

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 2. Issue 9 September 2013 Page No. 2702-2708

K.Sagar, IJECS Volume 2 Issue 9 september,2013 Page No. 2702-2708 Page 2702

Towards Automated design of Combinational Circuits

Using Evolutionary Techniques

 K.Sagar
1

and Dr.S.Vathsal
2

1Department of Computer Science and Engineering,

Chitanya Bharathi Institute of Technology, Hyderabad, INDIA

Email: kadapasagar@yahoo.com

2HOD (EEE) & Dean R&D, JBIET, Moinabad

Hyderabad, INDIA

Email: svathsal@gmail.com

Abstract: We introduce a technique, based on Evolutionary algorithms to automate and optimize the design of combinational circuits.

Logic circuits are at the core of modern computing. The process of designing circuits which are efficient is thus of critical importance. By

exploring the full range of possible solutions, circuits could be discovered which are superior to the best known human designs. Automated

design techniques borrowed from artificial intelligence have allowed exactly that. Specifically, the application of genetic algorithms has

allowed the creation of circuits which are substantially superior to the best known human designs. Systematic search is, perhaps, best

exemplified by its simplest and most intuitive manifestation. This proposal expands on such previous research with a three-fold approach

comprised of, A distinct optimizations for the application of genetic algorithms to design, the formulation and implementation of a

systematic search technique to the problem and a comparison of the relative merits of the optimized genetic algorithm and the systematic

search technique and the results also compared with Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) algorithms.

Keywords: Evolutionary algorithms , Systematic Search, Particle Swarm Optimization, Ant Colony Optimization.

1. INTRODUCTION

Central to modern computing is the ability to perform logic. In

its most fundamental form, the logic in computers is facilitated

by digital logic circuits. Moreover, the basic components of

these circuits are known as logic gates.

However, these gates are most often combined and

interconnected in various ways to create more complex circuits.

Logic design is one example of a discrete combinatorial

system.

The characteristics of such a system are that it has a

finite collection of discrete elements, which are combined to

create new distinct objects. In the case of logic circuit design,

gates are the discrete elements, and they are combined to create

new circuits which function differently than any of the

individual gates. By automating design, the goal is to remove

human effort, and human limitations, from the design process.

This can be done by taking advantage of what computers do

very well, quickly examine a huge number of possible

solutions.

In automatically designing logic circuits of this type,

techniques from artificial intelligence have been extremely

useful. Specifically, genetic algorithms have been highly

researched as a candidate for automating circuit design.

Moreover, there has been a good amount of success with using

these algorithms. Genetic algorithms have been able to produce

better results than human designers, and in a shorter period of

time.

Systematic search to automate logic circuit design is a new

idea. The specific search method employed is a version of BFS.

The advantages and disadvantages associated with both types

of search: systematic search and local search algorithms like

Gas are discussed. The major advantage of systematic search

methods like BFS is that they can return optimal solutions.

Indeed, with careful problem formulation, one can ensure that

BFS will return optimal solutions every single time.

Fortunately, it is not difficult to formulate most problems so

that BFS can meets these guarantees. Unfortunately, however,

the benefits of BFS come at a high cost. The space and time

requirements can be prohibitively large, making this method of

searching totally impractical for some problem instances.

PSO is another technique for automating the circuit

design which is a robust stochastic optimization technique

based on the movement and intelligence of swarms. When the

search space is too large to search exhaustively, population

based searches may be a good alternative, however, population

based search techniques cannot guarantee you the optimal

(best) solution. A population based search technique, Particle

Swarm Optimization (PSO) Algorithm shares similar

characteristics to Genetic Algorithm, and however, the manner

in which the two algorithms traverse the search space is

fundamentally different.

 Ant Colony Optimization (ACO) algorithm is a new meta-

heuristic algorithm with a combination of distributed

computation, auto-catalysis (positive feedback) and

constructive greedy heuristic in finding optimal solutions for

mailto:kadapasagar@yahoo.com

K.Sagar, IJECS Volume 2 Issue 9 september, 2013 Page No. 2702-2708 Page 2703

combinatorial problems. The ACO algorithm has been inspired

by behavior of real ants. It was observed that real ants were

able to select the shortest path between their nest and food

resource, in the existence of alternate paths between the two.

2. PREVIOUS WORK

The design process for combinational logic circuits

has evolved from its first notions [1] to a standard element of

undergraduate computing curricula [6]. Standard graphical

design aids such as Karnaugh Maps [5] are widely used and

tool suitable for computer implementation have evolved from

the QuineMcCluskey Method [4].

 Louis [7] is one of few sources found in the literature

to address the use of GAs for the combinational logic design

problem. Louis combines knowledge- based systems with the

genetic algorithm, making use of a genetic operator called

masked crossover that adapts to the encoding being able to

exploit information unused by classical crossover operators [8].

His results, although very encouraging for certain examples,

but do not seem to have solved the combinational circuit design

problem completely. However his idea of incorporating

knowledge about the domain in the genetic operator constitutes

a big step toward increasing the power of the GA as a design

tool. Unfortunately, the incorporation of knowledge in to the

GA decreases its usefulness as a general search tool. Louis

overcomes this problem by defining an operator that he claims

to be domain independent, but whose efficiency turns out to

depend on the representation used.

Koza [6] has used genetic programming to design

combinational circuits. He has designed, for example, a two-bit

adder, using a small set of gates (AND, OR, NOT), but his

emphasis has been on generating functional circuits rather than

on optimizing them. In fact, this is also the case in Louis'

research, where the main focus was to provide an easier way to

generate functional designs using the GA rather than in

optimizing a functional design according to certain metrics. In

more recent work, has focused more towards the design of an a

log circuits in which the goal is to produce their appropriate

topology and size so that they are functional given a certain set

of components. So far, genetic programming has been

considered a more powerful tool in such tasks, because the

representation it uses is more powerful for structural design in

general.

Miller et al [9] developed (independently) an

approach similar to ours, but using a more compact

representation that instead of considering the inputs and gates

as completely separate elements in the chromosome string, use

a single gene to encode a complete Boolean expression.

Miller's notation does not decrease the total length of the

chromosome, but it increases the cardinality of the alphabet

needed, having as its main drawback the lack of flexibility of

the representation to handle a larger number of inputs

3. GENETIC ALGORITHMS FOR LOGIC

CIRCUIT DESIGN

Up to the present, most research has focused on using local

search algorithms for the design of logic circuits. More

specifically, genetic algorithms have been the most common

choice.

In order to use GAs for this purpose, though, there must be

some additional formulation of the problem. As we have seen,

GAs use strings as their basic elements, in the same way that

biological systems use DNA strands. Therefore, if we are to use

GAs for circuit design, all of the information about gates and

connections must be encoded in a string. In accordance with

the terminology from biology, this string is known as the

“genotype”.

Fig. 3.1 Representation of genotype

Genotype is structured from phenotype shows in fig. 3.1.

Cells in phenotype are lined from C11 to Cnm and finish by

outputs for set to genotype.

The genotype is an encoding of all the relevant information

about the circuit. The relevant information, which is encoded,

is known as the “phenotype”.

Fig. 3.2 Representation of phenotype

Phenotype consists of inputs, cells, internal connections,

and outputs shown in Fig. 3.3. Inputs are input signals of a

digital logic circuit. Each cell is a logic gate which is connected

thru internal connection.

The phenotype includes the gates used in the circuit,

the connections between gates and other essential properties.

The phenotype can be derived from the genotype, and in turn,

the operation of the circuit can be derived from the phenotype.

Attempts were made to explore other circuit

formulations , but the one which has gained the most favor is

the array formulation. In this formulation, a circuit is

conceptualized as an array of logic gates and connections

between them.

 Fig. 3.3 Array formulation

K.Sagar, IJECS Volume 2 Issue 9 september, 2013 Page No. 2702-2708 Page 2704

This is conceptually similar to the way an FPGA is

structured. At one end of the array are presented the inputs to

the circuit, and at the other end of the array are the outputs.

Each gate at a particular location is a member of an array

column, and it can get its inputs from any gates in the previous

column. The gates in the left-most column get their inputs from

any of the circuit inputs, rather than any gates. The benefits of

applying GAs to logic circuit design have been as good as

expected. By automating the entire process, GAs have been

able to quickly develop circuits which are fully functional.

Moreover, some circuits which have been developed are

superior to those designed by humans.

Fig. 3.4 Example for Array Formulation of Logic Gates

The Fig. 3.4 describes an example of array

formulation for two dimensional template, Gates gets its input

from one of the gates from the previous columns, From the

figure 3.4, Second column and first of the AND gate is getting

the input from an not gate and the other input is directly

connected from the input variable „A‟ and similarly the other

gates in the array gets inputs from the gates in the previous

columns and the output is produced by the last gate from the

last column of the array.

 Genetic algorithm have been a developing

technology which is been used in every sector. Circuit

designing is the new concept applied using genetic

algorithm.GA is a trial and error technique; we can take

advantage of the speed capability of computers to perform

thousands of these trials and converge upon an optimal solution

Truth table which contains data in the form of 0‟s and

1‟s is converted into variables and stored into string which is

can be referred as expression, since the last column of the truth

table contains function values these are separated from the

expression . The function values which contain 1‟s are stored

and remaining are discarded. After the regular expression is

formed, then the expression is sub divided based on the „OR‟

operator (which joins the expression), the sub expression

formed can be referred as genes. Genetic algorithm is applied

on these genes, the algorithm includes fitness function,

mutation value and finally the population list.

The genetic algorithm approach is mainly based on its

genetic operators like iteration, the number of times the loop is

being repeated the probability of getting the appropriate

solution is high. But genetic algorithm is a stochastic process

where the chance of getting the exact solution is 50/50.

The generational process is repeated until termination

condition is reached, the common terminating conditions are:

-Fixed number of generation reached.

-An individual is found which satisfies all the

minimum condition-Highest ranking individual‟s fitness is

reached or has a plateau such that further iterations does not

produce better results

-Combinations of above.

Fig. 3.5 Design of the Genetic algorithm for Circuit

designing

4. SYSTEMATIC SEARCH
 Systematic search is, perhaps, best exemplified by its simplest

and most intuitive manifestation. Specifically, the type of

search known as breadth-first search (BFS). It illustrates the

ideas of systematic search very nicely, including all of its

strengths and weaknesses. BFS explores all possible options at

each step, until a solution is found.

 Not only is BFS systematic, but it is exhaustive. It considers

all possible search paths at each step. Therefore, it will always

find a solution if one exists. This is a very desirable property.

Moreover, by considering nodes closer to the root first, BFS

will always find the solution which is shallowest in the tree.

4.1 Representing Systematic Search

The new formulation hinges on one important idea: the path to

the goal must represent the desired circuit.

Figure 4.1 Systematic search as applied to logic circuit

K.Sagar, IJECS Volume 2 Issue 9 september, 2013 Page No. 2702-2708 Page 2705

design. The initial nodes are the input variables. Nodes are

combined via logical operators to create new nodes

If the path to the goal represents a finished circuit,

then it may be unclear what the search nodes represent. It may

not be immediately obvious why, but in this research the search

nodes were conceptualized as truth-table columns. Initially,

there are several nodes present in the search tree. Each initial

node represents the truth-table column for one of the input

variables (figure 6.1). Just as a conventional truth table is

seeded with columns that represent every possible combination

of the inputs, so is the search space initially seeded with search

nodes representing the truth-table columns of the inputs. To

forward the search, nodes are not expanded in the conventional

sense in this formulation. Rather, new nodes are formed by

selecting two existing nodes and a logic operation. This is

similar to the way new columns are formed in a conventional

truth table. After selecting, the logic operation is then applied

to the corresponding rows in the chosen nodes, and a new truth-

table column is formed which constitutes a new search node.

4.2Implementing Systematic Search

Figure 4.2 Systematic search as it was implemented using a

2-D array to store the nodes.

This systematic search strategy can be implemented

quite easily using a two dimensional array(figure 6.2). Each

array column can hold a truth table column from a single node.

Extra rows can be made below each column to hold the

additional information about parents, depth size, etc. the first

columns

of the array are initially seeded with the truth-table columns of

the inputs. Creating new nodes is simply a matter of selecting

two columns and a logical operator, and applying the operator

to each row of the columns. When new nodes are created, their

respective truth-table columns can be placed in the next open

column of the array.

5. PARTICLE SWARM OPTIMIZATION TECHNIQUE

In PSO, a swarm of particles “fly” through the search space.

Each particle keeps track of its coordinates in the problem

space which are associated with the best solution (fitness) it has

achieved so far. This value is called pbest . Another “best”

value that is tracked by a particle is the best value, obtained so

far by any particle In the neighbors of the particle. This

location is called lbest . When a particle takes all the

population as its topological neighbors, the best value is a

global best and is called gbest.

 The PSO concept consists of, at each time step, changing the

velocity of (accelerating) each particle toward its pbest and

lbest locations (local version of PSO). Acceleration is weighted

by a random term, with separate random numbers being

generated for acceleration toward pbest and lbest locations.

PSO was first introduced in 1995. It is a very efficient

stochastic optimization tool for optimization problems.

Recently, more and more researchers have been attracted by

this promising research area. It is demonstrated that PSO gets

better results in a faster, cheaper way compared with other

methods Another reason that PSO is attractive is that there are

few parameters to adjust. One version, with slight variations,

works well in a wide variety of applications. PSO has been

used for approaches that can be used across a wide range of

applications, as well as for specific applications focused on a

specific requirement.

5.1 PSO Algorithm:

1. Particle start from a random point

2. 2 types of information‟s available to the particle for

taking decision where to move next:

a. Own Search Experience (particle‟s pervious

history & its own optimal state)

b. Performance of the particles in the neighborhood

(best states reached by its neighbors' so far)

3. For this is uses the following formula –

P(xid(t)=1)=f(xid(t-1), vid(t-1), Pid, Pgd) (1)

Where:

- P(xid(t)=1) is the probability that individual i will choose 1 for

the bit at the d-th position of the binary string.

- xid(t) is the current state of the string position d of individual

i.

- t refers to the current iteration.

- vid(t-1) is a measure of the individual‟s predisposition or

current probability of deciding 1.

- Pid is the best state found so far.

- Pgd is the best state found in the neighborhood so far.

5.2 Representation of the circuit:

 In this the matrix representation is used to encode a circuit as

in work of the Genetic Algorithm. Such representation is shown

in Figure 4.1. This matrix is encoded as a fixed length string of

bits or integers from 0 to N – 1, where N refers to the number

of rows allowed in the matrix (we call it n-cardinality

alphabet). In this, we will be referring to the Genetic Algorithm

(GA) that uses an n-cardinality alphabet, since it has been

found in the past that this version of the algorithm consistently

produces better results than its binary counterpart.

K.Sagar, IJECS Volume 2 Issue 9 september, 2013 Page No. 2702-2708 Page 2706

Fig. 5.1 Matrix used to represent a circuit. Each gate gets

its input from either of the gates in the previous column.

Note the encoding adopted for each element of the matrix

as well as the set of available gates used.

 More formally, we can say that any circuit can be

represented as a bi-dimensional array of gates Si,j, where j

indicates the level of a gate; so that those gates closer to the

inputs have lower values of j. (Level values are incremented

from left to right in the Figure 4.1). For a fixed j, the index i

varies with respect to the gates that are “next” to each other in

the circuit, but without being necessarily connected. Each

matrix element is a gate (there are 5 types of gates: AND,

NOT, OR, XOR and WIRE1) that receives its 2 inputs from

any gate at the previous column as shown in Figure 1. Although

our implementation allows gates with more inputs and these

inputs might come from any previous level of the circuit, we

limited ourselves to 2-input gates and restricted the inputs to

come only from the previous level. This restriction could, of

course, be relaxed, but we adopted it to allow a fair comparison

with the GA-based approach.

Fig. 5.2 Encoding used for each of the matrix elements that

represent a circuit

 A chromosomic string encodes the matrix shown in Figure

4.2 by using triplets in which the 2 first elements refer to each

oftheinputs used, and the third is the corresponding gate from

the available set.The fitness function works in two stages: first,

it maximizes the number of matches. However, once feasible

solutions are found, we maximize the number of WIREs in the

circuit. By doing this, we actually optimize the circuit in terms

of the number of gates that it uses. The main goal is to produce

a fully functional design (i.e., one that produces all the

expected outputs for any combination of inputs according to

the truth table given for the problem) which maximizes the

number of WIREs.

The main motivation for using particle swarm

optimization (PSO) to design combinational circuits is that this

algorithm has been found to be very efficient in a variety of

tasks.

6. ANT COLONY OPTIMIZATION
 In ACO algorithm, the optimization problem is

formulated as a graph G = (C; L), where C is the set of

components of the problem, and L is the possible connection or

transition among the elements of C. The solution is expressed

in terms of feasible paths on the graph G, with respect to a set

of given constraints.

A circuit is modeled as a matrix M of size n * m. The

content of matrix M is dynamically filled.

Consider the Boolean function f = xyz + xyz + xyz.

Figure 5.1 shows a graph of some possible paths connecting

literal x to the intended function f. Assume that the ants start

the tour from literal x. The ant will traverse the paths by

selecting the edges through a probabilistic process. Assume

that the goal is to find the shortest path to repre-sent function f.

Therefore, the ants that found the path f = x‟yz + xy‟z + xyz‟

would return the best representation for function f.

Fig.6.1 Some of the possible paths in the function f.

At first, matrix M is filled with randomly generated

cells. Then, each ant will traverse the matrix. These ants

originate from a dummy cell called nest (see Figure 5.2), and

traverse each state (a cell in a column) until it reaches the last

column or a cell that has no successor.

The selection edges to traverse is determined by a

stochstic probability function. It depends on the pheromone

value (τ) and heuristic value (η) of the edge (or the next cell).

Fig.6.2 Nest cell and matrix M for ant to be traversed.

K.Sagar, IJECS Volume 2 Issue 9 september, 2013 Page No. 2702-2708 Page 2707

7. EXPERIMENTAL RESULTS

Consider the truth table

 Z W X Y F

 0 0 0 0 1
 0 0 0 1 1
 0 0 1 0 0
 0 0 1 1 1
 0 1 0 0 0
 0 1 0 1 0
 0 1 1 0 1
 0 1 1 1 1
 1 0 0 0 1
 1 0 0 1 0
 1 0 1 0 1
 1 0 1 1 0
 1 1 0 0 0
 1 1 0 1 1
 1 1 1 0 0
 1 1 1 1 0

Our PSO algorithm found a solution with a fitness

value of 34 (i.e., a circuit with 7 gates) 20% of the time, and

feasible circuits were found 67% of the time. The average

fitness of the 20 runs performed was 29.35, with a standard

deviation of 7.4. The graphical representation of the best

solution found is depicted in Figure 7.1.

Fig. 7.1 Graphical representation of the best circuit found

by PSO.

The comparison of the results produced by PSO, an n-

cardinality GA (NGA), a human designer (using Karnaugh

maps), and Sasao‟s approach [13] are shown in Table 7.1.

Sasao has used this circuit to illustrate his circuit simplification

technique based on the use of ANDs & XORs. His solution

uses, however, more gates than the circuit produced by our

approach.

GA Human Designer PSO

F = (WYX
I
 ⊕

((W+Y) ⊕ Z⊕

(X + Y +Z)))

F = ((Z
I
X) ⊕

(Y
1
W

1
))

+((X1Y)(Z⊕W1))

 F = (XY + W)

⊕ ((Z ⊕ X)(X +

Y))

10 gates 11 gates 7 gates

2ANDs, 3ORs,

3XORs, 2NOTs

4ANDs, 1OR,

2XORs, 4NOTs

2ANDs, 2OR,

2XORs, 1NOTs

Table: 7.1 Comparison of results between PSO, an n-

cardinality GA (NGA), and human designer for the circuit.

The graphical representation of the circuit for the

above truth table by ACO algorithm is shown in figure 7.2.

Fig.7.2 Graphical representation of the best circuit found

by ACO algorithm.

The comparison of the results produced by the ACO, a

genetic algorithm with GA, a human designer (using Karnaugh

maps), and in the following Table 7.2. In this case, the ACO

found a solution slightly better than the GA.s.

The parameters used by the GA for this example were

the following: Crossover rate = 0.5, mutation rate = 0.0022,

population size = 2000, maximum number of generations =

400. Convergence to the solution shown for the GA in Table

7.2 was achieved in generation 328. The matrix used by the

BGA was of size 5 × 5.

GA Human

Designer

ACO

F = (W Y X’ ⊕
((W + Y) ⊕ Z
⊕ (X + Y +

Z)))

F = ((Z’ X) ⊕
(Y’ W’)) + ((X’
Y)
(Z ⊕ W’))

 F = (((W+Y)

⊕ Z) + X’)

((YZ’) ⊕ (X’W))

10 gates 11 gates 9 gates

2ANDs, 3ORs,

3XORs, 2NOTs

4ANDs, 1OR,

2XORs, 4NOTs

3ANDs, 2OR,

2XORs, 2NOTs

Table: 7.2 Comparison of results between the ACO

algorithm, the GA, and human designer for the circuit.

 Circuits produced by the depth-concerned and size

concerned versions of systematic search is shown in figure 7.3

Figure 7.3 Circuits produced by the depth-

concerned(above) and size-concerned(below) versions of

systematic search.

The function is F(W,X,Y,Z)={0,1,3,6,7,8,10,13}.

K.Sagar, IJECS Volume 2 Issue 9 september, 2013 Page No. 2702-2708 Page 2708

8. CONCLUSION

This paper presented how genetic algorithm, PSO technique

and ACO can be used to design combinational logic circuits.

Systematic and Local search techniques of artificial intelligence

are studied and have been applied to the problem of genetic

based logic circuit design.

We have implemented genetic algorithm using all genetic

operators on an input for circuit designing, these genetic

operators include selection, fitness function, crossover and

mutation

A computer program has been developed which can reduce the

number of gates on a particular input .We compared the results

produced by our genetic algorithm approach against those

generated by Minimization tool.

The PSO technique is implemented for the circuit designing.

The obtained result by PSO is comparable with GA in most of

the cases and outperforms the Human Designers (Karnaugh

Maps and Quine-McCluskey Procedures) in all the cases. POS

method can produce the global optimal solution but the

drawback of this method is the process duration become longer

for more complicated structure.

ACO technique is presented to optimize the combinational

logic circuits at the gate level. Results compared fairly well

with those produced with a GA and are better than those

obtained using Karnaugh maps and the QuineMcCluskey

Procedure. Current ACO implementation is limited to circuits

of smaller size and produces better results compared to Genetic

Algorithm

The systematic search approach is also presented to

find the optimal circuit. The major benefit of using systematic

search is a guarantee that optimal solutions will be found.

Indeed, this technique can be used to find the best known

circuits for any specified functions

References

[1] Uthman Salem al-saiari, “Digital Circuit Design

Through Simulated evolution” , King Fahd University

of petroleum and minerals , Dhahran, Saudi Arabia,

November 2003

[2] Russell, S. and Norvig, “Artificial Intelligence: A

Modern Approach. Prentice Hall”, New Jersey.

(2003).

[3] Carlos A. CoelloCoello, Alan D. Christiansen, Arturo

Hernandez Aguirre: “Design of Combination Logic

Circuits through an Evolutionary Multi-objective

Optimization Approach” Department of Electrical

Engineering and Computer Science, Tulane

University, New Orleans, LA, USA, 2000

[4] McCluskey E. J.: “Minimization of Boolean functions”

Bell System technical Journal, (1996).

[5] Karnaugh M.: “A map method for synthesis of

combinational logic circuit” Transactions of the

AIEE, Communications and Electronics,(1993).

[6] Koza,J.R ,“Genetic Programming on the programming

of computers by means of natural selection” ,the MIT

press, Cambridge, Massachusetts. (1992)

[7] Louis, and Rawlins, G.Designer Genetic algorithms:

“Genetic algorithms in structure design” , In Belew,

R.K. and booker,L.B.(eds) proceedings of the fourth

international conference on genetic algorithms, San

mateo, California, Morgan Kaufmann Publishers.

(1991)

[8] Tutorials for Genetic Algorithm

;http://www.obitko.com/tutorials/genetic-algorithms

[9] Miller, J.F., Thompson, P. and Fogarty,

“Designing Electronic Circuits Using Evolutionary

Algorithms. Arithmetic Circuits: A Case Study.”

Genetic Algorithm and Evolution Strategy in Eng. and

Comp. Sci., 105-131T. (1997).

Author Profile

K.Sagar received the B.E degree in Electronics & Communication

Engineering from Chaitanya Bharathi Institute Of Technology,

Gandipet, Hyderabad in 1991 and M.Tech degree in Computer

Science and engineering from JNTU , Hyderabad in 1999 and

persuing Ph.D in computer Science & Engineering from Osmania

University, Hyderabad. Currently working as an Associate Professor

in the department of Computer Science & Engineering ,C.B.I.T ,

Hyderabad,A.P,India.

Method No. of

Variables

Expression Number

of Gates

Systematic

Search

4 F= (((Y+Z) W ⊕

(X+YZ))⊕ Y)’

7

Human

design 4
F=((Z’⋅X)+(Y’⋅W’))+

((X’⋅Y)(Z⊕W’))

11

