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ABSTRACT 

The proposed literature presents the novel framework to maximize the utilization of spectrum in cognitive 

radio networks. In order to achieve the higher spectrum utilization we propose an optical Bayesian detector 

for spectrum sensing to achieve higher spectrum utilization in cognitive radio networks. We derive the 

optimal detector structure for MPSK modulated primary signals with known order over AWGN channels 

and give its corresponding suboptimal detectors in both low and high SNR (Signal-to-Noise Ratio) regimes. 

Through approximations, it is found that, in low SNR regime, for MPSK (M>2) signals, the suboptimal 

detector is the energy detector, while for BPSK signals the suboptimal detector is the energy detection on the 

real part. The performance analysis of proposed framework is expressed in terms of probabilities of 

detection and false alarm, and selection of detection threshold and number of samples. The simulations have 

shown that Bayesian detector has a performance similar to the energy detector in low SNR regime, but has 

better performance in high SNR regime in terms of spectrum utilization and secondary users’ throughput. 

INTRODUCTION: 

It is generally understood that sure forms 

of spectrum users have significant variability in 

their spectrum use and far of their allocated 

spectrum is under-utilized throughout non-peak 

periods [1]. In [2], it reports that the temporal and 

geographical variations in the utilization of the 

appointed spectrum vary from 15 august 1945 to 

85th. The activity ends up in [3] suggest that most 

of the allocated frequencies (ranging from 80 rate 

to 5850 MHz) square measure heavily under-

utilized except for the frequency bands allocated 

for broadcasting and cell phones. The similar 

observation in [4] also shows that there's a high 

likelihood that the first users square measure 

doubtless idle for most of the time. Using 

psychological feature radios (CRs), the secondary 

users (SUs) square measure allowed to use the 

spectrum originally allocated to primary users 
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(PUs) as long as the primary users don't seem to 

be Victimization it temporarily [5,6]. This 

operation is called timeserving spectrum access 

(OSA).  

We tend to develop the analysis to figure 

detection and warning chances and give the 

expressions for the detection threshold and the 

variety of samples needed for sensing. In our 

earlier work [24], as a special case, we've got 

proposed associate degree optimum detector for 

digital primary signals (BPSK modulated signals) 

over AWGN channels, and given the analytic 

results for each low and high SNR regimes. we 

tend to found that for BPSK signals, the optimum 

notice or is associate degree energy detector in 

low SNR regime however employs add of 

received signal amplitude to detect primary 

signals rather than associate degree energy 

detector in high SNR regime. The simulation 

shows that the proposed Bayesian detector 

contains a higher performance in terms of 

spectrum utilization and secondary users’ 

throughput. 

BAYESIAN DETECTOR FOR MPSK 

MODULATED PRIMARY SIGNALS  

In spectrum sensing, there are a unit two 

hypotheses: H0 for the hypothesis that the atomic 

number 94 is absent and H1 for the hypothesis 

that the atomic number 94 is gift. There are a unit 

two necessary design parameters for spectrum 

sensing: likelihood of detection (PD), that is the 

likelihood that SU accurately detects the presence 

of active primary signals, and likelihood of 

warning (PF), that is the likelihood that SU falsely 

detects primary signals once atomic number 94 is 

in truth absent. We tend to define spectrum 

utilization as 

 (  )(    )   (  )       (1) 

And normalized SU throughput as 

 (  )(    )   (2) 

    (    |           (3) 

Probability of detection PD is the probability that 

the test correctly decides H1 when it is H1 

    (    |           (4) 

A. Channel Model and Detection Statistics  

Following the signal model in [9], we tend 

to contemplate time-slotted primary signals 

wherever N primary signal samples area unit 

accustomed discover the existence of atomic 

number 94 signals. The atomic number 94 

symbol length is T that is thought to the SU 

and therefore the received signal r(t) is 

sampled at a rate of 1/T at the secondary 

receiver. For MPSK modulated primary 

signals, the received signal of k-th symbol at 

the metal detector, r(k), is: 

 ( )  {
 ( )                                 

     ( )   ( )            
                 (5) 

where n(k) = nc(k)+j ns(k) is a complex AWGN 

signal with variance N0, nc(k) and ns(k) are 

severally the real and pure imaginary number of 

n(k), φn(k) = 2nπ ,n = 0,1,… ,M − one with 

equiprobability, h is that the propagation channel 

that's assumed to be constant at intervals the 

sensing amount. Denote r = [r(0) r(1) ….r(N − 1)]. 

Assume that the SU receiver has no data with 

regards to the transmitted signals by the pu and 

φn(k),k = 0,1,….,N − one are freelance and 

identically distributed (i.i.d.) and freelance of the 

Gaussian noise. The detection statistics of energy 

detector (ED) may be defined because the average 

energy of ascertained samples as 

    
 

 
∑ | ( )|  
                        (6) 
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Although energy detector does not need 

the knowledge of the image rate, we assume that 

the sample rate is similar to the image rate. It is 

well-known that the optimal detector for binary 

hypothesis testing supported bayesian rule or 

Neyman-Pearson theorem is to figure the 

likelihood quantitative relation so create its call by 

comparing the quantitative relation with the 

threshold [22]. The likelihood quantitative relation 

take a look at (LRT) of the hypotheses H1 and H0 

may be defined as: 

    ( )   
 ( |  )

 ( |  )
        (7)                                       

Denote Ci,j because the price related to the 

choice that accepts Hi if the state is Hj, for i,j = 

0,1. Supported Bayesian call rule [21] to reduce 

the expected posterior price 

∑ ∑     (  ) (  |  )
 
   

 
          (8)                    

it is convenient to derive the optimal detector 

(BD): 

    ( )∑  
  
  

                                  (9) 

Where, 

  
 (  )(       )

 (  )(       )
         (10) 

If C00 = C11 = 0 and C01 = C10, which 

is a uniform cost assignment (UCA), 
 

  
 (  )

 (  )
           (11) 

We can consider C01 = C10 for a more 

general case. In CR networks, it is likely that 

p(H0) > p(H1) because of spectrum under-

utilization. Thus, by (1) and (8), the Bayesian 

decision rule for an optimal Bayesian detector to 

minimize the Bayesian risk can be easily reduced 

to: 

     (  )(    )   (  )          (12) 

This is equivalent to maximizing the spectrum 

utilization. 

The Neyman-Pearson decision rule is 

     ( )         ( )    ̅̅ ̅             (13) 

Where PF is the highest bound of PF . in 

keeping with Neyman-Pearson theorem, the 

structure of the optimal detector (NPD) to 

maximize the detection chance for a given false 

alarm chance is the same as the theorem detector, 

where 9 ought to be thought to be the detection 

threshold for a given false alarm chance [24]. it's 

shown that the difference between NPD and BD is 

a way to determine the detection threshold.  

To decide whether or not primary signals 

square measure gift, we'd like to line a threshold 9 

for each take a look at data point, such that bound 

objective may be achieved. If we tend to do not 

have prior information on the signals, it's difficult 

to line the brink supported atomic number 46. a 

traditional observe is to decide on the brink 

supported PF underneath hypothesis H0. For the 

detector maximizing the spectrum utilization, it's 

easy to work out the detection threshold through 

(10) or (11).  

 ( ⌋  )  ∏
 
 
| ( )| 

  
⁄

   

   
                            (14) 

Since the noise signals n(k),k = 0,…. ,N − 

1 are independent. The PDF of received signals 

over N symbol duration under hypothesis H1 is 

denoted as p(r|H1). With equiprobability of φn(k) 

= 2nπ ,n = 0,1,...,M − 1, and the independence of 

φn(k), we can obtain: 

 ( |  ) 

∏ ∑  ( ( )|  
  ( )

   ( ) (  ( ))

      

   

 

 ∏ ∑

(

  
  

 
| ( )      ( )|

 

  
⁄

   
  (  ( ))

)

  
 

  ( )

   

   

 

 ∏ ∑
 
 
| ( )|  | | 

  

    

   
   

   
     

 

  
 [ ( )       ( )]

      

(15) 
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Hence, the log-likelihood ratio (LLR), in TLRT 

(r), is 

∑    (∑  
 

  
 [ ( )       ( )]   

   )   
             

(16) 

where γ is the SNR of the received signal sample, 

i.e., γ = |h|2/N0 . 

 Let 

  ( )  
 

  
 [ ( )       ( )]          (17) 

It is convenient to verify that vn+M/2(k) = 

−vn(k) so ∑    ( )   
   = 2 ∑      (  ( ))

 
 ⁄   

   . 

From (16), it is easy to derive the structure of the 

optimal detector (BD) for MPSK signals as: 

    
 

 
∑   ( ∑      (  ( ))

 
 ⁄   

   

)

   

   

 

    
      

 

 
 
   

 
 

Although the detector is optimal, it is too 

complicated to use in practice. In the following, 

we will simplify the detector when the SNR is 

very low or very high. 

SUBOPTIMAL DETECTOR AND 

THEORETICAL ANALYSIS 

A. Approximation in the Low SNR 

Regime.  

We study the approximation of our 

proposed detector for MPSK modulated 

primary signals in the low SNR regime. 

When x → 0, cosh(x) ≈ 1 + x2 and ln(1 + 

x) ≈ x, we can obtain: 

∑   ( ∑      (   ( ))

 
 ⁄   

   

)

   

   

 

 ∑   ( ∑ (  
 

   
  
 ( ) 

 
 ⁄   

   

)

   

   

 

 ∑   (  
 

 
∑ (  

 ( ) 

 
 ⁄   

   

)

   

   

     (   ⁄ )   

  
 

 
∑ ∑   

 ( )     (  ⁄ )   
 
 ⁄   

   
   
     (19) 

Through approximation, the detector structure 

becomes: 

 

 
∑ ∑( [ ( )       ( )])

 

 
   

   

   

   

 

    
     

 

 
(  

   

 
)    (20) 

Since 

 [ ( )       ( )]   [ ( )  ]      ( ) 

                                                                                          

  [ ( )  ]      ( ) 

And 

∑     

 
 ⁄   

   

((  ( )))   {
             
 
 ⁄            

∑     

 
 ⁄   

   

((  ( )))   {
             
 
 ⁄            

∑     

 
 ⁄   

   

((  ( )))     

We obtain 

∑ ( [ ( )       ( )])
 

 
 ⁄   

   

  {
[ [ ( )]  ]        
 

 
| ( )]  |         

 

Obviously, the proposed detector (20) 
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(L-ABD-1) is an energy detector in the low 

SNR regime for MPSK sigals (M > 2). The 

detector can be normalized to 

          
 

 
∑ | ( )|    
       

    

 
(   

    

 
)    

(21) 

When the signal is BPSK, the detector (20) 

is equivalent to 

          
 

 | | 
∑ ( [ ( )  ])    
       

    

 
(   

    

 
)   (22) 

This detector has the same structure as the 

suboptimal detector for BPSK signals and real 

noise in [24], though here it uses the real part of 

the received signals as the input. To achieve a 

better approximation, we can use higher order 

approximation for the suboptimal detector 

structure. Since x → 0, cosh(x) ≈ 1+ x
2
/2! + x

4
/4! 

and ln(1+x) ≈ x− x/2 + x/3 , 

 Let   ( )  
 

 
∑ [  

 ( )  
 

  
  
 ( )]

 
 ⁄   

         

(23) 

We obtain 

∑   ( ∑      (  ( ))

 
 ⁄   

   

)

   

   

 

 ∑ [  ( )  
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 ( )

 
   (  ⁄ )]

   
            

(24) 

Thus, with the above approximation, the detector structure 

(L-ABD-2) is: 

         
 

 
∑ [  ( )  

  
 ( )

 
 
  
 ( )

 
]

   

   

 

    
    

    

 
       (25) 

B. Approximation in the High SNR Regime 

We consider the high SNR regime in this 

section. When x   0, cosh(x) ≈ e
x
 /2 , or when 

x < 0, cosh(x) ≈ e
−x

 /2. In other words, when 

|x|   0, cosh(x) ≈ e|x| . Therefore,  

∑   (∑      (   ( ))
 
 ⁄   

   )   
    

∑   (∑
 |  ( )|

 

 
 ⁄   

   )   
         (26) 

From (18), through approximation in the 

high SNR regime, the detector structure (H-ABD) 

becomes
2
  

        

 
 

 
 ∑   ( ∑  

 
 ⁄   

   

 
 
   [ ( )       ( )])

   

   

 

    
        

    

 
        (27) 

In [24], as a special case of MPSK signals, 

we have a tendency to assume a real signal model 

for BPSK modulated primary signals. The 

suboptimal Bachelor of Divinity sight or employs 

the total of received signal magnitudes to detect 

the presence of primary signals in the high SNR 

regime, which indicates that energy detector isn't 

optimal in this regime. The same as the derivation 

in [24], supported (27) we are able to derive the 

suboptimal detector as shown in (28), which 

additionally uses the total of the important part of 

the received signal magnitudes to sight primary 

signals.  

The detector H-ABD is as follows: When 

the signal is BPSK, the detector (20) is admire 

       
 

 
∑ | [ ( )]  |     

    

 

   
   (  

    
    

 
)   (28) 

C. Detection Performance  

 

We provide the detection performance in 

terms of metallic element and PF for L-ABD-1 

during this section. As we have mentioned above, 

the detector for complicated MPSK signals (M > 

2) is that the energy detection, while the detector 

for BPSK signals is that the real part energy 

detection. suppositious analysis for such energy 

detections may be found in [10,24].  
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 1) complicated MPSK Signals (M > 2): below 

H0, the mean and variance of TL−ABD−1 ar as 

follows [10]: 

      
  

  
 

 
     (29) 

         On the other hand, under H1, the 

mean and variance of TL−ABD−1 are as           

       follows [10]: 

  (   )    
  

 

 
(    )  

      (30) 

Thus, the detection probability is: 

    (         
  
 
(  

    

 
) |  |)
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(  
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 √ (    )
)     (31) 

Where  

 ( )  
 

√  
∫   

  

 
   

 
  

and the false alarm probability is: 

    (         
  
 
(  

    

 
) |  |) 

  (

  
 
(  

    
 
)    

 
) 

  (
    

 √ 
)                                             (32) 

2) BPSK Signals: Under H0,  
 [ ( )  ]

| |
 = 

 [ ( )  ]

| |
     It is easy to verify that 

 [ ( )  ]

| |
 is 

Gaussian distributed with mean 0 and variance 

N0/2. Thus the mean and variance of TL−ABD−1 are 

as follows [10]: 

  
  
  ⁄    

  
 

  
            (33)                           

On the other hand, Under H1,    
 [ ( )  ]

| |
 = 

 [ ( )  ]

| |
     It is easy to verify that | |    ( )  

 
 [ ( )  ]

| |
 is Gaussian distributed with mean 0 and 

variance N0/2. Thus the mean and variance of 

TL−ABD−1 are as follows [10]: 

  (  ⁄   )    
  

 

  
(    )  

         (34) 

Thus, the detection probability is 

    (         
  
  
(  

    

 
) |  |) 

  (

  
  
(  

    
 
)    

 
) 

  (
         

 √ (    )
)           (35) 

And the false alarm probability is 

     (         
  

  
(  

    

 
) |  |)        

  (

  
  
(  

    

 
)   

 
)        (

    

 √  
)           (36) 

3) Real BPSK Signals and Real Noises: If 

the signal is BPSK and the noise is real, 

according to [9, Eq. (4)], we can compute 

probability of false alarm as: 

   
 (  ⁄  

       

  
)

 (  ⁄ )
         (37) 

     
 ⁄
(√    √

      

 
)    (38) 

Where QN/2(•, •) is the generalized 

Marcum Q-function and can be computed with the 

geometric approach [23]. An alternative form for 

PD is also shown in [24, Eq. (23)], which is the 

same as (35). 

D. Detection Threshold and Number of 

Samples  

In our proposed Bayesian detector 

for MPSK modulated primary signals over 

AWGN channels in the low SNR regime, 

using (29)-(30), we have 

  

{
   ( √       (  ))        

   ( √        (  ))                      
(  )              
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for a given PF , or 

  

{
   ( √ (    )     (  )    

 )        

   ( √ (    )      (  )     
 )            

        (40) 

for a given PD. For the given design parameters PF 

and PD, we can obtain the number of samples N as 

follows: 

  

{
 

 [
   (  ) √       

  (  )

 
]
 

               

[
   (  ) √       

  (  )

 
]
 

              

  (  )                 

Notice that when M = 2, the above is the 

same as [24, Eq. (36)]. Equation (41) is also the 

minimum number of samples for NPD. When |x| 

is large, we can approximate Q(x) function with 

the following upper and lower bounds 

∑   
   
        

 
<    ( )   

 

 
  

 

 
            

(42) 

where ak and bk are constant coefficients 

that are independent of x
3
. The left inequality is 

by [25, Eq. (5)], and the right inequality is based 

on Chernoff bound. Alternatively, the upper and 

lower bounds of Q(x) can be shown as follows4 
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(43) 

From (39) and the upper bound of (43), we can obtain 

   
 

 

 

√  
  

 

 
                     (44) 

Where x>0 and 

  {

    

 √  
                                   

    

 √  
                                      

     (45) 

Similarly, from (40) and the lower bound of (43), 

we can obtain 

     
 

    
 

√  
  

 

 
  

       (46) 

Where x   and 

  {

        

 √ (    )
                        

         

 √ (    )
                                   

       (47) 

 

SIMULATION RESULTS: 
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 CONCLUSION 

In our proposed framework to achieve the higher 

spectrum utilization we propose an optical 

Bayesian detector for spectrum sensing to achieve 

higher spectrum utilization in cognitive radio 

networks. We derive the optimal detector structure 

for MPSK modulated primary signals with known 

order over AWGN channels and give its 

corresponding suboptimal detectors in both low 

and high SNR (Signal-to-Noise Ratio) regimes. 

 The proposed paper evaluates the 

performance which is alike to the energy detector 

is based on the Bayesian detector.. But they are 

different in high SNR regime, where Bayesian 

detector has a better performance in terms of 

spectrum utilization and secondary users’ 

throughput. The simulation results confirm that 

energy detector is not optimal in high SNR 

regime. It is also observed that due to the chosen 

detection threshold, probability of false alarm. 

The Bayesian detector is strictly designed to 

increase the spectrum analysis performance  
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