 

small messages with negligible overhead. 
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Figure 2: Comparison for original MPI, AES, 3DES, 

proposed TEC cryptography on different message size 
 

     Figs.2, 3 show the total execution time, overhead, CPU 

time and threshold of MPICH2 and ES-MPICH2 when the 

message size is 2, 16, 128, 512, and 1,024 KB, respectively. 

The results plotted in Fig. 3 show that the proposed TEC 

based ES-MPICH2 shows better performance when compared 

with the other techniques. 
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Figure 3: Iteration Time, Work Time, Overhead Time, and 

Base Time (Message Size is 2KB) 

 

Table 2: Comparison table for proposed TEC with existing 

Metrics 

Original 

MPI AES 3DES 

Proposed TEC 

cryptography 

Iter_t 1800 1600 700 650 

work_t 1550 1420 660 630 

overhead_t 300 170 55 25 

base_t 900 800 420 300 

 

When the transferring message with size 2kb, the proposed 

TEC based ES-MPICH2 shows that better performance 

because metrics like total execution time of iteration time, 

overhead time, work time, and base time are low in TEC 

compared to other technique. In the proposed TEC technique 

the execution time will be less when compared to other 

technique. It shows in table 2. 

8.2 IMB: Intel MPI Benchmarks 

The Intel MPI benchmark suite or IMB was developed for 

testing and evaluating implementations of both MPI-1 and 

MPI-2 standards. IMB contains approximately 10,000 lines of 

code used to measure the performance of important MPI 

functions. We have evaluated the performance of ES-
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MPICH2 and the original MPICH2 by running the 

benchmarks on the 6-node cluster.  

     The benchmarks in IMB-MPI1 can be categorized in three 

groups: single transfer bench mark, parallel transfer bench 

mark, and collective benchmarks. Single transfer benchmarks 

are viewing on a single message transferred between two 

contact processes. Dissimilar single transfer benchmarks, 

parallel transfer benchmarks scope at testing patterns and 

activities in a group of communicating processes with 

concurrent actions. The collective benchmarks are 

implemented to test higher level collective functions, which 

include processors in a defined communicator group. Please 

refer to http://software.intel.com/en-us/articles/intelmpi-

benchmarks for more information concerning IMB. 
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Figure 4: PingPong  

 

      Fig 4 Show the performance of PingPong a single transfer 

benchmarks in IMB. After all single transfer benchmarks are 

recycled to test a pair of two active processes, here run 

PingPong on two nodes of the cluster. The total execution 

times of PingPong go up when the message size increases 

because larger messages give rise to higher encryption and 

decryption overheads. Compared with MPICH2, AES-based 

and 3DESbased ES-MPICH2 the execution times of proposed 

TEC method are more sensitive to message size.  
 

Table 3: Comparison table for PingPong 

Metrics 

Original 

MPI AES 3DES 

Proposed TEC 

cryptography 

0 0 0 0 0 

5 90 80 70 60 

10 170 150 140 120 

15 330 270 250 200 

20 550 480 450 380 

     When comparing to original MPI, AES, 3DES technique 

the proposed TEC cryptography technique is best because it 

consume less time (ms) in bytes for decrypt and encrypt .In 

original TEC cryptography the total execution times of 

PingPong go up when the message size increases because 

larger messages give rise to higher encryption and decryption 

overheads. The performance result shows in table 3. 
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 Figure 5: Sendrecv  

 

      When comparing to original MPI, AES, 3DES technique 

the proposed TEC cryptography technique is best. Because 

the total execution time of the SendRecv benchmark does not 

noticeably change when vary the number of computing nodes 

in the cluster. Original TEC consume less time. The 

performance of proposed TEC-based MPICH2 is close to that 

of the original version of MIPCH2 when message size is 

relatively small.  

 

Table 4: 

Comparison table for existing and proposed system 

Metrics 

Original 

MPI AES 3DES 

Proposed 

TEC 

cryptography 

0 0 0 0 0 

5 80 70 60 50 

10 180 150 110 80 

15 330 270 220 180 

20 450 400 360 320 

 

      Now here analyze the performance of Sendrecv a parallel 

transfer benchmarks in IMB running on ES-MPICH2 and 

MPICH2 on the 6-node cluster in figure 5. Sendrecv, in which 

the main purpose is to test the MPI Sendrecv function, subsist 

of processes creating a periodic communication chain. This 

performance result values are in table 4. 

9. Conclusion and Future work 

9.1 Conclusion 

      MPI mechanism called ES-MPICH2 is implemented 

which offers both integrity services and data confidentiality 

for secure network communications in message passing 

environments. The proposed security technique included in 

the MPICH2 library is useful for protecting data transmitted 

in open networks like the Internet. In this paper, in order to 

increase the security, Twisted Elliptic curve cryptography is 

used. It provides better security and confidentiality. 

Moreover, the execution time taken by the proposed approach 

is very less when compared with AES and DES. The 

experimental results clearly show that the proposed approach 

provides better performance when compared with AES and 

DES. 

9.2 Future work 

An interesting direction for future work is to consider 

several strong and efficient cryptographic algorithms like 

the Elliptic Curve Cryptography in ES-MPICH2. After all 
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elliptic curve cryptography is an efficient and fast 

cryptographic result; both the performance and the 

productivity of ES-MPICH2 are likely to be improved by 

incorporating ECC. Another promising control for further 

work is to integrate encryption and decryption algorithms in 

other communication channels like SHMEM and 

InfiniBand in MPICH2 because an increasing number of 

commodity clusters are built using standalone and advanced 

networks such as Infiniband and Myrinet. 
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