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Abstract: The public health issues have a lot of importance in our society, particularly the Human Immunodeficiency Virus (HIV) 

infection. Many models based on ordinary differential equations (ODEs) or partial differential equations (PDEs) have explained different 

aspects of the dynamics of the virus-immune system interaction. Although, they assume that various populations of cells and viruses have 

been homogeneously distributed over the space and time in which the infection takes place. In this paper, we present a cellular automaton 

(CA) that models the interaction between the cytotoxic T lymphocytes (CTLs) Cells and the immunoglobulin of the immune system and HIV 

in blood stream. Our approach is based on simple calculation rules that are easy to implement. The results of our (CA), taking into account 

the role of the two components of the adaptive immune system to overcome HIV infection reproduces the acute stage and the beginning of 

the second phase of the HIV infection development. 
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1. Introduction 

Acquired Immunodeficiency Syndrome (AIDS) which is 

caused by the propagation of the HIV infection has become a 

worldwide health problem, because yearly it is responsible for 

millions of deaths in the globe. When HIV infects the body, it 

is propagated throughout the lymphatic tissues. When it 

reaches the blood stream its main target is the lymphocyte-T 

CD4+ (CD4) cells. On the other side, the body triggers the 

adaptive immune response, which is characterized in two ways: 

cellular immune response and humoral immune response in 

order to eradicate this strange object. The humoral response is 

characterized by the production of antibodies by certain 

directed lymphocytes against all viral proteins. Antibodies, also 

called immunoglobulin, are proteins synthesized by the B 

lymphocytes. Generally an HIV-infected patient develops a 

high concentration of anti HIV antibodies between one and 

three months after infection [1]. The cellular response is based 

on direct action by some CD8+ T-lymphocytes (called 

cytotoxic) and eliminates infected cells directly. They are cells 

charged to maintain the integrity of the cellular populations by 

destroying the cells infected by viruses, the cells modified by a 

change, like the cancer cells, or the grafted cells. They 

intervene in immunity with cellular mediation. The cytotoxic T 

lymphocytes are one of the main mechanisms involved in viral 

control [2]. The HIV infection is detected by the laboratory 

observation of the amount of virus HIV-RNA and the number 

of the helper cells CD4 in blood. Clinically, it is known that the 

HIV infection exhibits three phases [3, 4], the primary phase, 

which is described by relatively short period of time (in days), 

after the virus invaded the body, a notable decrease of the 

immune cell count CD4, following by a sharp decline with an 

increase of the amount of the virus. The clinical latency phase 

measured from one to ten years, in this phase, the immune 

system reduces the virus and the rate of viral production 

reaches a lower level for a long time. The third phase of the 

infection is characterized when the level of the concentration of 

the T cells is lower than a critical value (about 30%). Figure 1 

shows the natural history of HIV infection dynamics as 

currently accepted by [4]. Recently, many researchers have 

used mathematical models [5, 6, 7, 8] in order to understand 

the mechanism of the dynamics involved in the interaction 

between the acquired immune system and the HIV infection. 

Most of these models have been done using ODEs or PDEs 

approaches [9, 10, 11, 12, 13]. For example in [12, 13], Hattaf 

and Yousfi presented models which have good explained 

different aspects of the dynamics of the HIV immune system 

interaction. Although, they assumed that various populations of 

cells and viruses have been homogeneously distributed over the 

space and time in which the infection takes place and they 

describe the system using continuous functions. Due to the 

discrete nature and the inhomogeneity of the biological entities      

involved in the phenomena, we propose in this paper a model   
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to simulate the dynamic interaction between the adaptive 

immune system and the HIV infection based on a cellular 

automaton (CA). To explain this dynamics of HIV infection, 

many authors [14, 15, 16, 17, 18, 19] have developed different 

CA models. The popular of them was presented in [14], the 

authors built a CA with four states to model the evolution of 

the HIV infection, namely the healthy, the first infected phase, 

the second infected phase, the phase before the cell dies and the 

dead state. Their model matched the clinically experienced 

three phases of the HIV infection. In [15], the CA proposed by 

Santos et al. was extended to study the dynamics of the drug 

therapy in HIV infection. The model simulated the four phases 

of infection dynamics with drug treatment: acute, chronic, drug 

treatment response and the onset of AIDS. Shi et al. proposed 

in [16], a CA model for HIV dynamics by including the virus 

replication cycle and a mechanism for drug therapy. They 

assumed that the viral load is strictly proportional to the 

number of infected cells. Recently, Precharattana et al. 

presented in [17], a CA model by introducing explicitly the role 

of the dendritic and CD8+ cells from the immune system. Their 

CA model reproduced the acute phase of the HIV infection. 

The majority of these CA models studied the dynamics in the 

lymph node. However, most clinical indications of progressing 

are based on blood data, because these data are most easily 

obtained. Furthermore the bloodstream Toroidal can be model 

with a 2-D CA because it is shaped like a torus in which 

coexists all type of cells [18, 19]. Therefore it is useful to 

consider the dynamics in the plasma compartments. Thus, in 

our model, we consider cells from blood stream to study HIV 

infection. In [18, 19], Jafelice et al. built a two-dimensional CA 

to describe and understand the interaction between HIV and the 

immune system based on blood data. Nevertheless, they 

considered only the cellular response from the immune system. 

The novelty of our model is that takes also into account of the 

humoral response, which has a crucial role in the adaptive 

immune system. Our spatially structured model represents an 

important step forward in understanding the virus infection 

from the dynamic point of view and allows a detailed look at 

local behavior. The simulation results show that our model 

reproduces the evolution of the HIV infection without medical 

treatment, in particular, the acute stage. This paper is organized 

as follows: In next Section, an overview of CA and a definition 

of bidimensional CA is given. The proposed model is 

introduced in section 3. The results and some graphical 

simulations are shown in section 4. Finally, in the last section 

the conclusion and future work are presented. 

2. Overview of Cellular Automata 

Cellular automata (CA) are discrete dynamical systems, whose 

behavior is completely specified by the terms of a local relation 

and variable states, namely the values associated with locations 

of grid cells are driven by simple rules that depend on the states 

of the neighbors of each variable. They describe the behavior 

of discrete systems in space, time, and state. Many epidemic 

complex systems containing several discrete elements with 

local interactions have been well modeled by the CA [18, 19]. 

They have been successfully applied in various fields such as 

finance, medicine, engineering, physics and biology. For 

example, in medicine, the CA have been widely used in 

medical diagnostics, detection and evaluation of medical 

conditions and cost estimation of treatment [22, 23, 24]. Due to 

their conceptual simplicity, ease of implementation for the 

numerical simulation, and the ability to expose a variety of 

complex behavior, the CA are a class of completely distinct 

dynamical systems, which has become a central topic in the 

sciences of complexity. In the 1950s von Neumann and Ulam 

introduced the CA in order to model a massively parallel and 

complex system such as the brain. The method became popular 

in the 1970s with the “Game of Life” of John Conway, 

popularized by Martin Gardner [25]. In his books, Wolfram 

[26, 27] presented a large study of properties of CA.  

 

3. The  Model 
 

Cellular In order to model the life cycle of the interaction 

between the acquired immune system and the HIV infection in 

blood data, we use a two-dimensional CA which can simulate 

the bloodstream toroidal system. The set of states is composed 

of six states, namely, the uninfected cell state (T), the infected 

cell state (I), the state represented by free HIV (V), antibody 

(AB), the CTL (CTL), and the death state (D). In the next 

section we describe the behavior of each cell and the rules of 

the update of the state covered by each of them after one 

iteration. Due to the kind of contact between different particles 

(cells), we use in this CA the Neumann Neighborhood with 

radius one. 

Update of uninfected cells (T): A specific number of 

uninfected cells will be randomly distributed over the grid. 

Such cells become infected if there is a virus in their 

neighborhood, otherwise they age after each iteration with one 

and die if they reach their lifespan τT. After each iteration such 

cells are produced with a giving rate PrT and are randomly 

distributed. 

Update of infected cells (I): The infected cells are produced 

by the presence of virus in the neighborhood of uninfected 

cells. They become a free virus (HIV) with a given probability 

p or they age after each iteration and die 4 with probability (1- 

p), when they reach their lifespan τI. An infected cell will be 

killed by a CTL existing in its neighborhood. 

Update of free virus (V): When the HIV invades the body, it 

searches for uninfected cells (CD4) in its neighborhood. When 

it meets one of them, the host cell (T) becomes infected. The 

virus ages and can be either died when it reaches its lifespan τV 

or can be neutralized by the presence of an antibody in its 

neighborhood. 

        Figure 1: The natural history of HIV infection [4]. 
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Update of CTLs (CTL): The CTLs kill the HIV found in their            

neighborhood. After each iteration, they are produced with rate 

PrCTL and randomly distributed and they age by one. When they 

reach their lifespan τCTL, they die.                                      

Update of antibodies (AB): The main role of the particular 

antibodies is to control the HIV. They eradicate each particle of 

the virus found in their neighborhood, and like the CTL, they 

age by one after each iteration and die when their lifespan τAB  

is reached. After each iteration they are produced with rate PrAB 

Update of dead cells (D): We assume that dead cells in the 

blood stream can become uninfected cells due to the 

replenishment process. For testing and illustrating the working 

of our CA we present in the next section a simulation.  

4. Simulation and Results  

For the simulation of our model we have developed a program 

with C Sharp language. We have used the data grid view as 

structure of data to represent the 2-D CA. Uninfected cells, 

infected cells, free virus particles, CTLs and antibodies are 

represented respectively by green, blue, black, yellow and 

white colors. The user can instantly view the interaction 

between different cell types as represented in Figure 3. To 

ensure the dynamic of the behavior of cells as in the real case, 

they are randomly distributed on the grid.  

 

 

 

We note that each iteration corresponds to a week’s time. We 

run the program several times with different initial 

configurations of input parameter values. We have considered a 

square grid of size 31x31 and we have chosen the values of the 

following parameters:                                                                  

- The start number of uninfected cells CD4, which are target of 

the virus, is equal to 200.                                  

- The number of infected CD4 cells is about 0.05 % [14] of the 

healthy cells.                         

- The number of free virus particles: we have considered that 

the virus exists in the body and we have taken 0.5% [Ad-hoc] 

of the host cells.                        

- The initial number of the cytotoxic T lymphocytes is 5 [Ad-

hoc]. 

                              
Para

mete

r 

 
          Definition 

 

Value 

 

Reference 

 

 L 

Lattice size, with L*L is the   

total number of cells in the   

Lattice 

 

31 

Ad hoc 

 

  P 

The probability that an 

infected cell becomes a virus 

 

0.99 

Ad hoc 

  Lifespan time of uninfected    

Cells 

 

3 

[18, 19] 

 Production rate of uninfected   

Cells 

 

20 

Ad hoc 

 Initial number of uninfected    

Cells 

 

200 

[18, 19] 

 

 

 

Life span of infected cells 

 

5 

[18, 19] 

 

 

 

Life span of antibodies 

 

15 

Ad hoc 

 

 

 

Production rate of antibodies 

 

50 

Ad hoc 

 

 

 

Lifespan time of CTLs 

 

15 

[18, 19] 

 

 

 

Production rate of CTLs 

 

30 

Ad hoc 

 Life span of free virus    

Cells 

 

4 

[18, 19] 

  

Number of iterations 

 

50 
[18, 19] 

                                      

- The start number of specific antibodies is the same as of the 

number of CTLs equals to 5 [Adhoc].          

Table1 lists values and definition of parameters used in this 

model. The CA based model, that describes the behavior of the 

interaction between the adaptive immune system and HIV is 

simulated. Figure 4-a shows the initial configuration of cell 

states. Figure 4-b describes the state of the CA after two 

months. There is an increase in the number of antibodies and 

CTLs and a decline in number of other cells. As shown in 

figure 5-a, the evolution of the uninfected cells can be divided 

into two different phases. During the first days after infection, 

there is an exponentially decrease of the number of CD4, which 

corresponds to the acute phase of the HIV infection. After the 

fifth week, the number of uninfected cells starts to stabilize and 

it remains at the same level during the next months with a slight 

change that is the latency phase. 

Figure 2: Graph of the cellular automata that illustrates 

the interaction of different cells in the blood stream by 

the HIV infection with Pr x and _ are respectively the 

production rate and the life span time of a cell of type x 

 

 

Figure 3: A snapshot of the software that simulates the 

interaction between the adaptive immune cells and the 

HIV infection are randomly distributed on the grid.  

 

 

Table1: Model parameters used for the cellular automata 

 

τCTL 

PrAB 

 τAB 

  τI 

PrCTL 

τV 

PrT 

NT 

Ni 

 τT 
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The curve of development of viral load in the body is increased 

during the first weeks as described in figure 5-b. It reaches its 

peak in the 5th week, which it corresponds to the minimum 

point of the number of uninfected cells. 

   

 

   

 

 

Afterwards, the evolution of the infection has become more 

stable with a small change, which it explains the beginning of 

the second phase of the infection. The viral load is created by 

the proliferation of the infected cells, thus the evolution of 

these last over the time is nearly the same as of the 

development of the viral load with a step time (one week) 

backward. After the invasion of HIV in the human body, the 

immune system triggers cellular response via antibodies to 

attack the virus and humoral response with CTLs to clean the 

body from infected cells and limit the spread of the HIV. 

Figure 5-c and figure 5-d shows respectively the evolution of 

the CTLs and the antibodies over time. The numbers of these 

two last increase and multiply over time. That is the normal 

behavior of the acquired immune system. Figure 5-e includes 

the development of all cells. The simulation results show good 

agreement with the behavior that is observed in practice as 

shown in figure 1, which implies that Cellular Automata is an 

effective analyzing method in the simulation of strategic 

decision for drug treatments. 

5. Conclusion and Future Work                                            

  
In this present paper, we propose a new mathematical model 

based on CA approach to simulate the interaction between the 

adaptive immune system and the HIV. In our model we 

introduced the role of the CTLs and the antibodies to achieve  

Figure 4: Snapshots of states of CA: (a) Start state, (b) State 

after two months. 

 

(a) 

(b) 

(a) Uninfected CD4+ 

(b) Free Virus 

(c)  CTLs 

(d)  Antibodies 

(e)  All Cells 

Figure 5: Simulation results of the CA based model 
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respectively the infected cells and the free virus. Since viral 

propagation and the immune response are fundamentally local, 

these features are of central importance. Our spatially explicit 

model takes into account the local interactions and the spatial 

inhomogeneity unlike to the well-mixed population model. Our 

CA is composed of six states to describe the dynamic of the 

HIV infection. We have developed software with an interface 

to instantaneous visualization that simulates the comportment 

of HIV and the immune system to illustrate and validate our 

model. The simulations obtained seem to be in agreement with 

the expected behavior of a real infection as shown in figure 1. 

In the next step we intend to extend our model for taking 

account of medical treatment. Also, we plan to improve our 

model by doing research on the values of the input parameters 

closer to reality. As third idea, we would perform the run time 

of our program involving parallel programming with GPUs and 

the programming language CUDA in order to consider a larger 

number of cells and to study the infection for years (larger 

number of iterations). 
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