
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 4 April 2015, Page No. 11687-11690

Kajal Gaikwad, IJECS Volume 4 Issue 4 April, 2015 Page No.11687-11690 Page 11687

Implementation of VRouter in KVM virtualized host

Kajal Gaikwad, Shweta Nazarkar, Praneta Painthankar, Srushti Khadke

Department of compute Engineering

Pune Institute of Computer Technology

Pune, India

Department of compute Engineering

Pune Institute of Computer Technology

Pune, India

Department of compute Engineering

Pune Institute of Computer Technology

Pune, India

Department of Computer Engineering

Pune Institute of Computer Technology

Pune, India

Abstract—A hypervisor is a piece of computer software, firmware or hardware that creates and runs multiple virtual machines. The

hypervisor presents the guest operating systems with a virtual operating platform and manages the execution of the guest operating

systems. Virtual switch which is a part of the hypervisor also called as hypervisor switch does the switching between VM traffic.

Currently if two VMs those are interested in communication and if they are in same subnet then VM-VM traffic will traverse from

source VM to destination VM through hypervisor switch. And if two VMs are in different subnet then traversing of packets will need

external devices such as external switch and router which increases the traffic in the network. We can improve the quality of the system

by implementing the functionality of router within the hypervisor.

Keywords—hypervisor, Router, KVM.

I. INTRODUCTION

System virtualization adds a hardware abstraction layer,
called the Virtual Machine Monitor (VMM), on top of the bare
hardware. This layer provides an interface that is functionally
equivalent to the actual hardware to a number of virtual
machines. These virtual machines may then run regular
operating systems, which would normally run directly on top
of the actual hardware. This characterization is a bit
oversimplified. There are various virtualization techniques as
well as requirements for architectures to be virtualizable[2].
The main motivation for virtualization in the early 70’s was to
increase the level of sharing and utilization of expensive
computing resources such as the mainframes. The 80’s saw a
decrease in hardware costs that caused a significant portion of
the computing needs of an organization to be moved away
from large centralized mainframes to a collection of
departmental minicomputers. The main motivation for
virtualization disappeared and with it their commercial
embodiments.

Ubiquitous networking brought the distribution of
computing to new grounds. Large number of client machines
connected to numerous servers of various types gave rise to
new computational paradigms such as client-server and peer-
to-peer systems. These new environments brought with them
several challenges and problems including reliability, security,
increased administration cost and complexity, increased floor
space, power consumption, and thermal dissipation
requirements. The recent rebirth of the use of virtualization
techniques in commodity, inexpensive servers and client
machines is poised to address these problems [3,4] in a very
elegant way.

Virtualization helps provide software isolation to
applications in such shared environments as well as ensures
better utilization of server resources. On cloud systems, I/O
intensive applications are good candidates for virtualization
because they have sufficient spare CPU cycles which can
potentially be used by some other co-hosted application. Many
virtual machine monitors have emerged in such a scenario,
varying from VMware ESX to Xen paravirtualized hypervisor.
In recent years, to make development of virtual machine
monitors easy, hardware vendors like AMD and Intel have
added virtualization extensions to x86 processors which were
initially difficult to virtualize and were not in tune with Popek
and Goldberg virtualization requirements [1].

But in current virtualized server if we want to
communicate between two virtual machines which are in
different subnet then routing hardware is necessary. And
which may cause high traffic. So this paper describes the basic
concepts in virtualization and explains how to manage
communication between two virtual machines which are in
different subnet without involving hardware.

The rest of the paper is organized as follows. Section II
describes the KVM architecture. Section III describes the
existing system and how the same can be modified to achieve
the desired objective. Section IV describes the design model
and section V describes proposed packet flow and section VI
concludes by discussing the potential advantages and future
work.

II. KVM ARCHITECTURE

Virtualization capabilities in Linux kernel using x86
hardware virtualization extensions [5][6]. It is a full
virtualization solution, where guests are run unmodified in

http://www.ijecs.in/

Kajal Gaikwad, IJECS Volume 4 Issue 4 April, 2015 Page No.11687-11690 Page 11688

VMs. It consists of two modules, namely, kvm.ko and an
architecture dependent kvm-amd.ko or kvm-intel.ko module.
Under KVM, each VM is spawned as a regular linux process
named KVM and scheduled by the default linux scheduler. For
KVM the hardware has to support three processor modes,
namely user, kernel and guest mode. The guest mode is added
to support hardware assisted virtualization. The virtual
machine executes in this guest mode which in turn has user
and kernel mode in itself [7][8].

For using shared I/O hardware, these VMs interact with
qemu emulator in host user space which provides emulated I/O
devices for virtual machines. For instance, in the case of
network related applications, Qemu provides emulated
Network Interface Card (NIC) to VMs and interacts with tun-
tap device on the other side. The tap device is connected to
physical NIC through a software bridge.

 Fig.1 KVM Architecture

Fig 1 shows the typical KVM architecture, with reference
to a network related application. A typical network packet
flows through the KVM virtualized host in the following way.
As depicted in picture, when a packet arrives at physical NIC,
interrupts generated by NIC are handled by the physical device
driver. The device driver forwards the packet to software
bridge. The bridge, then pushes the packet to the tap device of
the corresponding VM. The tap device is a virtual network
device that sends a signal to KVM module. KVM module in
turn, generates a virtual interrupt to the user space qemu of the
target VM. Qemu then copies the packet from tap device and
generates the interrupt for the guest OS emulating the virtual
NIC. Again, the physical device driver in the guest OS handles
the packet transfer to the VM’s address space.

Consequently, for a VM process in KVM virtualized
server, guest mode execution (both kernel or user mode)
corresponds to execution within a VM while other modules in
user mode (qemu) and kernel mode (KVM module, tun-tap
module, bridge module, etc.) correspond to hypervisor
execution. Among these, Qemu I/O module runs separately for
each VM but is co-ordinated by a single KVM module which
manages VMs by signal and virtual interrupts. Hence, it is
easy to understand that the KVM module can potentially
become a bottleneck when it tries to execute on behalf of
many VMs.

III. EXISTING SYSTEM

 Fig.2 Existing System

 Fig.2 represents the flow of packets in current scenario
.Here both VM0 and VM1 are in different subnets deployed on
same physical host. There are multiple components in fig.2
which are as given below.

 VM0:

It is source virtual machine which is having an IP
address 172.17.17.2.This virtual machine will send
some message to another virtual machine through
hypervisor control.

 VM1:

It is destination virtual machine which is having an
IP address 192.168.0.2.

 Hypervisor:

A hypervisor or virtual machine monitor (VMM) is a
piece of computer software, firmware or hardware
that creates and runs virtual machine. KVM (for
Kernel-based Virtual Machine) is a full virtualization
solution for Linux on x86 hardware containing
virtualization extensions (Intel VT or AMD-V). It
consists of a loadable kernel module, kvm.ko, that
provides the core virtualization infrastructure and a
processor specific module, kvm-intel.ko or kvm-
amd.ko. KVM also requires a modified QEMU
although work is underway to get the required
changes upstream.

 OVS:

Open vSwitch, sometimes abbreviated to OVS, is a
production-quality open source implementation of a
distributed virtual multilayer switch. The main
purpose of Open vSwitch is to provide switching
stack for hardware virtualization environments,
while supporting multiple protocols and standards
used in computer networks.

In this scenario the packet flow from VM0 to VM1 is
as given below:

 The packet from VM0 i.e. from guest moves towards
VNIC (virtual NIC).

 From VNIC it gets forwarded to host through
hypervisor (e.g. KVM).

Kajal Gaikwad, IJECS Volume 4 Issue 4 April, 2015 Page No.11687-11690 Page 11689

 Here in host kernel checking is done for destination
address. And since the destination address is in
another subnet the packet moves towards host
hardware i.e. NIC.

 From NIC it gets forwarded to switch1 and then to
physical router. The physical router finds out the
path for packet and forwards it to switch0.

 Switch0 then forwards the packet to destined virtual
machine i.e.VM1.

But, in this case the extra network traffic gets created
because of packet forwarding in physical devices
where the source and destination are on same
physical machine. This overhead in the network can
be minimized by implementing routing functionality
at hypervisor level.

IV. PROPOSED SYSTEM

 Fig.3 Proposed system

Fig. 3 describes the proposed system. It consists of
physical machine with KVM installed on it. And the virtual
machines are deployed on it. KVM is supported with VM
management tool.

The components of the system are

 LibVirt

 Qemu KVM

 Virtio

 Virtual machines

 OVS

 Hypervisor

1. LibVirt: A toolkit to interact with the virtualization
capabilities of recent versions of Linux. It has many
C libraries. Libvirt is used by various virtualization
programs and platforms. Graphical Interfaces are
provided by Virtual Machine Manager and others.
The most popular command line interface is 'virsh'

2. Qemu-KVM: The KVM project is maintaining a fork
of QEMU called qemu-kvm. It is used as hypervisor
management.

3. Virtio: Virtio is a virtualization standard for network
and disk device drivers where just the guest's device
driver "knows" it is running in a virtual environment,
and cooperates with the hypervisor. This enables

guests to get high performance network and disk
operations, and gives most of the performance
benefits of paravirtualization.

V. PRPOSED PACKET FLOW

FIG.4 PROPOSED PACKET FLOW

The proposed packet flow is as shown in the fig.4. Our
main aim with proposed packet flow is

 VM-to-VM communication on the same system
without intervention of external router or switch.

 To maintain QoS (bandwidth control for the
individual VM).

 Openstack, OpenNebula or any other private and
public cloud depends on kvm Can control VM
from central orchestrator.

VI. CONCLUSION

 Improvement in routing will reduce trafficking
overhead of traversing packets (Data-Plane)
through router though sender and receiver are in
same physical host.

 This project will improve functionality of routing
and thus will reduce traffic overhead.

But this modification will apply for
communication between two different virtual
machines which are in different subnets within
same physical server and not for multiple physical
servers.

References

[1] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable

third generation architectures,” Commun. ACM, vol. 17, no. 7, pp. 412–
421, Jul. 1974. [Online]. Available:
http://doi.acm.org/10.1145/361011.361073

http://en.wikipedia.org/w/index.php?title=Virsh&action=edit&redlink=1

Kajal Gaikwad, IJECS Volume 4 Issue 4 April, 2015 Page No.11687-11690 Page 11690

[2] G.J. Popek and R.P. Goldberg, “Formal Requirements for Virtualizable
Third-Generation Architectures,” Comm. ACM , July 1974, pp. 412–
421.I.S. Jacobs and C.P. Bean, “Fine particles, thin films and exchange
anisotropy,” in Magnetism, vol. III, G.T. Rado and H. Suhl, Eds. New
York: Academic, 1963, pp. 271-350.

[3] R. Figueiredo, P.A. Dinda, and J. Fortes, “Resource Virtualization
Renaissance,” IEEE Internet Computing, May 2005, Vol. 38, No. 5.

[4] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors: Current
Technology and Future Trends,” IEEE Internet Computing, May 2005,
Vol. 38, No. 5.

[5] (2012) Main page-kvm. [Online]. Available: http://www.linux-kvm.

org/page/MainPage

[6] A. Kivity, “kvm: the Linux virtual machine monitor,” in OLS ’07: The

2007 Ottawa Linux Symposium, Jul. 2007, pp. 225–230.

[7] S. Zeng and Q. Hao, “Network i/o path analysis in the kernel-based
virtual machine environment through tracing,” in Information Science
and Engineering (ICISE), 2009 1st International Conference on, dec.

2009, pp. 2658 –2661.

[8] J. Zhang, K. Chen, B. Zuo, R. Ma, Y. Dong, and H. Guan, “Performance
analysis towards a kvm-based embedded real-time virtualization
architecture,” in Computer Sciences and Convergence Information
Technology (ICCIT), 2010 5th International Conference on, 30 2010-
dec. 2

2010, pp. 421 –426.

