

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 2. Issue 9 September 2013 Page No. 2715-2720

P.Ramyadevi
1
, IJECS Volume 2 Issue 9 september, 2013 Page No. 2715-2720 Page 2715

An Efficient Twisted Edwards-Form Elliptic Curve

for Fast Secured Message Passing Interface

P.Ramyadevi
1
, Dr. P Krishnakumari

2

1
Research Scholar, Department of Computer Science,

 RVS college of Arts and Science,

Coimbatore, Tamil Nadu, India

ramyadevicc@gmail.com

2
Director, Department of Computer Applications (MCA),

RVS college of Arts and Science,

Coimbatore, Tamil Nadu, India

kkumari@rvsgroup.com

Abstract: Information processed in a distributed cluster is shared among a cluster of distributed tasks or users by the virtue of message

passing protocols (e.g., Message Passing Interface MPI) or confidential data transmitted to and from cluster computing nodes. In a public

network, when a number of clusters connected to each other is increased becomes a potential threat to security applications running on the

clusters. To deal with this, a Message Passing Interface (MPI) is developed to preserve security services in an unsecured network. The

proposed work focuses on MPI rather than other protocols because MPI is one of the most popular communication protocols on distributed

clusters. Generally AES algorithm is used for encryption/decryption and interpolation polynomial algorithm is used for key management.

But, in this research work, Twisted Edwards-Form Elliptic Curve Cryptography is used. This Twisted Edwards-Form Elliptic Curve

Cryptography is integrated with Message Passing Interface Chameleon version 2 (MPICH2) with standard MPI interface that becomes ES-

MPICH2. This approach provides better security with less overhead and fast when compared with the existing techniques.

Keywords: Twisted Edwards-Form Elliptic Curve Cryptography, cluster, Message Passing Interface, High Performance Computing

1. Introduction

Due to the fast development of the internet and web, number

of universities and companies are connecting their cluster

computing systems to public networks to provide high

performance. Those clusters connecting to the internet can be

accessed by anyone from anywhere. Information processed in

a distributed cluster is shared among a group of distributed

tasks or users by the virtue of message passing protocols or

confidential data transmitted to and from cluster computing

nodes. Preserving data and information security in a message

passing environment over an untrusted network is critical for

a wide spectrum of security aware MPI applications. The

unauthorized access to the security sensitive messages by

untrusted process can lead to series security breaches. In this

study, focus on MPI rather than other protocols. MPI is one of

the most popular communication protocols for cluster

computing.

 MPICH2 developed by the Argonne National Lab. It is one

of the important communication protocol for transferring data.

The design goal of MPICH2 a widely used MPI

implementation is to combine portability with high

performance. Here integrated encryption and decryption

algorithms into the MPICH2 library. Data confidentiality of

MPI applications will be easily defended without a demand to

change the program into the corresponding product version,

after all provide a security enhanced MPI library with the

standard message passing interface.

2. Related work

The Message Passing Interface (MPI) [2] is being wide

accustomed develop parallel programs on computing systems

like clusters. ES-MPICH2 [1] shows the MPI with enhanced

security using AES and 3DES. This can be proved by a

superfluity of MPI applications across several disciplines and

activities, like natural philosophy, bioinformatics, forecasting,

and money modeling [3]. As clusters continue to be a major

component of High Performance Computing (HPC)

environments [5], MPI is becoming increasingly prevalent.

Despite the success of MPI, many MPI library

implementations [4], [6], [7], [8] has suffered from software

bugs (also referred to as software defects). As an example,

P.Ramyadevi
1
, IJECS Volume 2 Issue 9 september, 2013 Page No. 2715-2720 Page 2716

more than 2,000 bug tickets have been formed for various

versions of Open MPI [9] since 2006. Same about 700 bug

tickets have been reported for MPICH2 [4] since August

2008. The bugs in MPI libraries differently impact the

productivity of an outsized range of users (users of MPI

libraries refer to MPI application developers).

 To detect and locate software bugs in MPI libraries [9]. To

locate such a bug that occurs at users‘ sites, library developers

have to be compelled to reproduce the bug at their own sites.

This performance is formidable due to platform variations

(e.g., architectures and system scales) between users‘ and

developers‘ sites. Usually certain bugs solely occur on large-

scale systems [10]. Much research has been conducted to

detect software bugs in HPC systems at runtime. Among

previous studies, many [11], [12], [13], [14], [15] focus on

MPI applications. For example, Umpire [14] dynamically

checks MPI function calls against certain rules such as ―all

members of one process group must execute collective

operations over the same communicator in the same order.‖

Similarly, Intel Message Checker [10] traces MPI calls at

runtime and detects incorrect usage of MPI functions based on

the traces. In recent years, researchers have explored temporal

or spatial similarity exhibited in HPC systems for bug

detection [16], [17]. The basic idea is to extract program

runtime invariants [18], [19] within one process or across

multiple processes, and to detect software system by

identifying abnormal method behaviors.

3. Threats

A geographically distributed cluster system is one within

which computing elements at local cluster computing

platforms communicate and coordinate their actions by

passing messages through public networks just like the web.

To ingress the safety of clusters connected to the general

public networks, one could build a personal network to attach

an array of local clusters to create an outsized scale cluster.

Building a personal network, however, is not a cheap way to

product distributed clusters system. The Internet a large

distributed system can be used to support large-scale cluster

computing. Being a public network, the web becomes a

possible threat to distributed cluster computing environments.

Here first describe the confidentiality side of security in

clusters followed by three specific attack instances.

3.1 Sniffing message traffic

Message traffic of associate MPI program is often sniffed. As

an example, once MPCH2 is deployed in a cluster connected

by a Gigabit local area network, hackers will sniff original

text messages transmitted through the TCP protocol socket.

Message sniffing can reveal metadata, security sensitive data

and information.

3.2 Snooping on message buffer

In associate MPI program, buffers are engaged to send and

receive information. Despite specific MPI implementations,

message buffers are generated before the send and receive

primitives are adjure. Hackers who snoop into the message

buffers in memory can access information without being

given specific access privileges.

3.3 Message traffic profiling

Message traffic profiling attacks look for to use time stamps,

message size, message type and other metadata to investigate

message exchange patterns and kinds of protocols being

employed in message transmissions. As an example, an

attacker and hackers can monitor the network connection of a

cluster running associate MPI program. If a message has been

frequently transmitted, the attacker will speculate the

importance of the message and intercept the content of the

message.

 Confidentiality services will effectively counter the same

threats in MPI applications running on clusters connected by a

public network. During this analysis, the code messages

encoded with the TEC (twisted Edwards form elliptic curve

cryptography) algorithm.

4. Possible Approaches

There are three possible approaches to improving security of

MPI applications. In initial approach, the application

programmers can add source code to address the issue of

message confidentiality. As an example, the programmers

may await on external libraries to enforced secure

applications. Alike an application-level security approach not

only makes the MPI applications error prone, also reduces the

flexibility and portability of the MPI applications. Then the

second approach, MPI interface can be extended in the way

that new security-aware APIs are designed and implemented

(see, for example, MPI Sec I/O [23]). This MPI-interface-

level solution enables programmers to write secure MPI

applications with minimal changes to the interface. Admitting

the second approach is higher than the initial one, MPI-

interface level result typically requires an extra code to deal

with data confidence. In the third approach a channel level

result is proposed in this study to address the drawbacks of the

above two approaches. Channel-level solution aims at

providing information confidentiality in a communication

channel that implements the Channel Interface 3 (CH3) in

MPICH2 (see Fig. 1).

Figure 1: Hierarchical Structure of MPICH2

5. Existing System

In the existing system AES (Advanced encryption standard)

and 3DES (Triple Data encryption standard) algorithm was

used for the security purpose. Algorithm was integrated in the

MPICH2 library for the encryption and decryption process.

The Advanced Encryption Standard (AES) is formal

encryption method adopted by the National Institute of

Standards and Technology of the US Government, and is

accepted worldwide. This paper introduces AES and key

management, and discusses some important topics related to a

good data security strategy.

 The AES encryption algorithm is a block cipher that uses

an encryption key and a several rounds of encryption. A block

P.Ramyadevi
1
, IJECS Volume 2 Issue 9 september, 2013 Page No. 2715-2720 Page 2717

cipher method is an encryption algorithm that works on a
single block of information data at a time. Within the case of

standard AES encipher the block is 128 bits, or 16 bytes, in

key length.

 Triple DES is the common name for the Triple Data

Encryption Algorithm (TDEA or Triple DEA) block cipher,

which applies the Data Encryption Standard (DES) cipher

algorithm three times to each data block.

5.1 Drawbacks of AES and 3DES

 Need for secure channel for secret key

exchange: Sharing the secret key in the starting is a

problem in symmetric key encipherment process. It

has to be exchanged during a approach that ensures

it remains secret.

 Too many keys: A new shared key has to be

generated for communication with every different

party. This makes a problem with managing and

ensuring the security of all these keys.

 Origin and authenticity of message cannot be

guaranteed: Since both sender and receiver use the

same secret key, messages cannot be checked to

have come from a particular user. This will be a

problem if there is a dispute.

 In the process of designing ES-MPICH2, to overcome the

above said drawbacks, Twisted Edwards Curves (TEC)

algorithm is integrated with the MPICH2 library.

6. The Design of ES-MPICH2

6.1 Scope of ES-MPICH2

Confidentiality, availability, integrity, and authentication are

four necessary security problems to be addressed in clusters

connected by an unsecured public network. Rather than

addressing all the production problems, here pay specific

attention to confidentiality services for messages passed

among computing nodes in an unsecured cluster network.

Although productive confidentiality is our primary concern,

an integrity checking service may be promptly incorporated

into our security framework by applying a public-key

cryptography procedure. MPI framework equipped with the

public-key theme, transmitting nodes can encrypt messages

using their private keys. In the data receiving techniques, any

nodes will use public keys corresponding to the private keys

to decrypt messages. If anyone alters the data, the cipher text

cannot be decrypt correctly using public keys corresponding

to the private keys. Thus, the receiving nodes will perform

message integrity check without the secure exchange of secret

keys.

6.2 Design Issues

The goal of the development of the ES-MPICH2 mechanism

is to enable application programmers to easily implement

secure enhanced MPI applications without additional code for

data-confidentiality protection. With ES-MPICH2 in place,

secure MPI application programmers are able to flexibly

choose a cryptographic algorithm, data block size and key

size, for each MPI application that needs data confidentiality

protection. ES-MPICH2 offers message confidentiality in an

MPI programming environment by incorporating MPICH2

with encryption and decryption algorithms.

6.2.1 Message confidentiality

ES-MPICH2 plans to secure data confidentiality from

unauthorized persons by untrusted processes.

6.2.2 Complete transparency

Product data confidentiality in MPICH2 is perfectly

transparent to application programmers. That confidentiality

transparency is suitable and the reason is two-fold. Initially,

the encryption and decipher processes can be make in the

MPICH2 library at the channel transmission layer. Second,

control the same interface as the APIs of the MPICH2

operation. Therefore, it is not necessary to change MPI

programs to adapt ES-MPICH2.

6.2.3 Compatibility and portability

ES-MPICH2 needs to be comfortably ported from one

platform to another with no addition to the operation source

code. ES-MPICH2 is a development of MPICH2. ES-

MPICH2 must have the same level of portability and

compatibility as MPICH2. However, it is difficult to achieve

high portability in ES-MPICH2, because it has to implement a

cryptographic subsystem in each channel in the CH3 layer in

MPICH2.

6.2.4 Extensibility

ES-MPICH2 must permit application programmers to choose

any cryptographic techniques and keys incorporated in

MPICH2. This form goal makes it possible for programmers

to flexibly select any cryptographic algorithm implemented in

ES-MPICHI2.

7. Proposed TEC in MPICH2

Harold Edwards introduced a normal form for elliptic curves

in July 2007 along with a simple symmetric addition law.

Bernstein and Lange [21] established the connexion of

Edwards‘ work for elliptic curve cryptography and came up

with a lot of efficient formulas for point addition and doubling

using standard projective coordinates. Here additionally

extended Edwards‘ curve definition to a lot of general form

that covers a much larger category of elliptic curves. In formal

terms, a supposed Edwards curve over a prime field Fp will be

described by the equation
1

 E: x
2
+y

2
=1+dx

2
y

2
 (1)

 With d € Fp\ {0, 1} Edwards curves have some attractive

properties for practical use, most notably efficiency of the

point arithmetic and completeness of the addition law when d

is not a square in Fp. Completeness means the addition

formula is valid for all P, Q € (Fp), including the special cases

P = Q, P = -Q, P = 0 and Q = 0. Bernstein and Lange [21] also

showed that every Edwards curve contains a point of order 4

and, thus, has a co-factor of h ≥ 4. In 2008, Bernstein et al

[20] introduced twisted Edwards‘s curves as a generalization

of Edwards‘s curves. Formally, a twisted Edwards curve over

a prime field Fp is defined via the equation

 E: ax
2
+y

2
=1+dx

2
y

2
 (2)

 Where ‗a‘ and‗d‘ are distinct, non-zero elements of Fp.

Bernstein et al observed empirically that the twisted Edwards

form covers much more curves than the ―original‖ Edwards

form2 based on Equation 1. Furthermore, as demonstrated in

[20], every twisted Edwards curve over a non-binary field Fq

is birationally equivalent over Fq to a Montgomery curve (i.e.

every twisted Edwards curve can be transformed to a

P.Ramyadevi
1
, IJECS Volume 2 Issue 9 september, 2013 Page No. 2715-2720 Page 2718

Montgomery curve, and vice versa). Bernstein et al [20] also

presented explicit formulas for addition and doubling on a

twisted Edwards curve; these formulas are complete if ‗a‘ is a

square and d a non-square in the underlying field.

7.1 Advantages of TEC

 No Need for secure channel for secret key exchange.

 Too many keys. Low power and timing

consumption.

 Origin and authenticity of message can be

guaranteed

 Faster execution (i.e. take small time for execution in

terms of iteration times).

8. Experimental Evaluation

 To evaluate the performance and features of ES-MPICH2,

enforced ES-MPICH2 and deployed it on two clusters with

completely different configurations. The primary cluster has

six nodes of 2.2 GHz Intel processors with two GB memory.

The second cluster contains 10 nodes. The master node have a

3.0 GHz Intel Pentium Core two Duo processor with one GB

memory, whereas the 9 slave nodes have 333 MHz Intel

Pentium II processors with sixty four MB memory.

 We run the Intel MPI Benchmarks and the Sandia Micro

Benchmarks and to evaluate and compare the performance of

MPICH2 and ES-MPICH2. When test ES-MPICH2 in each

experiment, set the cryptographic service to TEC respectively.

The length of data encryption keys generated and distributed

in ES-MPICH2 is 192-bit.

8.1 SMB: Sandia Micro Benchmark

 The Sandia National Laboratory developed the Sandia

Micro Benchmark Suite (a.k.a., SMB) to evaluate and test

high-performance network interfaces and protocols. The

Table 1 described the four performance metrics used in the

SMB benchmark suite.

Table 1:

Performance metrics in the Sandia micro benchmark suite

Metric Explanation

Iter -t

work -t

overhead -t

base-t

Total amount of time for the loop to

complete.

For every repetition of the post work wait

loop

The amount of work performed.

The length of time that a used processor is

engaged in the reception or transmission of

each message.

The message transfer time arithmetic

threshold.

These metrics include total execution time (i.e., iter_t), CPU

execution time for iterations (i.e., work_t), message passing

overhead (i.e., overhead_t), and message transfer time

calculation threshold (i.e., threshold or base_t). The detailed

information on these metrics can be found at

http://www.cs.sandia.gov/smb. Note that the message passing

overhead can be derived by subtracting the CPU execution

time from the total execution time. Each benchmark has 1,000

iterations. Fig. 2 shows the total execution time of the SMB

benchmark running on the original MPI implementation (i.e.,

MPICH2), AES-based ES-MIPCH2, 3DESbased ES-MPICH2

and the proposed Twisted Elliptic Curve (TEC) based ES-

MPICH2. It is observed from this figure that when the

message size is small (e.g., 2 KB), the performance of

ESMPICH2 is very close to that of MPICH2. These results

indicate that ES-MPICH2 can preserve confidentiality of

small messages with negligible overhead.

0

5000

10000

15000

20000

25000

30000

35000

0 2 4 6 8 10 12 14 16 18 20
Bytes

T
im

e
 (

m
s
)

original MPI

AES

3DES

TEC

Figure 2: Comparison for original MPI, AES, 3DES,

proposed TEC cryptography on different message size

 Figs.2, 3 show the total execution time, overhead, CPU

time and threshold of MPICH2 and ES-MPICH2 when the

message size is 2, 16, 128, 512, and 1,024 KB, respectively.

The results plotted in Fig. 3 show that the proposed TEC

based ES-MPICH2 shows better performance when compared

with the other techniques.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

iter-t w ork-t overhead-t base-t

ti
m

e
(m

s)

original MPI
AES
3DES
TEC

Figure 3: Iteration Time, Work Time, Overhead Time, and

Base Time (Message Size is 2KB)

Table 2: Comparison table for proposed TEC with existing

Metrics

Original

MPI AES 3DES

Proposed TEC

cryptography

Iter_t 1800 1600 700 650

work_t 1550 1420 660 630

overhead_t 300 170 55 25

base_t 900 800 420 300

When the transferring message with size 2kb, the proposed

TEC based ES-MPICH2 shows that better performance

because metrics like total execution time of iteration time,

overhead time, work time, and base time are low in TEC

compared to other technique. In the proposed TEC technique

the execution time will be less when compared to other

technique. It shows in table 2.

8.2 IMB: Intel MPI Benchmarks

The Intel MPI benchmark suite or IMB was developed for

testing and evaluating implementations of both MPI-1 and

MPI-2 standards. IMB contains approximately 10,000 lines of

code used to measure the performance of important MPI

functions. We have evaluated the performance of ES-

P.Ramyadevi
1
, IJECS Volume 2 Issue 9 september, 2013 Page No. 2715-2720 Page 2719

MPICH2 and the original MPICH2 by running the

benchmarks on the 6-node cluster.

 The benchmarks in IMB-MPI1 can be categorized in three

groups: single transfer bench mark, parallel transfer bench

mark, and collective benchmarks. Single transfer benchmarks

are viewing on a single message transferred between two

contact processes. Dissimilar single transfer benchmarks,

parallel transfer benchmarks scope at testing patterns and

activities in a group of communicating processes with

concurrent actions. The collective benchmarks are

implemented to test higher level collective functions, which

include processors in a defined communicator group. Please

refer to http://software.intel.com/en-us/articles/intelmpi-

benchmarks for more information concerning IMB.

0
50

100
150
200
250
300
350
400
450
500
550
600

0 5 10 15 20
Bytes

T
im

e
 (

m
s
)

original MPI

AES

3DES

TEC

Figure 4: PingPong

 Fig 4 Show the performance of PingPong a single transfer

benchmarks in IMB. After all single transfer benchmarks are

recycled to test a pair of two active processes, here run

PingPong on two nodes of the cluster. The total execution

times of PingPong go up when the message size increases

because larger messages give rise to higher encryption and

decryption overheads. Compared with MPICH2, AES-based

and 3DESbased ES-MPICH2 the execution times of proposed

TEC method are more sensitive to message size.

Table 3: Comparison table for PingPong

Metrics

Original

MPI AES 3DES

Proposed TEC

cryptography

0 0 0 0 0

5 90 80 70 60

10 170 150 140 120

15 330 270 250 200

20 550 480 450 380

 When comparing to original MPI, AES, 3DES technique

the proposed TEC cryptography technique is best because it

consume less time (ms) in bytes for decrypt and encrypt .In

original TEC cryptography the total execution times of

PingPong go up when the message size increases because

larger messages give rise to higher encryption and decryption

overheads. The performance result shows in table 3.

0
50

100
150
200
250
300
350
400
450
500

0 5 10 15 20
Bytes

T
im

e
 (

m
s
)

original MPI

AES

3DES

TEC

 Figure 5: Sendrecv

 When comparing to original MPI, AES, 3DES technique

the proposed TEC cryptography technique is best. Because

the total execution time of the SendRecv benchmark does not

noticeably change when vary the number of computing nodes

in the cluster. Original TEC consume less time. The

performance of proposed TEC-based MPICH2 is close to that

of the original version of MIPCH2 when message size is

relatively small.

Table 4:

Comparison table for existing and proposed system

Metrics

Original

MPI AES 3DES

Proposed

TEC

cryptography

0 0 0 0 0

5 80 70 60 50

10 180 150 110 80

15 330 270 220 180

20 450 400 360 320

 Now here analyze the performance of Sendrecv a parallel

transfer benchmarks in IMB running on ES-MPICH2 and

MPICH2 on the 6-node cluster in figure 5. Sendrecv, in which

the main purpose is to test the MPI Sendrecv function, subsist

of processes creating a periodic communication chain. This

performance result values are in table 4.

9. Conclusion and Future work

9.1 Conclusion

 MPI mechanism called ES-MPICH2 is implemented

which offers both integrity services and data confidentiality

for secure network communications in message passing

environments. The proposed security technique included in

the MPICH2 library is useful for protecting data transmitted

in open networks like the Internet. In this paper, in order to

increase the security, Twisted Elliptic curve cryptography is

used. It provides better security and confidentiality.

Moreover, the execution time taken by the proposed approach

is very less when compared with AES and DES. The

experimental results clearly show that the proposed approach

provides better performance when compared with AES and

DES.

9.2 Future work

An interesting direction for future work is to consider

several strong and efficient cryptographic algorithms like

the Elliptic Curve Cryptography in ES-MPICH2. After all

P.Ramyadevi
1
, IJECS Volume 2 Issue 9 september, 2013 Page No. 2715-2720 Page 2720

elliptic curve cryptography is an efficient and fast

cryptographic result; both the performance and the

productivity of ES-MPICH2 are likely to be improved by

incorporating ECC. Another promising control for further

work is to integrate encryption and decryption algorithms in

other communication channels like SHMEM and

InfiniBand in MPICH2 because an increasing number of

commodity clusters are built using standalone and advanced

networks such as Infiniband and Myrinet.

REFERENCES

[1] Xiaojun ruan, ―ES-MPICH2: A message passing

interface with enhanced security‖ secure computing,

vol.9, no.3, June 2012.

[2] ―Message Passing Interface Forum,‖ http://www.mpi-

forum.org, 2012.

[3] ―Papers about MPI,‖ http://www.mcs.anl.Gov/research/

projects/mpi/papers, 2012.

[4] ―Architecture Share in top 500 Supercomputers for

06/2009,‖http://www.top500.org/stats/list/33/archtpe20

12.

[5] ―MPICH2: A High-Performance and Widely Portable

Implementation of the Message Passing Interface

(MPI) standard,

―http://www.mcs.anl.gov/research/projects/mpich2,

2012.

[6] ―MVAPICH2: MPI-2 over OpenFabrics-IB,

OpenFabrics-iWARP, PSM, uDAPL and TCP/IP‖

http://mvapich.cse.ohiostate.edu/overview/mvapich2,2

012.

[7] E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J.

Dongarra, J.M. Squyres, V. Sahay, P. Kambadur, B.

Barrett, A. Lumsdaine, R.H. Castain, D.J. Daniel, R.L.

Graham, and T.S. Woodall, ―Open MPI: Goals,

Concept, and Design of a Next Generation MPI

Implementation,‖ EuroPVM/MPI, 2004.

[8] J.M.Squyres and A. Lumsdaine, ―A Component

Architecture for LAM/MPI,‖ Proc. EuroPVM/MPI,

2003.

[9] ―Open MPI Bug Tickets,‖ https://svn.open-

mpi.org/trac/ompi/ ticket/689, 2012.

[10] D.C. Arnold, D.H. Ahn, B.R. de Supinski, G. Lee, B.P.

Miller, and M. Schulz, ―Stack Trace Analysis for Large

Scale Debugging,‖ Proc. IEEE Int‘l Parallel and

Distributed Processing Symp (IPDPS), 2007.

[11] J. DeSouza, B. Kuhn, B.R. de Supinski, V. Samofalov,

S. Zheltov, and S. Bratanov, ―Automated, Scalable

Debugging of MPI Programs with Intel Message

Checker,‖ Proc. Second Int‘l Workshop Software Eng"

for High performance computing System Applications

(SE-HPCS), 2005.

[12] T. Hilbrich, B.R. de Supinski: Schulz, and M.S. Muller,

―A Graph based approach for MPI deadlock detection‖,

Proc. 23rd Int‘l Conf, supercomputing (ICS), 2009.

[13] B. Krammera, K. Bidmona, M.S. Muller, and M.M.

Rescha, ―MARMOT: An MPI Analysis and Checking

Tool,‖ Proc. Parallel Computing (PARCO), 2003.

[14] G. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva,

and Y. Zou, ―MPI-CHECK: A Tool for Checking

Fortran 90 MPI Programs,‖ Concurrency and

Computation: Practice and Experience, vol. 15, no. 2,

pp. 93-100, 2003.

[15] J.S. Vetter and B.R. de Supinski: ―Dynamic Software

testing of MPI applications with umpire,‖ Proc.

ACM/IEEE Conf, Supercomputing (CDROM), 2000.

[16] Q. GAO, F. Qin, and D.K. Panda, ―DMTracker:

Finding Bugs in Large-Scale Parallel Programs by

Detecting Anomaly in Data Movements,‖ Proc.

ACM/IEEE Conf. Supercomputing, 2007.

[17] A.V. Mirgorodskiy, N. Maruyama, and B.P. Miller:

―Problem Diagnosis in Large-Scale Computing

Environments,‖ Proc. ACM/ IEEE conf.

Supercomputing, 2006.

[18] M.D. Ernst, J. Cockrell, W.G. Griswold, and D.

Notkin, ―Dynamically Discovering Likely Program

Invariants to Support Program Evolution,‖ Proc. 21st

Int‘l Conf. Software Eng. (ICSE), 1999.

[19] S. Hangal and M.S. Lam, ―Tracking Down Software

Bugs Using Automatic Anomaly Detection,‖ Proc. 24th

Int‘l Conf. Software Eng. (ICSE), 2002.

[20] A. Petitet and R.C. Whaley, and J. Dongarra, and A.

Cleary: ―High performance Linpack‖,

http://www.netlib.org/benchmark/hpl, 2012.

[21] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C.

Peters, Twisted Edwards‘s curves. In Progress in

Cryptology — AFRICACRYPT 2008, vol. 5023 of

Lecture Notes in Computer Science, pp. 389–405.

Springer Verlag, 2008.

[22] D. J. Bernstein and T. Lange, Faster addition and

doubling on elliptic curves. In Advances in Cryptology

— ASIACRYPT 2007, vol. 4833 of Lecture Notes in

Computer Science, pp. 29–50. Springer Verlag, 2007.

[23] R. Prabhakar, C. Patrick, and M. Kandemir, ―MPISec

I/O: Providing Data Confidentiality in MPI-I/O,‖ Proc.

IEEE/ACM Ninth Int‘l Symp, Cluster Computing and

the Grid, pp. 388-395, 2009.

