
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 5 Issue 1 Jan 2016, Page No. 15415-15420

Miss Mugdha A. Kulkarni 1, IJECS Volume 05 Issue 1 January 2016 Page No.15415-15420 Page 15415

I
2
mapreduce: Fine-Grain Incremental Processing In Big Data

Mining
Miss Mugdha A. Kulkarni

1
, Prof I.R.Shaikh

2

1
Computer Engineering Department, Savitri Bai Phule University,Pune,India,

mugdhakulkarni966@gmail.com
2
Computer Engineering Department, Savitri Bai Phule University,Pune,India,

imran.shaikh22@gmail.com

Abstract: I
2
MAPREDUCE: Fine-Grain Incremental Processing in big data mining a novel incremental

processing extension to Map Reduce, the most widely used framework for mining big data. As compare with

the high-tech work on In coop, I
2
MapReduce has its own advantages (i) It prefers key-value pair level

incremental processing to perform instead of task level re-computation, (ii) It supports one-step computation

along with more sophisticated iterative computation, which is extensively used in data mining applications,

and (iii) It reduce I/O overhead for accessing preserved fine-grain computation states by incorporating the

set of novel techniques. I evaluate I
2
MAPREDUCE: Fine-Grain Incremental processing in big data mining

using a one-step algorithm and four iterative algorithms with assorted computation characteristics.

Experimental results on Amazon EC2 show significant performance improvements of I
2
MapReduce

compared to both plain and iterative MapReduce performing re-computation.

Keywords: Incremental processing, MapReduce, iterative computation, big data .

Introduction:--

Healthcare contain huge amount of data which

becomes essential for performance and planning.

For every organization data is important for

gaining the knowledge, annotation, research. So

for healthcare big data is one of the solutions for

potential impact. A programming model Map

Reduce and supporting file system known as

Hadoop Distributed File System (HDFS)

processes the data and with the help of this i can

analyze unstructured data into structured data. The

Map-Reduce based approach is used for data cube

materialization and mining over massive datasets

using non algebraic measures

 Data Provider which will provide a high

Dimensional patient data, provider can collect all

the data and store it into structured database.

Another authorized person in our system who can

access the patient data allocated from provider

only.

Data Cube:- The multi-dimensional views in data

warehousing is provided by data cube model. If n

size given in relation then there are 2^n cuboids

and this cuboids computed in the cube

materialization using algorithm [2] which is able

to support the feature in MapReduce for efficient

cube computation.

MapReduce:- MapReduce programming model

processes large volumes of data in parallel

manner by dividing the work into a set of

autonomous tasks. This model explains the nature

of programming model and how it can be used to

write programs which run in the Hadoop

environment.

http://www.ijecs.in/
mailto:mugdhakulkarni966@gmail.com

DOI: 10.18535/Ijecs/v5i1.3

Miss Mugdha A. Kulkarni 1, IJECS Volume 05 Issue 1 January 2016 Page No.15415-15420 Page 15416

MR-Cube:- MapReduce based algorithm uses

MR-Cube that introduce efficient cube

computation [5] and identifies cube sets/groups on

non algebraic measures. Complexity of the

cubing task depends on two things which are size

of data and size of cube lattice.

Literature survey

I
2
MapReduce: Incremental Iterative

MapReduce

Cloud intelligence applications often perform

iterative computations (e.g., PageRank) on

constantly changing data sets (e.g. Web graph).

While previous studies extend MapReduce for

efficient iterative computations, it is too expensive

to perform an entirely new large-scale

MapReduce iterative job to timely accommodate

new changes to the underlying data sets. In this

paper, i propose I
2
to support incremental iterative

computation. I observe that in many cases, the

changes impact only a very s- mall fraction of the

data sets, and the newly iteratively converged

state is quite close to the previously converged

state.

Parallel Data Processing with MapReduce

A prominent parallel data processing tool

MapReduce is gaining significant momentum

from both industry and academia as the volume of

data to analyze grows rapidly. While

MapReduce is used in many areas where massive

data analysis is required, there are still debates on

its performance, efficiency per node, and simple

abstraction. This survey intends to assist the

database and open source communities in

understanding various technical aspects of the

MapReduce framework. In this survey, i

characterize the MapReduce framework and

discuss its inherent pros and cons.

 MapReduce: Simplified Data Processing on

Large Clusters

MapReduce is a programming model and an

associated implementation for processing and

generating large data sets. Users specify a map

function that processes a key/value pair to

generate a set of intermediate key/value pairs, and

a reduce function that merges all intermediate

values associated with the same intermediate key.

Many real world tasks are expressible in this

model

A Model of Computation for MapReduce

 In recent years the MapReduce framework

has emerged as one of the most widely used

parallel computing platforms for processing data

on terabyte and petabyte scales. Used daily at

companies such as Yahoo!, Google, Amazon, and

Facebook, and adopted more recently by several

universities, it allows for easy parallelization of

data intensive computations over many machines.

One key feature of MapReduce that di_erentiates

it from previous models of parallel computation is

that it interleaves sequential and parallel

computation. I propose a model of effcient

computation using the MapReduce paradigm

Big Data Mining using Map Reduce

Big data is large volume, heterogeneous,

distributed data. Big data applications where data

collection has grown continuously, it is expensive

to manage, capture or extract and process data

using existing software tools. For example

Weather Forecasting, Electricity Demand Supply,

social media and so on. With increasing size of

data in data warehouse it is expensive to perform

data analysis. Data cube commonly abstracting

and summarizing databases. It is way of

structuring data in different n dimensions for

analysis over some measure of interest. For data

processing Big data processing framework relay

on cluster computers and parallel execution

framework provided by Map-Reduce.

 Large-scale data processing using mapreduce

in cloud computing environment

 The computer industry is being challenged to

develop methods and techniques for affordable

DOI: 10.18535/Ijecs/v5i1.3

Miss Mugdha A. Kulkarni 1, IJECS Volume 05 Issue 1 January 2016 Page No.15415-15420 Page 15417

data processing on large datasets at optimum

response times. The technical challenges in

dealing with the increasing demand to handle vast

quantities of data is daunting and on the rise. One

of the recent processing models with a more

efficient and intuitive solution to rapidly process

large amount of data in parallel is called

MapReduce. It is a framework defining a template

approach of programming to perform large-scale

data computation on clusters of machines in a

cloud computing environment. MapReduce

provides automatic parallelization and distribution

of computation based on several processors. It

hides the complexity of writing parallel and

distributed programming code. This paper

provides a comprehensive systematic review and

analysis of large-scale dataset processing and

dataset handling challenges and requirements in a

cloud computing environment by using the

MapReduce framework and its open-source

implementation Hadoop.

Matchmaking: A New MapReduce Scheduling

Technique

 MapReduce is a powerful platform for large-scale

data processing. To achieve good performance, a

MapReduce scheduler must avoid unnecessary

data transmission by enhancing the data locality

(placing tasks on nodes that contain their input

data). This paper develops a new MapReduce

scheduling technique to enhance map task’s data

locality. I have integrated this technique into

Hadoop default FIFO scheduler and Hadoop fair

scheduler. i compare MapReduce scheduling

algorithms with an existing data locality

enhancement technique (i.e., the delay algorithm

developed by Facebook).

 Twister: A Runtime for Iterative MapReduce

 MapReduce programming model has simplified

the implementation of many data parallel

applications. The simplicity of the programming

model and the quality of services provided by

many implementations of MapReduce attract a lot

of enthusiasm among distributed computing

communities. From the years of experience in

applying MapReduce to various scientific

applications i identified a set of extensions to the

programming model and improvements to its

architecture that will expand the applicability of

MapReduce to more classes of applications. In

this paper, i present the programming model and

the architecture of Twister an enhanced

MapReduce runtime that supports iterative

MapReduce computations efficiently.

Existing System:

In the epoch of “big data”, iterative

computations take more time to complete the

processing of large amount of data. As new

changes occur in data the previous iterative

computation results become decayed and outdated

over time. So periodically refreshment of iterative

computation is very advantageous For example,

The PageRank algorithm in web search engines,

incline descent algorithm for optimization, and

many other iterative algorithms for applications

including re-commander systems [2] and link

prediction [10]. the PageRank algorithm

computes ranking scores of web pages based on

the web graph structure for supporting web

search. However, the web graph structure evolves

Web pages, creation, deletion and updation of

hyperlinks. As the web graph evolves, the result

of PageRanking algorithm gradually become stale

and potentially lowers the quality of web search.

Hence, it is necessary to refresh the PageRank

computation regularly. Nowadays MapReduce [6]

is the most famous platform for big data analysis

in the cloud. Numerous previous studies enlarge

MapReduce concept for efficient iterative

computation [5, 7, 20]. However, our groundwork

results have shown that for starting a new iterative

computation from scratch will be extremely

expensive McSherry et al. proposed a new

computational model for incremental iterative

computations based on differential dataflow that is

hugely different from the MapReduce

programming model. To the best of our

knowledge, for popular platform, MapReduce, no

solution has so far been demonstrated so as to able

DOI: 10.18535/Ijecs/v5i1.3

Miss Mugdha A. Kulkarni 1, IJECS Volume 05 Issue 1 January 2016 Page No.15415-15420 Page 15418

to efficiently handle incremental data changes for

complex iterative computations. A new

MapReduce well-suited model which supports

incremental iterative computation is preferred

Disadvantages of Existing system:

1. The existing system will not gives promising

output which efficient for working in the Big

Data. The update of any data will result in re-run

the complete setup.

2. It does support only task-level incremental

processing.

3. It does support only one-step computation

Proposed System:

Iterative processing. A number of distributed

frameworks have recently emerged for big data

processing. I discuss the frameworks that improve

MapReduce. HaLoop, a modified version of

Hadoop, improves the efficiency of iterative

computation by making the task scheduler loop

aware and by employing caching mechanisms.

Twister employs a lightweight iterative

mapReduce runtime system by logically

constructing a Reduce-to-Map loop. I
2

MapReduce [10] supports iterative processing by

directly passing the Reduce outputs to Map and by

distinguishing variant state data from the static

data. I
2
MapReduce improves upon these previous

proposals by supporting an efficient general-

purpose iterative model. Unlike the above

MapReduce-based systems, Spark uses a new

programming model that is optimized for

memory- resident read-only objects. Spark will

produce a large amount of intermediate data in

memory during iterative computation. When input

is small, Spark exhibits much better performance

than Hadoop because of in-memory processing.

However, its performance suffers when input and

intermediate data cannot fit into memory.

I experimentally compare Spark and I
2
MapReduce

in, and see that I
2
MapReduce achieves better

performance when input data is large. Pregel

follows the Bulk Synchronous Processing (BSP)

model. The computation is broken down into a

sequence of super steps. In each super step, a

Compute function is invoked on each vertex. It

communicates with other vertices by sending and

receiving messages and performs computation for

the current vertex. This model can efficiently

support a large number of iterative graph

algorithms. Open source implementations of

Pregel include Giraph, Hama , and Pregelix.

Compared to I
2
MapReduce, the BSP model in

Pregel is quite different from the MapReduce

programming paradigm. It would be interesting

future work to exploit similar ideas in this paper to

support incremental processing in Pregellike

systems. Incremental processing for one-step

application. Besides Incoop, several recent studies

aim at supporting incremental processing for one-

step applications. Stateful Bulk Processing

addresses the need for stateful dataflow programs

It provides a group wise processing operator

Translate that takes state as an explicit input to

support incremental analysis. But it adopts a new

programming model that is very different from

MapReduce. In addition, several research studies,

support incremental processing by task-level re-

computation, but they require users to manipulate

the states on their own. In contrast, I
2
MapReduce

exploits a fine-grain kv-pair level re-computation

that are more advantageous. Incremental

processing for iterative application. Naiad

proposes a timely dataflow paradigm that allows

stateful computation and arbitrary nested

iterations. To support incremental iterative

computation, programmers have to completely

rewrite their MapReduce programs for Naiad. In

comparison, i extend the widely used MapReduce

model for incremental iterative computation.

Existing MapReduce programs can be slightly

changed to run on I
2
MapReduce for incremental

processing.

Modules

I implement the proposed research work on health

care dataset system. The below modules will

work in whole system

1: Data Provider

DOI: 10.18535/Ijecs/v5i1.3

Miss Mugdha A. Kulkarni 1, IJECS Volume 05 Issue 1 January 2016 Page No.15415-15420 Page 15419

Which will provide a high Dimensional patient

data, provider can collect all the data and store it

into structured database.

2: Doctor

Doctor is second module in our system who can

access the patient data allocated from provider

only. (Same module will work with HDFS

architecture with cube query, I
2
Map reduce,

Materialize view etc)

3: Admin

Admin who can access everything from system or

he have all credential like create alter delete also.

Architecture:

Algorithm 1. Query Algorithm in MRBG-Store

Input: queried key: k; the list of queried keys: L

Output: chunk k

1: if ! read cache.contains(k) then

2: gap =0, w =0

3: i=k’s index in L That is, L i = k

4: while gap < T and w + gap + length(L i) <

readcache:

size do

5: w =w+gap + length(L i)

6: gap= pos(L i+1) pos(L i) - length(L i)

7: i =i + 1

8: end while

9: starting from posk, read w bytes into read cache

10: end if

11: return read cache.getchunk(k)

CONCLUSION

I have described I
2
MapReduce- Fine Grain

Incremental Processing based on MapReduce

framework. That supports kv-pair level fine-grain

incremental processing to minimize the amount of

re-computation and MRBG-Store to support

efficient quires to retrieve fine-grain states for

incremental processing and to preserve the fine-

grain states in MRBGraph. This framework

combines a fine-grain incremental engine, a

general-purpose iterative model, and a set of

effective techniques for fine-grain incremental

iterative computation. Real-machine experiments

show that I
2
MapReduce can significantly reduce

the run time for refreshing big data mining results

compared to re-computation on both plain and

iterative MapReduce.

REFERENCES

[1] J. Dean and S. Ghemawat, Mapreduce:

Simplified data process- ing on large clusters, in

Proc. 6th Conf. Symp. Opear. Syst. Des.

Implementation, 2004,

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave,

J. Ma, M. McCauley, M. J. Franklin, S. Shenker,

and I. Stoica, Resilient distributed datasets: A

fault-tolerant abstraction for, in-memory cluster

computing, in Proc. 9th USENIX Conf. Netw.

Syst. Des. Implementation, 2012.

[3] G. Malewicz, M. H. Austern, A. J. Bik, J. C.

Dehnert, I. Horn, N. Leiser, and G. Czajkowski,

DOI: 10.18535/Ijecs/v5i1.3

Miss Mugdha A. Kulkarni 1, IJECS Volume 05 Issue 1 January 2016 Page No.15415-15420 Page 15420

Pregel: A system for large-scale graph processing,

in Proc. ACM SIGMOD Int. Conf. Manage. Data,

2010,

[4] S. R. Mihaylov, Z. G. Ives, and S. Guha, Rex:

Recursive, delta- based data-centric computation,

in Proc. VLDB Endowment, 2012,

[5] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,

A. Kyrola, and J. M. Hellerstein, Distributed

graphlab: A framework for machine learning and

data mining in the cloud, in Proc. VLDB

Endowment, 2012,

[6] S. Ewen, K. Tzoumas, M. Kaufmann, and V.

Markl, Spinning fast iterative data flows, in Proc.

VLDB Endowment, 2012,

