

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 2 Issue 8 August, 2013 Page No. 2440-2447

U.Jyothi K, IJECS Volume 2 Issue 8 August, 2013 Page No.2440-2447 Page 2440

Review of "Achieving Secure, Scalable, and Fine-

grained Data Access Control in Cloud Computing"

U.Jyothi K., Nagi Reddy, B. Ravi Prasad
M.tech (CSE) Student in CSE PRRCET Medak (Dist), Andhra Pradesh India 502 300

jyothi1253@gmail.com
Asst Professor in CSE PRRCET Medak (Dist), Andhra Pradesh India 502 300

nrkandukuri@yahoo.co.in

Asst Professor in CSE PRRCET Medak (Dist), Andhra Pradesh India 502 300
rprasad.boddu@gmail.com

ABSTRACT
Cloud computing is an emerging computing paradigm in which resources of the computing infrastructure are provided as services over the

Internet. As promising as it is, this paradigm also brings forth many new challenges for data security and access control when users

outsource sensitive data for sharing on cloud servers, which are not within the same trusted domain as data owners. To keep sensitive user

data confidential against untrusted servers, existing solutions usually apply cryptographic methods by disclosing data decryption keys only to

authorized users. However, in doing so, these solutions inevitably introduce a heavy computation overhead on the data owner for key

distribution and data management when fine-grained data access control is desired, and thus do not scale well. The problem of

simultaneously achieving fine-grainedness, scalability, and data confidentiality of access control actually still remains unresolved.

This paper addresses this challenging open issue by, on one hand, defining and enforcing access policies based on data attributes, and, on

the other hand, allowing the data owner to delegate most of the computation tasks involved in fine-grained data access control to untrusted

cloud servers without disclosing the underlying data contents. We achieve this goal by exploiting and uniquely combining techniques of

attribute-based encryption (ABE), proxy re-encryption, and lazy re-encryption. Our proposed scheme also has salient properties of user

access privilege confidentiality and user secret key accountability. Exten-sive analysis shows that our proposed scheme is highly efficient and

provably secure under existing security models.

Keywords:Cloud Computing,Data Security,ABE(atrribute based

encryption)

1 Introduction

 Cloud computing is a promising computing paradigm which

recently has drawn extensive attention from both academia and

industry. By combining a set of existing and new techniques from

research areas such as Service-Oriented Architectures (SOA) and

virtualization, cloud computing is regarded as such a computing

paradigm in which resources in the computing infrastructure are

provided as services over the Internet. Along with this new

paradigm, various business models are devel-oped, which can be

described by terminology of “X as a service (XaaS)” where X could

be software, hardware, data storage, and etc. Successful examples

are Amazon’s EC2 and S3, Google App Engine and Microsoft

Azure which provide users with scalable resources in the pay-as-

you-use fashion at relatively low prices. For example, Amazon’s S3

data storage service just charges $0.12 to $0.15 per gigabyte-month.

As compared to building their own infrastructures, users are able to

save their investments significantly by migrat-ing businesses into the

cloud. With the increasing development of cloud computing

technologies, it is not hard to imagine that in the near future more

and more businesses will be moved into the cloudSecurity

 As promising as it is, cloud computing is also facing many

challenges that, if not well resolved, may impede its fast growth.

Data security, as it exists in many other applications, is among these

challenges that would raise great concerns from users when they

store sensitive information on cloud servers. These concerns

originate from the fact that cloud servers are usually operated by

commercial providers which are very likely to be outside of the

U.Jyothi K, IJECS Volume 2 Issue 8 August, 2013 Page No.2440-2447 Page 2441

trusted domain of the users. Data confidential against cloud servers

is hence frequently desired when users outsource data for storage in

the cloud. In some practical application systems, data confidentiality

is not only a security/privacy issue, but also of juristic concerns. For

example, in healthcare application scenarios use and disclosure of

protected health information (PHI) should meet the require-ments of

Health Insurance Portability and Accountability Act (HIPAA) [5],

and keeping user data confidential against the storage servers is not

just an option, but a requirement.

Furthermore, we observe that there are also cases in which cloud

users themselves are content providers. They publish data on cloud

servers for sharing and need fine-grained data access control in terms

of which user (data consumer) has the access privilege to which

types of data. In the healthcare case, for example, a medical center

would be the data owner who stores millions of healthcare records in

the cloud. It would allow data consumers such as doctors, patients,

researchers and etc, to access various types of healthcare records

under policies admitted by HIPAA. To enforce these access policies,

the data owners on one hand would like to take advantage of the

abundant resources that the cloud provides for efficiency and

economy; on the other hand, they may want to keep the data contents

confidential against cloud servers.

 As a significant research area for system protection, data

access control has been evolving in the past thirty years and various

techniques have been developed to effectively implement fine-

grained access control, which allows flexibility in specifying

differential access rights of individual users. Tra-ditional access

control architectures usually assume the data owner and the servers

storing the data are in the same trusted domain, where the servers are

fully entrusted as an omniscient reference monitor responsible for

defining and enforcing access control policies. This assumption

however no longer holds in cloud computing since the data owner

and cloud servers are very likely to be in two different domains. On

one hand, cloud servers are not entitled to access the outsourced data

content for data confidentiality; on the other hand, the data resources

are not physically under the full control of to authorized users.

Unauthorized users, including cloud servers, are not able to decrypt

since they do not have the data decryption keys. This general method

actually has been widely adopted by existing works which aim at

securing data storage on untrusted servers. One critical issue with

this branch of approaches is how to achieve the desired security goals

without introducing a high complexity on key management and data

encryption. These existing works, as we will discuss in section V-C,

resolve this issue either by introducing a per file access control list

(ACL) for fine-grained access control, or by categorizing files into

several filegroups for efficiency. As the system scales, however, the

complexity of the ACL-based scheme the owner. For the purpose of

helping the data owner enjoy fine-grained access control of data

stored on untrusted cloud servers, a feasible solution would be

encrypting data through certain cryptographic primitive(s), and

disclosing decryption keys only would be proportional to the number

of users in the system. The filegroup-based scheme, on the other

hand, is just able to provide coarse-grained data access control. It

actually still remains open to simultaneously achieve the goals of

fine-grainedness, scalability, and data confidentiality for data access

control in cloud computing.

 In this paper, we address this open issue and propose a

secure and scalable fine-grained data access control scheme for cloud

computing. Our proposed scheme is partially based on our

observation that, in practical application scenarios each data file can

be associated with a set of attributes which are meaningful in the

context of interest. The access structure of each user can thus be

defined as a unique logical expression over these attributes to reflect

the scope of data files that the user is allowed to access. As the

logical expression can represent any desired data file set, fine-

grainedness of data access control is achieved. To enforce these

access structures, we define a public key component for each

attribute. Data files are encrypted using public key components

corresponding to their attributes.. Such a design also brings about the

efficiency benefit, as compared to previous works, in that, 1) the

complexity of encryption is just related the number of attributes

associated to the data file, and is independent to the number of users

in the system; and 2) data file creation/deletion and new user grant

operations just affect current file/user without involving system-wide

data file update or re-keying. One extremely challenging issue with

this design is the implementation of user revocation, which would

inevitably require re-encryption of data files accessible to the leaving

user, and may need update of secret keys for all the remaining users.

If all these tasks are performed by the data owner himself/herself, it

would introduce a heavy computation overhead on him/her and may

also require the data owner to be always online. To resolve this

challenging issue, our proposed scheme enables the data owner to

delegate tasks of data file re-encryption and user secret key update to

cloud servers without disclosing data contents or user access

privilege information. We achieve our design goals by exploiting a

novel cryptographic primitive, namely key policy attribute-based

encryption (KP-ABE) , and uniquely combine it with the technique

of proxy re-encryption (PRE) and lazy re-encryption .

Main contributions of this paper can be summarized as follows. 1)

To the best of our knowledge, this paper is the first that

simultaneously achieves fine-grainedness, scalability and data

confidentiality for data access control in cloud computing;

2) Our proposed scheme enables the data owner to delegate most of

computation intensive tasks to cloud servers without disclosing data

contents or user access privilege information;

3) The proposed scheme is provably secure under the standard

security model. In addition, our proposed scheme is able to support

user accountability with minor extension.

The rest of this paper is organized as follows. Section II discusses

cloud computing review. Section III reviews some technique

preliminaries pertaining to our construction. Section IV presents our

construction. In section V, we analyze our proposed scheme in terms

of its security and performance. We conclude this paper in Section

VI.

2 Cloud computing Review

 A study conducted by Version One found that 41% of

senior IT professionals actually don't know what cloud computing is

and two- thirds of senior finance professionals are confused by the

concept, highlighting the young nature of the technology.

U.Jyothi K, IJECS Volume 2 Issue 8 August, 2013 Page No.2440-2447 Page 2442

 An Aberdeen Group study found that disciplined companies

achieved on average an 18% reduction in their IT budget from cloud

computing and a 16% reduction in data center power costs.

 Cloud computing is a general term for anything that involves

delivering hosted services over the Internet. These services are

broadly divided into three categories: Infrastructure-as-a-Service

(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service

(SaaS). The name cloud computing was inspired by the cloud symbol

that's often used to represent the Internet in flow charts and diagrams.

 Cloud computing is the delivery of computing as a service rather

than a product, whereby shared resources, software, and information

are provided to computers and other devices as a metered service

over a network (typically the Internet).

Layers

 Once an internet protocol connection is established among several

computers, it is possible to share services within any one of the

following layers represented in fig1.

a) Client

 Users access cloud computing using networked client devices,

such as desktop computers, laptops, tablets and smart phones. Some

of these devices - cloud clients - rely on cloud computing for all or a

majority of their applications so as to be essentially useless without

it. Examples are thin clients and the browser-based Chrome book.

Figure 1: layers in cloud

b) Application

 A cloud application is software provided as a service. It consists of

the following: a package of interrelated tasks, the definition of these

tasks, and the configuration files, which contain dynamic information

about tasks at run-time.

C) Platform

 Cloud platform services, also known as platform as a service

(PaaS), deliver a computing platform and/or solution stack as a

service, often consuming cloud infrastructure and sustaining cloud

applications.

d) Infrastructure

 Cloud infrastructure services, also known as "infrastructure as a

service" (IaaS), deliver computer infrastructure – typically a platform

virtualization environment – as a service, along with raw (block)

storage and networking.

e) Server

 The Layers contain both hardware and software; these are the

layers on the server. Products that are specifically designed for the

delivery of cloud services, including multi-core processors, cloud-

specific operating systems and combined offerings

Architecture

The fig.2 below represents the sample architecture of the

cloud computing.

Figure 2: Cloud computing sample architecture

3.Gaining secure, scalable data cloud computing

System Models

 Similar to [17], we assume that the system is composed of the

following parties: the Data Owner, many Data Consumers, many

Cloud Servers, and a Third Party Auditor if necessary. To access data

files shared by the data owner, Data Consumers, or users for brevity,

download data files of their interest from Cloud Servers and then

decrypt. Neither the data owner nor users will be always online. They

come online just on the necessity basis. For simplicity, we assume

that the only access privilege for users is data file reading. Extending

our proposed scheme to support data file writing is trivial by asking

the data writer to sign the new data file on each update as [12] does.

From now on, we will also call data files by files for brevity. Cloud

Servers are always online and operated by the Cloud Service

Provider (CSP). They are assumed to have abundant storage capacity

and computation power. The Third Party Auditor is also an online

party which is used for auditing every file access event. In addition,

we also assume that the data owner can not only store data files but

also run his own code on Cloud Servers to manage his data files. This

assumption coincides with the unified ontology of cloud computing

which is recently proposed by Youseff et al.

B. Security Models

In this work, we just consider Honest but Curious Cloud Servers as

[14] does. That is to say, Cloud Servers will follow our proposed

protocol in general, but try to find out as much secret information as

possible based on their inputs. More specifically, we assume Cloud

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Service_%28economics%29
http://en.wikipedia.org/wiki/Product_%28business%29
http://en.wikipedia.org/wiki/Utility_computing
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Desktop_computers
http://en.wikipedia.org/wiki/Laptop
http://en.wikipedia.org/wiki/Tablet_computer
http://en.wikipedia.org/wiki/Smartphones
http://en.wikipedia.org/wiki/Thin_clients
http://en.wikipedia.org/wiki/Chromebook
http://en.wikipedia.org/wiki/Cloud_application
http://en.wikipedia.org/wiki/Platform_as_a_service
http://en.wikipedia.org/wiki/Computing_platform
http://en.wikipedia.org/wiki/Solution_stack
http://en.wikipedia.org/wiki/Platform_virtualization
http://en.wikipedia.org/wiki/Platform_virtualization
http://en.wikipedia.org/wiki/File:Cloud_Computing_Stack.svg
http://en.wikipedia.org/wiki/File:CloudComputingSampleArchitecture.svg

U.Jyothi K, IJECS Volume 2 Issue 8 August, 2013 Page No.2440-2447 Page 2443

Servers are more interested in file contents and user access privilege

information than other secret information. Cloud Servers might

collude with a small number of malicious users for the purpose of

harvesting file contents when it is highly beneficial. Communication

channel between the data owner/users and Cloud Servers are

assumed to be secured under existing security protocols such as SSL.

Users would try to access files either within or outside the scope of

their access privileges. To achieve this goal, unauthorized users may

work independently or cooperatively. In addition, each party is

preloaded with a public/private key pair and the public key can be

easily obtained by other parties when necessary.

C. Design Goals

Our main design goal is to help the data owner achieve fine-

grained access control on files stored by Cloud Servers. Specifically,

we want to enable the data owner to enforce a unique access structure

on each user, which precisely des-ignates the set of files that the user

is allowed to access. We also want to prevent Cloud Servers from

being able to learn both the data file contents and user access

privilege information. In addition, the proposed scheme should be

able to achieve security goals like user accountability and support

basic operations such as user grant/revocation as a general one-to-

many communication system would require. All these design goals

should be achieved efficiently in the sense that the system is scalable.

TECHNIQUE PRELIMINARIES

A. Key Policy Attribute-Based Encryption (KP-ABE)

KP-ABE [15] is a public key cryptography primitive for one-to-

many communications. In KP-ABE, data are associated with

attributes for each of which a public key component is defined. The

encryptor associates the set of attributes to the message by encrypting

it with the corresponding public key components. Each user is

assigned an access structure which is usually defined as an access

tree over data attributes, i.e., interior nodes of the access tree are

threshold gates and leaf nodes are associated with attributes. User

secret key is defined to reflect the access structure so that the user is

able to decrypt a ciphertext if and only if the data attributes satisfy

his access structure. A KP-ABE scheme is composed of four

algorithms which can be defined as follows:

Setup This algorithm takes as input a security parameter κ and the

attribute universe U = {1, 2, . . . , N } of cardinality N . It defines a

bilinear group G1 of prime order p with a generator g, a bilinear map e

: G1 × G1 → G2 which has the properties of bilinearity,

computability, and non-degeneracy. It returns the public key P K as

well as a system master key M K as follows

P K = (Y, T1, T2, . . . , TN) M K = (y,

t1, t2, . . . , tN)

where Ti ∈ G1 and ti ∈ Zp are for attribute i, 1 ≤ i ≤ N , and Y ∈ G2 is

another public key component. We have Ti = gti and Y = e(g, g)
y
, y ∈

Zp.

B. Proxy Re-Encryption (PRE)

Proxy Re-Encryption (PRE) is a cryptographic primitive in which

a semi-trusted proxy is able to convert a ciphertext encrypted under

Alice’s public key into another ciphertext that can be opened by

Bob’s private key without seeing the underlying plaintext. More

formally, a PRE scheme allows the proxy, given the proxy re-

encryption key rka↔b, to translate ciphertexts under public key pka into

ciphertexts under public key pkb and vise versa. Please refer to [16]

for more details on proxy re-encryption schemes.

OUR PROPOSED SCHEME

A. Main Idea

In order to achieve secure, scalable and fine-grained access control

on outsourced data in the cloud, we utilize and uniquely combine the

following three advanced cryptograh-phic techniques: KP-ABE, PRE

and lazy re-encryption. More specifically, we associate each data file

with a set of attributes, and assign each user an expressive access

structure which is defined over these attributes. To enforce this kind

of access control, we utilize KP-ABE to escort data encryption keys

of data files. Such a construction enables us to immediately enjoy

fine-grainedness of access control. However, this construc-tion, if

deployed alone, would introduce heavy computation overhead and

cumbersome online burden towards the data owner, as he is in charge

of all the operations of data/user management. Specifically, such an

issue is mainly caused by the operation of user revocation, which

inevitabily requires the data owner to re-encrypt all the data files

accessible to the leaving user, or even needs the data owner to stay

online to update secret keys for users. To resolve this challenging

issue and make the construction suitable for cloud computing, we

uniquely combine PRE with KP-ABE and enable the data owner to

delegate most of the computation intensive operations to Cloud

Servers without disclosing the underlying file contents.

B. Definition and Notation

For each data file the owner assigns a set of meaningful attributes

which are necessary for access control. Different data files can have a

subset of attributes in common. Each attribute is associated with a

version number for the purpose of attribute update as we will discuss

later. Cloud Servers keep an attribute history list AHL which records

the version evolution history of each attribute and PRE keys used. In

addition to these meaningful attributes, we also define one dummy

attribute, denoted by symbol AttD for the purpose of key

management. AttD is required to be included in every data file’s

U.Jyothi K, IJECS Volume 2 Issue 8 August, 2013 Page No.2440-2447 Page 2444

attribute set and will never be updated. The access structure of each

user is implemented by an access tree. Interior nodes of the access

tree are threshold gates. Leaf nodes of the access tree are associated

with data file attributes. For the purpose of key management, we

require the root node to be an AND gate (i.e., n-of-n threshold gate)

with one child being the leaf node which is associated with the

dummy attribute, and the other child node being any threshold gate.

The dummy attribute will not be attached to any other node in the

access tree. Fig.1 illustrates our definitions by an example. In

addition, Cloud Servers also keep a user list U L which records IDs of

all the valid users in the system. Fig.2 gives the description of

notation to be used in our scheme

Notation Description

P K, M K system public key and master key

Ti public key component for attribute i

ti master key component for attribute i

SK user secret key

ski user secret key component for attribute i

Ei ciphertext component for attribute i

I attribute set assigned to a data file

DEK symmetric data encryption key of a data file

P user access structure

LP set of attributes attached to leaf nodes of P

AttD the dummy attribute

U L the system user list

AHLi attribute history list for attribute i

rki↔i_ proxy re-encryption key for attribute i from

 its current version to the updated version i
_

δ
O,X

the data owner’s signature on message X

Fig. 2: Notation used in our scheme description

C. Scheme Description

For clarity we will present our proposed scheme in two levels:

System Level and Algorithm Level. At system level, we describe the

implementation of high level operations, i.e.,

System Setup, New File Creation, New User Grant, and User

Revocation, File Access, File Deletion, and the interaction between

involved parties. At algorithm level, we focus on the implementation

of low level algorithms that are invoked by system level operations.

1) System Level Operations: System level operations in our

proposed scheme are designed as follows.

System Setup In this operation, the data owner chooses a security

parameter κ and calls the algorithm level interface ASetup(κ), which

outputs the system public parameter P K and the system master key M

K. The data owner then signs each component of P K and sends P K

along with these signatures to Cloud Servers.

New File Creation Before uploading a file to Cloud Servers, the

data owner processes the data file as follows.

• select a unique ID for this data file;

• randomly select a symmetric data encryption key

 R

K is the key space, and encrypt the

 DEK ← K, where

 data file using DEK;

• define a set of attribute I for the data file and en-

crypt DEK with I using KP-ABE, i.e.,

˜

 (E, {Ei}i∈I)

 ← AEncrypt(I,DEK,P K).

 header body

ID
 ˜

{DataF ile}DEK

 I, E, {Ei}i∈I

Fig. 3: Format of a data file stored on the cloud

Finally, each data file is stored on the cloud in the format as is

shown in Fig.3.

Summary

In our proposed scheme, we exploit the technique of hy-brid

encryption to protect data files, i.e., we encrypt data files using

symmetric DEKs and encrypt DEKs with KP-ABE. Using KP-ABE,

we are able to immediately enjoy fine-grained data access control

and efficient operations such as file creation/deletion and new user

grant. To resolve the challenging issue of user revocation, we

combine the technique of proxy re-encryption with KP-ABE and

delegate most of the burdensome computational task to Cloud

Servers. We achieve this by letting Cloud Servers keep a partial copy

of each user’s secret key, i.e., secret key components of all but one

(dummy) attributes. When the data owner redefines a certain set of

attributes for the purpose of user revocation, he also generates

corresponding proxy re-encryption keys and sends them to Cloud

Servers. Cloud Servers, given these proxy re-encryption keys, can

update user secret key components and re-encrypt data files

accordingly without knowing the underlying plaintexts of data files.

This enhancement releases the data owner from the possible huge

computation overhead on user revocation. The data owner also does

not need to always stay online since Cloud Servers will take over the

burdensome task after having obtained the PRE keys. To further save

computation overhead of Cloud Servers on user revocation, we use

the technique of lazy re-encryption and enable Cloud Servers to

“aggregate” multiple successive secret key update/file re-encryption

operations into one, and thus statistically save the computation

overhead.

U.Jyothi K, IJECS Volume 2 Issue 8 August, 2013 Page No.2440-2447 Page 2445

ANALYSIS OF OUR PROPOSED SCHEME

A. Security Analysis

We first analyze security properties of our proposed scheme,

starting with the following immediately available properties.

1) Fine-grainedness of Access Control: In our proposed scheme,

the data owner is able to define and enforce expressive and flexible

access structure for each user. Specifically, the access structure of

each user is defined as a logic formula over data file attributes, and is

able to represent any desired data file set.

2) User Access Privilege Confidentiality: Our proposed scheme

just discloses the leaf node information of a user access tree to Cloud

Servers. As interior nodes of an access tree can be any threshold

gates and are unknown to Cloud Servers, it is hard for Cloud Servers

to recover the access structure and thus derive user access privilege

information.

3) User Secret Key Accountability: This property can be

immediately achieved by using the enhanced construction of KP-

ABE [19] which can be used to disclose the identities of key abusers.

Now we analyze data confidentiality of our proposed scheme by

giving a cryptographic security proof.

Data Confidentiality: We analyze data confidentiality of our

proposed scheme by comparing it with an intuitive scheme in which

data files are encrypted using symmetric DEKs, and DEKs are

direclty encrypted using standard KP-ABE. In this intuitive scheme

just ciphertexts of data files are given to Cloud Servers.

. Performance Analysis

This section numerically evaluates the performance of our

proposed scheme in terms of the computation overhead intro-duced

by each operation as well as the ciphertext size.

1) Computation Complexity: We analyze the computation

complexity for the following six operations: system setup, new file

creation, file deletion, new user grant, user revocation, and file

access.

System Setup In this operation, the data owner needs to define

underlying bilinear groups, and generate P K and M K. As is

described in Section III-A, the main computation overhead for the

generation of P K and M K is introduced by the N group

multiplication operations on G1.

New File Creation The main computation overhead of this

operation is the encryption of the data file using the symmetric DEK

as well as the encryption of the DEK using KP-ABE. The

complexity of the former depends on the size of the underlying data

file and inevitable for any cryptographic method. The computation

overhead for the latter consists of |I| multiplication operations on G1

and 1 multiplication operation on G2, where I denotes the attribute set

I of the data file. All these operations are for the data owner.

File Deletion This operation just involves the data owner and

Cloud Servers. The former needs to compute one signature and the

latter verifies this signature.

New User Grant This operation is executed interactively by the

data owner, Cloud Servers, and the user. The computation overhead

for the data owner is mainly composed of the generation of the user

secret key and encryption of the user secret key using the user’s

public key. The former accounts for |L| multiplication operations on

G1, where L denotes the set of leaf nodes of the access tree. The latter

accounts for one PKC operation, e.g., RSA encryption. The main

overhead for Cloud Servers is one signature verification. The user

needs to do two PKC operations, one for data decryption and the

other for signature verification.

User Revocation This operation is composed of two stages. The

second stage can actually be amortized as the file access operation.

Here we just counts the operation overhead for the first stage. That

for the second stage will be included in the file access operation. The

first stage occurs between the data owner and Cloud Servers. The

computation overhead for the data owner is caused by the execution

of AM inimalSet and AU pdateAtt as well as the generation of his

signatures for the public key components. The complexity of

algorithm AM inimalSet is actually mainly contributed by the CNF

conversion operation which can be efficiently realized by existing

algorithms such as [20] (with the complexity linear to the size of the

access structure). Assuming the size of the minimal set returned by

AM inimalSet is D, D ≤ N , the computation overhead for AU

pdateAtt is mainly contributed by D multiplication operations on G1.

In addition, the data owner also needs to compute D signatures on

public key components. The computation overhead on Cloud Servers

in this stage is negligible. When counting the complexity of user

revocation, we use N instead of the size of the access structure since

in practical scenarios AM inimalSet is very efficient if we limit the

size of access structure (without affecting system scalability), but

each signature or multiplication operation on G1 is expensive.

File Access This operation occurs between Cloud Servers and the

user. For Cloud Servers, the main computation over-head is caused

by the execution of algorithm AU pdateSK and algorithm AU

pdateAtt4F ile. In the worst case, the algorithm AU pdateSK would

be called |L| − 1 times, which represents |L|−1 multiplication

operations on G1. Each execution of the algorithm AU pdateAtt4F

ile accounts for one multiplication operation on G1. In the worst case,

Cloud Servers need to call AU pdateAtt4F ile N times per file

access. Our lazy re-encryption solution will greatly reduce the

average system-wide call times of these two algorithms from

statistical point of view. File decryption needs |L| bilinear pairing in

the worst case. Fig.7 summarizes the computation complexity of our

proposed scheme.

Operation Complexity

File Creation O(|I|)
File Deletion O(1)
User Grant O(|L|)
User Revocation O(N)

U.Jyothi K, IJECS Volume 2 Issue 8 August, 2013 Page No.2440-2447 Page 2446

File Access O(max(|L|, N))

Fig. 7: Complexity of our proposed scheme

2) Ciphertext Size: As is depicted in Section IV-C, the ciphertext

is composed of an ID, a header, and a body. The body is just the data

block. The header for each data file is composed of an attribute set I,

one group element on G2, and |I| group elements on G1.

C. Related Work

Existing work close to ours can be found in the areas of “shared

cryptographic file systems” and “access control of outsourced data”.

In [11], Kallahalla et al proposed Plutus as a cryptographic file

system to secure file storage on untrusted servers. Plutus groups a set

of files with similar sharing attributes as a file-group and associates

each file-group with a symmetric lockbox-key. Each file is encrypted

using a unique file-blcok key which is further encrypted with the

lockbox-key of the file-group to which the file belongs. If the

owner wants to share a file-group, he just delivers the corresponding

lockbox-key to users. As the complexity of key management is

proportional to the total number of file-groups, Plutus is not suitable

for the case of fine-grained access control in which the number of

possible “file-groups” could be huge.

In [12], Goh et al proposed SiRiUS which is layered over existing

file systems such as NFS but provides end-to-end security. For the

purpose of access control, SiRiUS attaches each file with a meta data

file that contains the file’s access control list (ACL), each entry of

which is the encryption of the file’s file encryption key (FEK) using

the1 public key of an authorized user. The extension version of

SiRiUS uses NNL broadcast encryption algorithm [21] to encrypt the

FEK of each file instead of encrypting it with each individual user’s

public key. As the complexity of the user revocation solution in NNL

is proportional to the number of revoked users, SiRiUS has the same

complexity in terms of each meta data file’s size and the encryption

overhead, and thus is not scalable.

Ateniese et al [13] proposed a secure distributed storage scheme

based on proxy re-encryption. Specifically, the data owner encrypts

blocks of content with symmetric content keys. The content keys are

all encrypted with a master public key, which can only be decrypted

by the master private key kept by the data owner. The data owner

uses his master private key and user’s public key to generate proxy

re-encryption keys, with which the semi-trusted server can then

convert the ciphertext into that for a specific granted user and fulfill

the task of access control enforcement. The main issue with this

scheme is that collusion between a malicious server and any single

malicious user would expose decryption keys of all the encrypted

data and compromise data security of the system completely. In

addition, user access privilege is not protected from the proxy server.

User secret key accountability is neither supported.

In [14], Vimercati et al proposed a solution for securing data

storage on untrusted servers based on key derivation methods [22]. In

this proposed scheme, each file is encrypted with a symmetric key

and each user is assigned a secret key. To grant the access privilege

for a user, the owner creates corresponding public tokens from

which, together with his secret key, the user is able to derive

decryption keys of desired files. The owner then transmits these

public tokens to the semi-trusted server and delegates the task of

token distribution to it. Just given these public tokens, the server is

not able to derive the decryption key of any file. This solution

introduces a minimal number of secret key per user and a minimal

number of encryption key for each file. However, the complexity of

operations of file creation and user grant/revocation is linear to the

number of users, which makes the scheme unscalable. User access

privilege accountability is also not supported.

D. Discussion

According to the above analysis, we can see that our pro-posed

scheme is able to realize the desired security goals, i.e., fine-grained

access control, data confidentiality, user access privilege

confidentiality, and user secret key accountability. The goal of

scalability is also achieved since the complexity for each operation of

our proposed scheme, as is shown in Fig. 7, is no longer dependent to

the nunber of users in the system. Therefore, our proposed scheme

can serve as an ideal candidate for data access control in the

emerging cloud computing environment. On the contrary, existing

access control schemes in related areas either lack scalability [12],

[14] and fine-grainedness [11], or do not provide adequate proof of

data confidentiality [13].

IV. CONCLUSION

This paper aims at fine-grained data access control in cloud

computing. One challenge in this context is to achieve fine-

grainedness, data confidentiality, and scalability simultane-ously,

which is not provided by current work. In this paper we propose a

scheme to achieve this goal by exploiting KP-ABE and uniquely

combining it with techniques of proxy re-encryption and lazy re-

encryption. Moreover, our proposed scheme can enable the data

owner to delegate most of com-putation overhead to powerful cloud

servers. Confidentiality of user access privilege and user secret key

accountability can be achieved. Formal security proofs show that our

proposed scheme is secure under standard cryptographic models.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science

Foundation under grants CNS-0716306, CNS-0831628, CNS-

0746977, and CNS-0831963.

REFERENCES

U.Jyothi K, IJECS Volume 2 Issue 8 August, 2013 Page No.2440-2447 Page 2447

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-

winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,

“Above the clouds: A berkeley view of cloud computing,” University of

California, Berkeley, Tech. Rep. USB-EECS-2009-28, Feb 2009.

[2] Amazon Web Services (AWS), Online at http://aws. amazon.com.

[3] Google App Engine, Online at http://code.google.com/appengine/.

[4] Microsoft Azure, http://www.microsoft.com/azure/.

[5] 104th United States Congress, “Health Insurance Portability and Ac-

countability Act of 1996 (HIPPA),” Online at http://aspe.hhs.gov/

admnsimp/pl104191.htm, 1996.

[6] H. Harney, A. Colgrove, and P. D. McDaniel, “Principles of policy in

secure groups,” in Proc. of NDSS’01, 2001.

[7] P. D. McDaniel and A. Prakash, “Methods and limitations of security

policy reconciliation,” in Proc. of SP’02, 2002.

[8] T. Yu and M. Winslett, “A unified scheme for resource protection in

automated trust negotiation,” in Proc. of SP’03, 2003.

[9] J. Li, N. Li, and W. H. Winsborough, “Automated trust negotiation

using cryptographic credentials,” in Proc. of CCS’05, 2005.

[10] J. Anderson, “Computer Security Technology Planning Study,” Air

Force Electronic Systems Division, Report ESD-TR-73-51, 1972, http:

//seclab.cs.ucdavis.edu/projects/history/.

[11] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu,

“Scalable secure file sharing on untrusted storage,” in Proc. of FAST’03,

2003.

[12] E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “Sirius: Securing

remote untrusted storage,” in Proc. of NDSS’03, 2003.

[13] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy re-

encryption schemes with applications to secure distributed storage,” in

Proc. of NDSS’05, 2005.

[14] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P.

Samarati, “Over-encryption: Management of access control evolution on

outsourced data,” in Proc. of VLDB’07, 2007.

[15] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based en-

cryption for fine-grained access control of encrypted data,” in Proc. of

CCS’06, 2006.

[16] M. Blaze, G. Bleumer, and M. Strauss, “Divertible protocols and atomic

proxy cryptography,” in Proc. of EUROCRYPT ’98, 1998.

[17] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public

verifiability and data dynamics for storage security in cloud computing,”

in Proc. of ESORICS ’09, 2009.

[18] L. Youseff, M. Butrico, and D. D. Silva, “Toward a unified ontology of

cloud computing,” in Proc. of GCE’08, 2008.

[19] S. Yu, K. Ren, W. Lou, and J. Li, “Defending against key abuse attacks

in kp-abe enabled broadcast systems,” in Proc. of SECURECOMM’09,

2009.

[20] D. Sheridan, “The optimality of a fast CNF conversion and its use with

SAT,” in Proc. of SAT’04, 2004.

[21] D. Naor, M. Naor, and J. B. Lotspiech, “Revocation and tracing

schemes for stateless receivers,” in Proc. of CRYPTO’01, 2001.

[22] M. Atallah, K. Frikken, and M. Blanton, “Dynamic and efficient key

management for access hierarchies,” in Proc. of CCS’05, 2005.

