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Abstract: I
2
MAPREDUCE: Fine-Grain Incremental Processing in big data mining a novel incremental 

processing extension to Map Reduce, the most widely used framework for mining big data. As compare with 

the high-tech work on In coop, I
2
MapReduce has its own advantages (i) It prefers key-value pair level 

incremental processing to perform instead of task level re-computation, (ii) It supports one-step computation 

along with more sophisticated iterative computation, which is extensively used in data mining applications, 

and (iii) It reduce I/O overhead for accessing preserved fine-grain computation states by incorporating the 

set of novel techniques. I evaluate I
2
MAPREDUCE: Fine-Grain Incremental processing in big data mining 

using a one-step algorithm and four iterative algorithms with assorted computation characteristics. 

Experimental results on Amazon EC2 show significant performance improvements of I
2
MapReduce 

compared to both plain and iterative MapReduce performing re-computation. 
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Introduction:-- 

Healthcare contain huge amount of data which 

becomes essential for performance and planning. 

For every organization data is important for 

gaining the knowledge, annotation, research. So 

for healthcare big data is one of the solutions for 

potential impact. A programming model Map 

Reduce and supporting file system known as 

Hadoop Distributed File System (HDFS) 

processes the data and with the help of this i can 

analyze unstructured data into structured data. The 

Map-Reduce based approach is used for data cube 

materialization and mining over massive datasets 

using non algebraic measures  

 Data Provider which will provide a high 

Dimensional patient data, provider can collect all  

 

the data and store it into structured database. 

Another authorized person in our system who can 

access the patient data allocated from provider 

only.  

Data Cube:- The multi-dimensional views in data 

warehousing is provided by data cube model. If n 

size given in relation then there are 2^n cuboids 

and this cuboids computed in the cube 

materialization using algorithm [2] which is able 

to support the feature in MapReduce for efficient 

cube computation. 

MapReduce:- MapReduce programming model 

processes  large volumes of data in parallel 

manner by dividing the work into a set of 

autonomous tasks. This model explains the nature 

of programming model and how it can be used to 

write programs which run in the Hadoop 

environment. 
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MR-Cube:- MapReduce based algorithm uses 

MR-Cube that introduce efficient cube 

computation [5] and identifies cube sets/groups on 

non algebraic  measures. Complexity of the 

cubing task depends on two things which are size 

of data and size of cube lattice. 

Literature survey 

I
2
MapReduce: Incremental Iterative 

MapReduce 

Cloud intelligence applications often perform 

iterative computations (e.g., PageRank) on 

constantly changing data sets (e.g. Web graph). 

While previous studies extend MapReduce for 

efficient iterative computations, it is too expensive 

to perform an entirely new large-scale 

MapReduce iterative job to timely accommodate 

new changes to the underlying data sets. In this 

paper, i propose I
2
to support incremental iterative 

computation. I observe that in many cases, the 

changes impact only a very s- mall fraction of the 

data sets, and the newly iteratively converged 

state is quite close to the previously converged 

state.  

Parallel Data Processing with MapReduce 

A prominent parallel data processing tool 

MapReduce is gaining significant momentum                                              

from both industry and academia as the volume of 

data to analyze grows rapidly. While        

MapReduce is used in many areas where massive 

data analysis is required, there are still debates on 

its performance, efficiency per node, and simple 

abstraction. This survey intends to assist the 

database and open source communities in 

understanding various technical aspects of the 

MapReduce framework. In this survey, i 

characterize the MapReduce framework and 

discuss its inherent pros and cons. 

  MapReduce: Simplified Data Processing on 

Large Clusters 

MapReduce is a programming model and an 

associated implementation for processing and 

generating large data sets. Users specify a map 

function that processes a key/value pair to 

generate a set of intermediate key/value pairs, and 

a reduce function that merges all intermediate 

values associated with the same intermediate key. 

Many real world tasks are expressible in this 

model 

A Model of Computation for MapReduce 

         In recent years the MapReduce framework 

has emerged as one of the most widely used 

parallel computing platforms for processing data 

on terabyte and petabyte scales. Used daily at 

companies such as Yahoo!, Google, Amazon, and 

Facebook, and adopted more recently by several 

universities, it allows for easy parallelization of 

data intensive computations over many machines. 

One key feature of MapReduce that di_erentiates 

it from previous models of parallel computation is 

that it interleaves sequential and parallel 

computation. I propose a model of effcient 

computation using the MapReduce paradigm 

Big Data Mining using Map Reduce 

Big data is large volume, heterogeneous, 

distributed data. Big data applications where data 

collection has grown continuously, it is expensive 

to manage, capture or extract and process data 

using existing software tools. For example 

Weather Forecasting, Electricity Demand Supply, 

social media and so on. With increasing size of 

data in data warehouse it is expensive to perform 

data analysis. Data cube commonly abstracting 

and summarizing databases. It is way of 

structuring data in different n dimensions for 

analysis over some measure of interest. For data 

processing Big data processing framework relay 

on cluster computers and parallel execution 

framework provided by Map-Reduce. 

 Large-scale data processing using mapreduce 

in cloud computing environment 

 The computer industry is being challenged to 

develop methods and techniques for affordable 
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data processing on large datasets at optimum 

response times. The technical challenges in 

dealing with the increasing demand to handle vast 

quantities of data is daunting and on the rise. One 

of the recent processing models with a more 

efficient and intuitive solution to rapidly process 

large amount of data in parallel is called 

MapReduce. It is a framework defining a template 

approach of programming to perform large-scale 

data computation on clusters of machines in a 

cloud computing environment. MapReduce 

provides automatic parallelization and distribution 

of computation based on several processors. It 

hides the complexity of writing parallel and 

distributed programming code. This paper 

provides a comprehensive systematic review and 

analysis of large-scale dataset processing and 

dataset handling challenges and requirements in a 

cloud computing environment by using the 

MapReduce framework and its open-source 

implementation Hadoop. 

Matchmaking: A New MapReduce Scheduling 

Technique 

 MapReduce is a powerful platform for large-scale 

data processing. To achieve good performance, a 

MapReduce scheduler must avoid unnecessary 

data transmission by enhancing the data locality 

(placing tasks on nodes that contain their input 

data). This paper develops a new MapReduce 

scheduling technique to enhance map task’s data 

locality. I have integrated this technique into 

Hadoop default FIFO scheduler and Hadoop fair 

scheduler. i compare MapReduce scheduling 

algorithms with an existing data locality 

enhancement technique (i.e., the delay algorithm 

developed by Facebook). 

 Twister: A Runtime for Iterative MapReduce  

 MapReduce programming model has simplified 

the implementation of many data parallel 

applications. The simplicity of the programming 

model and the quality of services provided by 

many implementations of MapReduce attract a lot 

of enthusiasm among distributed computing 

communities. From the years of experience in 

applying MapReduce to various scientific 

applications i identified a set of extensions to the 

programming model and improvements to its 

architecture that will expand the applicability of 

MapReduce to more classes of applications. In 

this paper, i present the programming model and 

the architecture of Twister an enhanced 

MapReduce runtime that supports iterative 

MapReduce computations efficiently. 

Existing System:  

In the epoch of “big data”, iterative 

computations take more time to complete the 

processing of large amount of data.  As new 

changes occur in data the previous iterative 

computation results become decayed and outdated 

over time. So periodically refreshment of iterative 

computation is very advantageous For example, 

The PageRank algorithm in web search engines, 

incline descent algorithm for optimization, and 

many other iterative algorithms for applications 

including re-commander systems [2] and link 

prediction [10].  the PageRank algorithm 

computes ranking scores of web pages based on 

the web graph structure for supporting web 

search. However, the web graph structure evolves 

Web pages, creation, deletion and updation of 

hyperlinks. As the web graph evolves, the result 

of PageRanking algorithm gradually become stale 

and potentially lowers the quality of web search. 

Hence, it is necessary to refresh the PageRank 

computation regularly. Nowadays MapReduce [6] 

is the most famous platform for big data analysis 

in the cloud. Numerous previous studies enlarge 

MapReduce concept for efficient iterative 

computation [5, 7, 20]. However, our groundwork 

results have shown that for starting a new iterative 

computation from scratch will be extremely 

expensive McSherry et al. proposed   a new 

computational model for incremental iterative 

computations based on differential dataflow that is 

hugely different from the MapReduce 

programming model. To the best of our 

knowledge, for popular platform, MapReduce, no 

solution has so far been demonstrated so as to able 
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to efficiently handle incremental data changes for 

complex iterative computations. A new 

MapReduce well-suited model which supports 

incremental iterative computation is preferred  

Disadvantages of Existing system: 

1. The existing system will not gives promising 

output which efficient for working in the Big 

Data. The update of any data will result in re-run 

the complete setup. 

2. It does support only task-level incremental 

processing. 

3. It does support only one-step computation 

 

Proposed System: 

Iterative processing. A number of distributed 

frameworks have recently emerged for big data 

processing. I discuss the frameworks that improve 

MapReduce. HaLoop, a modified version of 

Hadoop, improves the efficiency of iterative 

computation by making the task scheduler loop 

aware and by employing caching mechanisms. 

Twister employs a lightweight iterative 

mapReduce runtime system by logically 

constructing a Reduce-to-Map loop. I
2
 

MapReduce [10] supports iterative processing by 

directly passing the Reduce outputs to Map and by 

distinguishing variant state data from the static 

data. I
2
MapReduce improves upon these previous 

proposals by supporting an efficient general-

purpose iterative model. Unlike the above 

MapReduce-based systems, Spark uses a new 

programming model that is optimized for 

memory- resident read-only objects. Spark will 

produce a large amount of intermediate data in 

memory during iterative computation. When input 

is small, Spark exhibits much better performance 

than Hadoop because of in-memory processing. 

However, its performance suffers when input and 

intermediate data cannot fit into memory. 

I experimentally compare Spark and I
2
MapReduce 

in, and see that I
2
MapReduce achieves better 

performance when input data is large. Pregel 

follows the Bulk Synchronous Processing (BSP) 

model. The computation is broken down into a 

sequence of super steps. In each super step, a 

Compute function is invoked on each vertex. It 

communicates with other vertices by sending and 

receiving messages and performs computation for 

the current vertex. This model can efficiently 

support a large number of iterative graph 

algorithms. Open source implementations of 

Pregel include Giraph, Hama , and Pregelix. 

Compared to I
2
MapReduce, the BSP model in 

Pregel is quite different from the MapReduce 

programming paradigm. It would be interesting 

future work to exploit similar ideas in this paper to 

support incremental processing in Pregellike 

systems. Incremental processing for one-step 

application. Besides Incoop, several recent studies 

aim at supporting incremental processing for one-

step applications. Stateful Bulk Processing 

addresses the need for stateful dataflow programs 

It provides a group wise processing operator 

Translate that takes state as an explicit input to 

support incremental analysis. But it adopts a new 

programming model that is very different from 

MapReduce. In addition, several research studies, 

support incremental processing by task-level re-

computation, but they require users to manipulate 

the states on their own. In contrast, I
2
MapReduce 

exploits a fine-grain kv-pair level re-computation 

that are more advantageous. Incremental 

processing for iterative application. Naiad 

proposes a timely dataflow paradigm that allows 

stateful computation and arbitrary nested 

iterations. To support incremental iterative 

computation, programmers have to completely 

rewrite their MapReduce programs for Naiad. In 

comparison, i extend the widely used MapReduce 

model for incremental iterative computation. 

Existing MapReduce programs can be slightly 

changed to run on I
2
MapReduce for incremental 

processing. 

Modules 

I implement the proposed research work on health 

care dataset system.  The below modules will 

work in whole system 

1: Data Provider 
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Which will provide a high Dimensional patient 

data, provider can collect all the data and store it 

into structured database. 

2: Doctor  

Doctor is second module in our system who can 

access the patient data allocated from provider 

only. (Same module will work with HDFS 

architecture with cube query, I
2
Map reduce, 

Materialize view etc) 

3: Admin 

Admin who can access everything from system or 

he have all credential like create alter delete also. 

 

Architecture: 

Algorithm 1. Query Algorithm in MRBG-Store 

Input: queried key: k; the list of queried keys: L 

Output: chunk k 

1: if ! read cache.contains(k) then 

2: gap =0, w =0 

3: i=k’s index in L That is, L i = k 

4: while gap < T and w + gap + length(L i) < 

readcache: 

size do 

5: w =w+gap + length(L i) 

6: gap= pos(L i+1) pos(L i) - length(L i ) 

7: i =i + 1 

8: end while 

9: starting from posk, read w bytes into read cache 

10: end if 

11: return read cache.getchunk(k) 

 

CONCLUSION 

I have described I
2
MapReduce- Fine Grain 

Incremental Processing based on MapReduce 

framework. That supports kv-pair level fine-grain 

incremental processing to minimize the amount of 

re-computation and MRBG-Store to support 

efficient quires to retrieve fine-grain states for 

incremental processing and to preserve the fine-

grain states in MRBGraph. This framework 

combines a fine-grain incremental engine, a 

general-purpose iterative model, and a set of 

effective techniques for fine-grain incremental 

iterative computation. Real-machine experiments 

show that I
2
MapReduce can significantly reduce 

the run time for refreshing big data mining results 

compared to re-computation on both plain and 

iterative MapReduce. 
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