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Abstract:  We introduce a technique, based on Evolutionary algorithms to automate and optimize the design of combinational circuits. 

Logic circuits are at the core of modern computing. The process of designing circuits which are efficient is thus of critical importance. By 

exploring the full range of possible solutions, circuits could be discovered which are superior to the best known human designs. Automated 

design techniques borrowed from artificial intelligence have allowed exactly that. Specifically, the application of genetic algorithms has 

allowed the creation of circuits which are substantially superior to the best known human designs. Systematic search is, perhaps, best 

exemplified by its simplest and most intuitive manifestation. This proposal expands on such previous research with a three-fold approach 

comprised of, A distinct optimizations for the application of genetic algorithms to design, the formulation and implementation of a 

systematic search technique to the problem and  a comparison of the relative merits of the optimized genetic algorithm and the systematic 

search technique and the results also compared with Ant Colony Optimization (ACO)  and Particle Swarm Optimization (PSO) algorithms. 

Keywords: Evolutionary algorithms , Systematic Search,  Particle Swarm Optimization, Ant Colony Optimization. 

 

1. INTRODUCTION 

Central to modern computing is the ability to perform logic. In 

its most fundamental form, the logic in computers is facilitated 

by digital logic circuits. Moreover, the basic components of 

these circuits are known as logic gates. 

However, these gates are most often combined and 

interconnected in various ways to create more complex circuits.  

Logic design is one example of a discrete combinatorial 

system.  

The characteristics of such a system are that it has a 

finite collection of discrete elements, which are combined to 

create new distinct objects. In the case of logic circuit design, 

gates are the discrete elements, and they are combined to create 

new circuits which function differently than any of the 

individual gates. By automating design, the goal is to remove 

human effort, and human limitations, from the design process. 

This can be done by taking advantage of what computers do 

very well, quickly examine a huge number of possible 

solutions.  

In automatically designing logic circuits of this type, 

techniques from artificial intelligence have been extremely 

useful.  Specifically, genetic algorithms have been highly 

researched as a candidate for automating circuit design. 

Moreover, there has been a good amount of success with using 

these algorithms. Genetic algorithms have been able to produce 

better results than human designers, and in a shorter period of 

time. 

Systematic search to automate logic circuit design is a new 

idea. The specific search method employed is a version of BFS. 

The advantages and disadvantages associated with both types 

of search: systematic search and local search algorithms like 

Gas are discussed. The major advantage of systematic search 

methods like BFS is that they can return optimal solutions. 

Indeed, with careful problem formulation, one can ensure that 

BFS will return optimal solutions every single time. 

Fortunately, it is not difficult to formulate most problems so 

that BFS can meets these guarantees. Unfortunately, however, 

the benefits of BFS come at a high cost. The space and time 

requirements can be prohibitively large, making this method of 

searching totally impractical for some problem instances. 

 

PSO is another technique for automating the circuit 

design which is a robust stochastic optimization technique 

based on the movement and intelligence of swarms. When the 

search space is too large to search exhaustively, population 

based searches may be a good alternative, however, population 

based search techniques cannot guarantee you the optimal 

(best) solution. A population based search technique, Particle 

Swarm Optimization (PSO) Algorithm shares similar 

characteristics to Genetic Algorithm, and however, the manner 

in which the two algorithms traverse the search space is 

fundamentally different. 

 Ant Colony Optimization (ACO) algorithm is a new meta-

heuristic algorithm with a combination of distributed 

computation, auto-catalysis (positive feedback) and 

constructive greedy heuristic in finding optimal solutions for 
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combinatorial problems. The ACO algorithm has been inspired 

by behavior of real ants. It was observed that real ants were 

able to select the shortest path between their nest and food 

resource, in the existence of alternate paths between the two. 

2. PREVIOUS WORK 

 

The design process for combinational logic circuits 

has evolved from its first notions [1] to a standard element of 

undergraduate computing curricula [6]. Standard graphical 

design aids such as Karnaugh Maps [5] are widely used and 

tool suitable for computer implementation have evolved from 

the QuineMcCluskey Method [4]. 

 Louis [7] is one of few sources found in the literature 

to address the use of GAs for the combinational logic design 

problem. Louis combines knowledge- based systems with the 

genetic algorithm, making use of a genetic operator called 

masked crossover that adapts to the encoding being able to 

exploit information unused by classical crossover operators [8]. 

His results, although very encouraging for certain examples, 

but do not seem to have solved the combinational circuit design 

problem completely. However his idea of incorporating 

knowledge about the domain in the genetic operator constitutes 

a big step toward increasing the power of the GA as a design 

tool. Unfortunately, the incorporation of knowledge in to the 

GA decreases its usefulness as a general search tool. Louis 

overcomes this problem by defining an operator that he claims 

to be domain independent, but whose efficiency turns out to 

depend on the representation used. 

Koza [6] has used genetic programming to design 

combinational circuits. He has designed, for example, a two-bit 

adder, using a small set of gates (AND, OR, NOT), but his 

emphasis has been on generating functional circuits rather than 

on optimizing them. In fact, this is also the case in Louis' 

research, where the main focus was to provide an easier way to 

generate functional designs using the GA rather than in 

optimizing a functional design according to certain metrics. In 

more recent work, has focused more towards the design of an a 

log circuits in which the goal is to produce their appropriate 

topology and size so that they are functional given a certain set 

of components. So far, genetic programming has been 

considered a more powerful tool in such tasks, because the 

representation it uses is more powerful for structural design in 

general.  

Miller et al [9] developed (independently) an 

approach similar to ours, but using a more compact 

representation that instead of considering the inputs and gates 

as completely separate elements in the chromosome string, use 

a single gene to encode a complete Boolean expression. 

Miller's notation does not decrease the total length of the 

chromosome, but it increases the cardinality of the alphabet 

needed, having as its main drawback the lack of flexibility of 

the representation to handle a larger number of inputs 

 

 

3. GENETIC ALGORITHMS FOR LOGIC 

CIRCUIT DESIGN 

 
Up to the present, most research has focused on using local 

search algorithms for the design of logic circuits. More 

specifically, genetic algorithms have been the most common 

choice. 

In order to use GAs for this purpose, though, there must be 

some additional formulation of the problem. As we have seen, 

GAs use strings as their basic elements, in the same way that 

biological systems use DNA strands. Therefore, if we are to use 

GAs for circuit design, all of the information about gates and 

connections must be encoded in a string. In accordance with 

the terminology from biology, this string is known as the 

“genotype”. 

 
Fig. 3.1 Representation of genotype 

Genotype is structured from phenotype shows in fig. 3.1. 

Cells in phenotype are lined from C11 to Cnm and finish by 

outputs for set to genotype.  

The genotype is an encoding of all the relevant information 

about the circuit. The relevant information, which is encoded, 

is known as the “phenotype”.  

 
Fig. 3.2 Representation of phenotype 

 

Phenotype consists of inputs, cells, internal connections, 

and outputs shown in Fig. 3.3. Inputs are input signals of a 

digital logic circuit. Each cell is a logic gate which is connected 

thru internal connection. 

The phenotype includes the gates used in the circuit, 

the connections between gates and other essential properties. 

The phenotype can be derived from the genotype, and in turn, 

the operation of the circuit can be derived from the phenotype. 

Attempts were made to explore other circuit 

formulations , but the one which has gained the most favor is 

the array formulation. In this formulation, a circuit is 

conceptualized as an array of logic gates and connections 

between them. 

 
                  Fig. 3.3 Array formulation 
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This is conceptually similar to the way an FPGA is 

structured. At one end of the array are presented the inputs to 

the circuit, and at the other end of the array are the outputs. 

Each gate at a particular location is a member of an array 

column, and it can get its inputs from any gates in the previous 

column. The gates in the left-most column get their inputs from 

any of the circuit inputs, rather than any gates. The benefits of 

applying GAs to logic circuit design have been as good as 

expected. By automating the entire process, GAs have been 

able to quickly develop circuits which are fully functional. 

Moreover, some circuits which have been developed are 

superior to those designed by humans. 

 
Fig. 3.4 Example for Array Formulation of Logic Gates 

The Fig. 3.4 describes an example of array 

formulation for two dimensional template, Gates gets its input 

from one of the gates from the previous columns, From the 

figure 3.4, Second column and first of the  AND gate is getting 

the input from an not gate and the other input is directly 

connected from the input variable „A‟ and similarly the other 

gates in the array gets inputs from the gates in the previous 

columns and the output is produced by the last gate from the 

last column of the array. 

  Genetic algorithm have been a developing 

technology which is been used in every sector. Circuit 

designing is the new concept applied using genetic 

algorithm.GA is a trial and error technique; we can take 

advantage of the speed capability of computers to perform 

thousands of these trials and converge upon an optimal solution  

Truth table which contains data in the form of 0‟s and 

1‟s is converted into variables and stored into string which is 

can be referred  as expression, since the last column of the truth 

table contains  function values these are separated from the 

expression . The function values which contain 1‟s are stored 

and remaining are discarded. After the regular expression is 

formed, then the expression is sub divided based on the „OR‟ 

operator (which joins the expression), the sub expression 

formed can be referred as genes.  Genetic algorithm is applied 

on these genes, the algorithm includes fitness function, 

mutation value and finally the population list. 

The genetic algorithm approach is mainly based on its 

genetic operators like iteration, the number of times the loop is 

being repeated the probability of getting the appropriate 

solution is high. But genetic algorithm is a stochastic process 

where the chance of getting the exact solution is 50/50. 

The generational process is repeated until termination 

condition is reached, the common terminating conditions are: 

-Fixed number of generation reached. 

-An individual is found which satisfies all the 

minimum condition-Highest ranking individual‟s fitness is 

reached or has a plateau such that further    iterations does not 

produce better results 

-Combinations of above. 

 
Fig. 3.5 Design of the Genetic algorithm for Circuit 

designing 

 

4. SYSTEMATIC SEARCH 
 Systematic search is, perhaps, best exemplified by its simplest 

and most intuitive manifestation. Specifically, the type of 

search known as breadth-first search (BFS). It illustrates the 

ideas of systematic search very nicely, including all of its 

strengths and weaknesses. BFS explores all possible options at 

each step, until a solution is found. 

   Not only is BFS systematic, but it is exhaustive. It considers 

all possible search paths at each step. Therefore, it will always 

find a solution if one exists. This is a very desirable property. 

Moreover, by considering nodes closer to the root first, BFS 

will always find the solution which is shallowest in the tree. 

4.1 Representing Systematic Search 

The new formulation hinges on one important idea: the path to 

the goal must represent the desired circuit. 

 
Figure 4.1 Systematic search as applied to logic circuit 
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design. The initial nodes are the input variables. Nodes are 

combined via logical operators to create new nodes 

 

If the path to the goal represents a finished circuit, 

then it may be unclear what the search nodes represent. It may 

not be immediately obvious why, but in this research the search 

nodes were conceptualized as truth-table columns. Initially, 

there are several nodes present in the search tree. Each initial 

node represents the truth-table column for one of the input 

variables (figure 6.1). Just as a conventional truth table is 

seeded with columns that represent every possible combination 

of the inputs, so is the search space initially seeded with search 

nodes representing the truth-table columns of the inputs. To 

forward the search, nodes are not expanded in the conventional 

sense in this formulation. Rather, new nodes are formed by 

selecting two existing nodes and a logic operation. This is 

similar to the way new columns are formed in a conventional 

truth table. After selecting, the logic operation is then applied 

to the corresponding rows in the chosen nodes, and a new truth-

table column is formed which constitutes a new search node.  

 

4.2Implementing Systematic Search 

 

 
Figure 4.2 Systematic search as it was implemented using a 

2-D array to store the nodes. 

  

This systematic search strategy can be implemented 

quite easily using a two dimensional array(figure 6.2). Each 

array column can hold a truth table column from a single node. 

Extra rows can be made below each column to hold the 

additional information about parents, depth size, etc. the first 

columns  

of the array are initially seeded with the truth-table columns of 

the inputs. Creating new nodes is simply a matter of selecting 

two columns and a logical operator, and applying the operator 

to each row of the columns. When new nodes are created, their 

respective truth-table columns can be placed in the next open 

column of the array. 

 

5. PARTICLE SWARM OPTIMIZATION TECHNIQUE 

In PSO, a swarm of particles “fly” through the search space. 

Each particle keeps track of its coordinates in the problem 

space which are associated with the best solution (fitness) it has 

achieved so far. This value is called pbest . Another “best” 

value that is tracked by a particle is the best value, obtained so 

far by any particle In the neighbors of the particle. This 

location is called lbest . When a particle takes all the 

population as its topological neighbors, the best value is a 

global best and is called gbest. 

 The PSO concept consists of, at each time step, changing the 

velocity of (accelerating) each particle toward its pbest and 

lbest locations (local version of PSO). Acceleration is weighted 

by a random term, with separate random numbers being 

generated for acceleration toward pbest and lbest locations. 

PSO was first introduced in 1995. It is a very efficient 

stochastic optimization tool for optimization problems. 

Recently, more and more researchers have been attracted by 

this promising research area. It is demonstrated that PSO gets 

better results in a faster, cheaper way compared with other 

methods Another reason that PSO is attractive is that there are 

few parameters to adjust. One version, with slight variations, 

works well in a wide variety of applications. PSO has been 

used for approaches that can be used across a wide range of 

applications, as well as for specific applications focused on a 

specific requirement. 

5.1 PSO Algorithm: 

 

1. Particle start from a random point 

2. 2 types of information‟s available to the particle for 

taking decision where to move next: 

a. Own Search Experience (particle‟s pervious 

history & its own optimal state)  

b. Performance of the particles in the neighborhood 

(best states reached by its neighbors' so far) 

3. For this is uses the following formula – 

 

P(xid(t)=1)=f(xid(t-1), vid(t-1), Pid, Pgd) (1) 

Where: 

- P(xid(t)=1) is the probability that individual i will choose 1 for 

the bit at the d-th position of the binary string. 

- xid(t) is the current state of the string position d of individual 

i. 

- t  refers to the current iteration. 

- vid(t-1) is a measure of  the individual‟s predisposition or 

current probability of deciding 1. 

- Pid is the best state found so far. 

- Pgd is the best state found in the neighborhood so far. 

  

5.2 Representation of the circuit: 

 In this the matrix representation is used to encode a circuit as 

in work of the Genetic Algorithm. Such representation is shown 

in Figure 4.1. This matrix is encoded as a fixed length string of 

bits or integers from 0 to N – 1, where N refers to the number 

of rows allowed in the matrix (we call it n-cardinality 

alphabet). In this, we will be referring to the Genetic Algorithm 

(GA) that uses an n-cardinality alphabet, since it has been 

found in the past that this version of the algorithm consistently 

produces better results than its binary counterpart. 
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Fig. 5.1 Matrix used to represent a circuit. Each gate gets 

its input from either of the gates in the previous column. 

Note the encoding adopted for each element of the matrix 

as well as the set of available gates used.  

 

 More formally, we can say that any circuit can be 

represented as a bi-dimensional array of gates Si,j, where j 

indicates the level of a gate; so that those gates closer to the 

inputs have lower values of j. (Level values are incremented 

from left to right in the Figure 4.1). For a fixed j, the index i 

varies with respect to the gates that are “next” to each other in 

the circuit, but without being necessarily connected. Each 

matrix element is a gate (there are 5 types of gates: AND, 

NOT, OR, XOR and WIRE1) that receives its 2 inputs from 

any gate at the previous column as shown in Figure 1. Although 

our implementation allows gates with more inputs and these 

inputs might come from any previous level of the circuit, we 

limited ourselves to 2-input gates and restricted the inputs to 

come only from the previous level. This restriction could, of 

course, be relaxed, but we adopted it to allow a fair comparison 

with the GA-based approach. 

 
Fig. 5.2 Encoding used for each of the matrix elements that 

represent a circuit 

 

 A chromosomic string encodes the matrix shown in Figure 

4.2 by using triplets in which the 2 first elements refer to each 

oftheinputs used, and the third is the corresponding gate from 

the available set.The fitness function works in two stages: first, 

it maximizes the number of matches. However, once feasible 

solutions are found, we maximize the number of WIREs in the 

circuit. By doing this, we actually optimize the circuit in terms 

of the number of gates that it uses. The main goal is to produce 

a fully functional design (i.e., one that produces all the 

expected outputs for any combination of inputs according to 

the truth table given for the problem) which maximizes the 

number of WIREs. 

The main motivation for using particle swarm 

optimization (PSO) to design combinational circuits is that this 

algorithm has been found to be very efficient in a variety of 

tasks.  

6. ANT COLONY OPTIMIZATION  
 In ACO algorithm, the optimization problem is 

formulated as a graph G = (C; L), where C is the set of 

components of the problem, and L is the possible connection or 

transition among the elements of C. The solution is expressed 

in terms of feasible paths on the graph G, with respect to a set 

of given constraints. 

A circuit is modeled as a matrix M of size n * m. The 

content of matrix M is dynamically filled. 

Consider the Boolean function f = xyz + xyz + xyz. 

Figure 5.1 shows a graph of some possible paths connecting 

literal x to the intended function f. Assume that the ants start 

the tour from literal x. The ant will traverse the paths by 

selecting the edges through a probabilistic process. Assume 

that the goal is to find the shortest path to repre-sent function f. 

Therefore, the ants that found the path f = x‟yz + xy‟z + xyz‟ 

would return the best representation for function f. 

 

 
Fig.6.1 Some of the possible paths in the function f. 

 

At first, matrix M is filled with randomly generated 

cells. Then, each ant will traverse the matrix. These ants 

originate from a dummy cell called nest (see Figure 5.2), and 

traverse each state (a cell in a column) until it reaches the last 

column or a cell that has no successor. 

The selection edges to traverse is determined by a 

stochstic probability function. It depends on the pheromone 

value (τ) and heuristic value (η) of the edge (or the next cell). 

 

 
 

Fig.6.2 Nest cell and matrix M for ant to be traversed. 
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7. EXPERIMENTAL RESULTS 

Consider the truth table  

 

   Z  W  X  Y   F 

  ___________ 
  0    0   0   0  1 
  0    0   0   1  1 
  0    0   1   0  0 
  0    0   1   1  1 
  0    1   0   0  0 
  0    1   0   1  0 
  0    1   1   0  1 
  0    1   1   1  1 
  1    0   0   0  1 
  1    0   0   1  0 
  1    0   1   0  1 
  1    0   1   1  0 
  1    1   0   0  0 
  1    1   0   1  1 
  1    1   1   0  0 
  1    1   1   1  0 

 

Our PSO algorithm found a solution with a fitness 

value of 34 (i.e., a circuit with 7 gates) 20% of the time, and 

feasible circuits were found 67% of the time. The average 

fitness of the 20 runs performed was 29.35, with a standard 

deviation of 7.4. The graphical representation of the best 

solution found is depicted in Figure 7.1. 

  

 
Fig. 7.1 Graphical representation of the best circuit found 

by PSO. 

 

The comparison of the results produced by PSO, an n-

cardinality GA (NGA), a human designer (using Karnaugh 

maps), and Sasao‟s approach [13] are shown in Table 7.1. 

Sasao has used this circuit to illustrate his circuit simplification 

technique based on the use of ANDs & XORs. His solution 

uses, however, more gates than the circuit produced by our 

approach. 

 

GA Human Designer PSO 

F = (WYX
I
 ⊕ 

((W+Y) ⊕ Z⊕ 

(X + Y +Z))) 

F = ((Z
I
X) ⊕ 

(Y
1
W

1
)) 

+((X1Y)(Z⊕W1)) 

     F = (XY + W ) 

⊕ ((Z ⊕ X)(X + 

Y ))  

10 gates 11 gates 7 gates 

2ANDs, 3ORs, 

3XORs, 2NOTs 

4ANDs, 1OR, 

2XORs, 4NOTs 

2ANDs, 2OR, 

2XORs, 1NOTs 

 

Table: 7.1 Comparison of results between PSO, an n-

cardinality GA (NGA), and human designer for the circuit. 

 

The graphical representation of the circuit for the 

above truth table by ACO algorithm is shown in figure 7.2. 

 
Fig.7.2 Graphical representation of the best circuit found 

by ACO algorithm. 

 

The comparison of the results produced by the ACO, a 

genetic algorithm with GA, a human designer (using Karnaugh 

maps), and in the following Table 7.2. In this case, the ACO 

found a solution slightly better than the GA.s. 

The parameters used by the GA for this example were 

the following: Crossover rate = 0.5, mutation rate = 0.0022, 

population size = 2000, maximum number of generations = 

400. Convergence to the solution shown for the GA in Table 

7.2 was achieved in generation 328. The matrix used by the 

BGA was of size 5 × 5. 

 

GA Human 

Designer 

ACO 

F = (W Y X’ ⊕ 
((W + Y ) ⊕ Z 
⊕ (X + Y + 

Z)))  

F = ((Z’ X) ⊕ 
(Y’ W’ )) + ((X’ 
Y ) 
(Z ⊕ W’)) 

     F = (((W+Y) 

⊕ Z) + X’) 

((YZ’) ⊕ (X’W))  

10 gates 11 gates 9 gates 

2ANDs, 3ORs, 

3XORs, 2NOTs 

4ANDs, 1OR, 

2XORs, 4NOTs 

3ANDs, 2OR, 

2XORs, 2NOTs 

Table: 7.2 Comparison of results between the ACO 

algorithm, the GA, and human designer for the circuit. 

 Circuits produced by the depth-concerned and size 

concerned versions of systematic search is shown in figure 7.3 

 

 
Figure 7.3 Circuits produced by the depth-

concerned(above) and size-concerned(below) versions of 

systematic search. 

The function is F(W,X,Y,Z)={0,1,3,6,7,8,10,13}. 



K.Sagar, IJECS Volume 2 Issue 9 september, 2013 Page No. 2702-2708 Page 2708 

 

8.  CONCLUSION 

This paper presented how genetic algorithm, PSO technique 

and ACO can be used to design combinational logic circuits. 

Systematic and Local search techniques of artificial intelligence 

are studied and have been applied to the problem of genetic 

based logic circuit design.  

We have implemented genetic algorithm using all genetic 

operators on an input for circuit designing, these genetic 

operators include selection, fitness function, crossover and 

mutation 

A computer program has been developed which can reduce the 

number of gates on a particular input .We compared the results 

produced by our genetic algorithm approach against those 

generated by Minimization tool. 

The PSO technique is implemented for the circuit designing. 

The obtained result by PSO is comparable with GA in most of 

the cases and outperforms the Human Designers ( Karnaugh 

Maps and Quine-McCluskey Procedures) in all the cases. POS 

method can produce the global optimal solution but the 

drawback of this method is the process duration become longer 

for more complicated structure. 

ACO technique is presented to optimize the combinational 

logic circuits at the gate level. Results compared fairly well 

with those produced with a GA and are better than those 

obtained using Karnaugh maps and the QuineMcCluskey 

Procedure. Current ACO implementation is limited to circuits 

of smaller size and produces better results compared to Genetic 

Algorithm 

The systematic search approach is also presented to 

find the optimal circuit. The major benefit of using systematic 

search is a guarantee that optimal solutions will be found. 

Indeed, this technique can be used to find the best known 

circuits for any specified functions 
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Expression  Number 
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(X+YZ))⊕  Y)’  

7  

Human 

design  4  
F=((Z’⋅X)+(Y’⋅W’))+ 

((X’⋅Y)(Z⊕W’))  

11  


