
www.ijecs.in 

International Journal Of Engineering And Computer Science ISSN:2319-7242     

Volume 4 Issue 4 April 2015, Page No. 11558-11562 

 
 

Nilendra Chaudhari, IJECS Volume 4 Issue 4 April, 2015 Page No.11558-11562                                                       Page 11558 
 

In-Place Transformation Engine for Analytics 
  

Nilendra Chaudhari, Bipin Patwardhan 
 

Technical Architect 

Research & Innovation, IGATE Global Solutions, Mumbai, India 

nilendra.chaudhari@igate.com 
 

Senior Technical Architect 

Research & Innovation, IGATE Global Solutions, Mumbai, India 
bipin.patwardhan@igate.com 

 

Abstract: Enterprises collect huge volume of data from different sources such as web logs, click stream, social media, sensor data and the 

like. This includes numeric and textual data and needs to be converted onto a format (mostly numeric) that is acceptable by the data mining 

and machine learning algorithms. Thus, we need an efficient, scalable approach to enable not only simple conversion, but also transformations 

like normalization. In this paper, we present the IGATE In-Place Transformation Engine (IPTE), which can be used for conversion and 

transformation operations. A comparative evaluation of commercially available ETL tools and the need for a custom-tool (IPTE) is justified. 

Three distinct flavours of IPTE implementation are described -- (a) Stand-alone using Java Multi-threading (b) Distributed using Hadoop 

API’s, and (c) In-memory using Apache Spark. By comparing the performance of the transformation process on different data sizes using 

these three flavours, specific recommendations are made when each of these should be used. Some use cases where IPTE has been used 

effectively are also presented. 

Keywords: Transformation, Data Mining, Data Preprocessing, Hadoop, Machine Learning, Data Science, In-Memory Computing, Multi-

Threading 

Businesses today are generating huge volume of data from 

different sources like web logs, click stream, social media, 

sensor data, etc. For example, before the common use of 

smart meters, a meter reading was available once a month. 

Now, smart meters are generating readings every 15 minutes 

or so for every customer. Thus, a utility can expect a few 

million records every 15 minutes, dramatically increasing the 

computing power needed to process data. Getting insights 

from such data is of prime importance for enterprises to 

remain competitive. To generate insights, enterprises have 

started applying various data mining and data science 

techniques. As data is received is varied formats, it needs to 

be cleaned before further processing. Additionally, since 

most data science techniques work on numeric data sets, the 

cleaned data needs to be converted into a suitable format. In 

many cases, simple conversion does not suffice and the data 

has to be transformed. After exploring some of the tools in 

the market, we have developed a high-performance, scalable 

solution, known as the In-Place Transformation Engine 

(IPTE). The rest of the paper presents more details about the 

solution, followed by an analysis of its performance. Before 

covering the solution, we cover the well-known concept of 

Extract-Transform-Load (ETL). 

1 EXTRACT-TRANSFORM-LOAD 

(ETL) 

1.1 What t is ETL? 

ETL is a process typically used in Data Warehouse 

operations, for fetching the data from multiple 

heterogeneous/homogenous sources, performing various 

transformations like cleansing, formatting, aggregation etc. 

and uploading the results into the Data Warehouse. 

 

1.2 Challenges with ETL 

Given the maturity of the technology, there are a host of tools 

in this space, offering varied and rich support. But, many ETL 

tools are not able to cope with voluminous data. While many 

tools support Hadoop [1, 3, 4, 7], most operate as a tight 

coupling of a trio of operations, namely Extract, Transform 

and Load. It is difficult to separate functionality into 

individual pieces [8]. In the sections below, we cover some 

of the issues in using ETL tools, when considering the newer 

data challenges, one of them being huge volume. 

1) Increasing data volume 

Even though many ETL tools have updated their techniques 

to improve the performance, it is becoming increasingly 

difficult and costly to transform data, to account for the 

increase in volume. 

 

2) Cascading Errors and painful recoveries 

Poorly managed dependencies can lead to process errors that 

cause jobs to fail. Such errors may not stop at the level of the 

job that has failed. They can cascade through the workflow 

and propagate to multiple downstream systems. 

3) Transformation Layer tightly coupled with 

http://www.ijecs.in/
mailto:nilendra.chaudhari@igate.com


Nilendra Chaudhari, IJECS Volume 4 Issue 4 April, 2015 Page No.11558-11562                                                         Page 11559 

Extract and Load   

One of the major problems with the ETL setup is that data is 

never local and needs to be transferred over the wire (Extract) 

before it can be transformed. This transfer severely affects 

performance as the network becomes the weakest link in the 

setup. Post transformation, data needs to be loaded into the 

target system, which also involves the network. 

2 IGATE IN-PLACE 

TRANSFORMATION ENGINE  

2.1 Why a Custom Engine? 

For an analytical solution at IGATE, we needed a scalable 

and reliable method to convert data. Obviously, manual 

conversion was out of the question, given the volume of data. 

Over the years, many solutions, including ETL tools, rule 

engines, etc have been used to convert data. But with the ever 

increasing volume of data, we decided to evaluate many tools, 

for various parameters like feature-set, ease of customization, 

license, and cost of the tool and most importantly, support for 

Big Data technologies. For this purpose, we evaluated 14 

tools – Pentaho, Drools, Talend being a few of them as shown 

in Table 1 below. We noted that many of the tools were not 

well suited for integration with Big Data technologies. Thus, 

for huge volume of data, the conversion tasks could run for 

many hours. While some tools have Big Data integration – 

thus being able to scale the transformation portion – their 

‘extract’ and ‘load’ processes present a bottleneck, due to the 

fact that data has to be extracted from the source system 

before transformation and it is loaded into the target system 

post the transformation.  Due to licensing cost, we had to set 

aside a few tools like Pentaho, while other tools like Drools 

[10] and JRule Engine [12] were rejected due to lack of 

support for Big Data technologies. While Talend Studio [11] 

was found to be fit for purpose, it was set aside for later 

consideration as it has support only for Apache Hadoop 1 and 

does not support Apache Hadoop 2 architecture. After a 

detailed comparison of various tools, we decided to 

implement a custom transformation engine. 

 
Table 1: Performance Testing Results 

 
 

2.2 What is IPTE? 

The IGATE In-Place Transformation Engine (IPTE) is a 

custom rule-based Java engine that transforms data, using 

well-defined rules. IPTE also supports Hadoop engine and is 

thus scalable to handle huge volume of data [9]. The biggest 

differentiating feature of the engine is that it focuses only on 

one feature, namely transformation. By decoupling the 

extract and load portions, IPTE is able to apply the power of 

Hadoop, to the task of transformation. 

IPTE is built using the ‘pipeline’ design pattern, with the rules 

being specified using an XML syntax. The rules used in IPTE 

are simple, POJO classes, that are loaded and executed as per 

the configuration file. It is important to note that IPTE applies 

all the rules, as defined in the configuration file, one after the 

other on one of input data. By doing so, the number of I/O 

operations needed is equal to the number of lines in the input. 

Additionally, as each line is transformed individually, IPTE 

can achieve high-performance by taking advantage of 

Hadoop’s massive parallel execute feature. While we have 

developed some rules like ‘replace character’, ‘skip blank 

line’, ‘skip column’, the library of rules is expected to grow 

as per user need 

IPTE has been developed with three execution flavours in 

mind, namely ‘Standalone’, ‘Distributed’ and ‘In-Memory’. 

The ‘Standalone’ flavour uses multi-threading features of 

Java, to achieve parallel execution, which creates a collection 

of threads and hands of each line of input data to one thread. 

In the ‘Distributed’ flavour, data is stored on HDFS and rule 

execution uses the Hadoop API for transformation. The ‘In-

Memory’ flavour uses Apache Spark [2], to use the speed of 

Random Access Memory (RAM), to store the data as well as 

perform the transformation. 

 

 
Figure 1: Data Flow 

 

Error! Reference source not found. shows the flow of data 

in IPTE’s ‘Distributed’ flavor. Data to be transformed is 

loaded to HDFS. IPTE selects the data row by row and applies 

the transformation rules defined. The transformed data is 

stored back to HDFS. Downstream applications can either 

access the transformed directly, or separate, independent load 

processes can be used to upload the data to the downstream 

system’s data store. 

 

2.3 Architecture 

Error! Reference source not found. shows the high-level 

architecture of IPTE. IPTE loads rules defined in XML. Data 

is read line by line from HDFS and passed to the pipeline, 

where the defined rules are applied. After transformation, the 

data is written back to HDFS.  



Nilendra Chaudhari, IJECS Volume 4 Issue 4 April, 2015 Page No.11558-11562                                                         Page 11560 

 
Figure 2: High-level Architecture 

 

2.4 Technologies 

IPTE is a Java-based, custom developed component that uses 

the ‘Pipeline’ pattern. In the ‘Standalone’ flavour, it used Java 

multi-threading; Hadoop API in the ‘Distributed’ flavour; and 

Apache Spark in the ‘In-Memory’ flavor. 

1) Apache Hadoop:  Hadoop is a framework that 

allows for the distributed processing of large data sets across 

clusters of computers using simple programming models. It 

is designed to scale up from single servers to thousands of 

machines, each offering local computation and storage. 

Rather than relying on hardware to deliver high-availability, 

the library is designed to detect and handle failures at the 

application layer, thus delivering a highly-available service 

on top of a cluster of computers, each of which may be prone 

to failures [1]. 

Data is stored in distributed manner using the Hadoop 

Distributed File System (HDFS). Distributed processing uses 

the Map-Reduce model (Hadoop 1) or YARN (Hadoop 2). 

2) Apache Spark: Apache Spark is a fast and general 

cluster computing system for Big Data. It uses in-memory 

primitive to improve performance and can use different 

storage, HDFS being one of them. 

 

2.5 Features 

The features of IPTE are 

 It operates in three flavors, namely Standalone, 

Distributed (on top of Hadoop) and In-Memory 

using Apache Spark. 

 Supports Xml based configuration for the rule 

pipeline. 

 New rules can be added easily. 

 Completely decoupled from extract and load 

operations, for high performance 

 

2.6 Benefits 

The benefits of IPTE are  

 Handles huge volumes of data 

 Delivers high-performance as it supports distributed 

processing and caching mechanisms 

 Enables easy-to-define pipeline of execution 

 Provides easy mechanism to add new custom rules 

 Allows ready integration of standard Java libraries 

3 PERFORMANCE 

In the following paragraphs, we have analyzed IPTE’s 

performance in detail. 

 

3.1 Test Setup 

The following hardware and software configuration was used 

for performance testing 

 CPU - Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz 

 No of Cores - 4  

 RAM -  4 GB 

 OS - Red Hat 4.4.6-3 

 Software: Java 1.7, Apache Hadoop 2.2.0, Apache 

Spark 1.3.0 

 Data: Dataset varying from 10MB to 6GB. 

 

3.2 Test Scenarios 

IPTE was testing using the following scenarios 

1) Standalone: IPTE read and write data from local 

file system. Data and transformation is performed on one 

system. 

2) Hadoop on single node:  IPTE uses Map-Reduce 

for computation and data is stored on HDFS. Both, the master 

node and the slave node are on same system. 

3) 3-node Hadoop cluster: ITPE uses Map-Reduce on 

the cluster for distributed processing. One system is master 

node and two systems are slave nodes. 

4) In-Memory:  IPTE uses In-memory for 

computation and data is stored on HDFS. Both, the master 

node and the slave node are on same system. 

 

3.3 Test Results  

 The test results are presented in 2 and Figure 3. The size of 

the data set ranges from 10MB to 5.9GB (12,500 to 73.75 

million records). 
Table 2: Performance Testing Results  

 

Single Machine 

(Time in ms) 

3 Nodes 

(Time in ms) 

Size 

(MB) Standalone Hadoop 

In-Memory 

(Spark) 

Distributed 

Hadoop 

10 2873 16865 6348 42342 

49 12624 19174 16693 54424 

97 24782 25365 28990 55381 

175 45771 33199 51547 64881 

350 87442 62528 99521 70023 

700 179948 107004 191522 108825 

1000 248808 142155 283582 146437 

2000 505166 256786 571824 191847 

5900 1526606 744792 1952256 359203 

 

 

3.4 Observations 

Based on the performance results, we have the following 

observations 

 For small files, time taken by Hadoop is more. This 

is due to the time taken to initialize the Hadoop eco-

system and minimum block size allocation. 

 For small data sets, the ‘Standalone’ flavour 



Nilendra Chaudhari, IJECS Volume 4 Issue 4 April, 2015 Page No.11558-11562                                                         Page 11561 

performs better than the ‘Distrbuted’ flavour. 

 During transformation, Hadoop uses all the cores 

available on commodity nodes. 

 Time taken by ‘Standalone’ flavor and ‘In-Memory’ 

flavor increases exponentially, as the data set 

volume increases. 

 On commodity hardware, the ‘In-Memory’ flavor 

takes more time as it is limited by the amount of 

RAM available for processing – 4GB – which it has 

to share with the operating system and other 

processes. For voluminous data, Apache Spark uses 

virtual memory (hard-disk space), which impacts 

performance.  

 For optimum performance, a server with large RAM 

is a mandatory.  The size of RAM has to be 

determined by the volume of the data to be 

transformed. 

 The three node Hadoop cluster processes around 

12.5 million records or 1GB of data per minute on 

commodity systems. 

 IPTE performance scales horizontally, to execute on 

available Hadoop nodes. 

 

 
Figure 3: IPTE Performance 

 

4 RECOMMENDATION 

Based on the test results, we also have the following 

recommendations regarding the use of IPTE 

1. Use ‘Standalone’ flavour for small data sets – say a 

million records. 

2. For huge volume of data, use the ‘Distributed’ 

flavour, as it can scale to any volume, simply by adding new 

nodes to the cluster. 

3. The ‘In-Memory’ flavour should be used when 

extremely fast response is needed. Deploying this solution 

on a system with insufficient RAM [13, 14], will result in 

degraded performance. 

4. ‘Distributed’ flavour should not be used for small 

data sets [15, 16, 17]. 

5 IPTE USE CASES 

In this section, we present some of the use cases where we 

have implemented IPTE.  

1) Customer segmentation using K-Means 

Customer segmentation [5] is the technique of dividing a 

customer base into groups of individuals that are similar, 

based on attributes such as age, gender, interests, spending 

habits and so on. Typically, customer data is mixed format 

with some attributes being numeric (like age) and some being 

non-numeric (like gender). K-Means is an algorithm that uses 

numeric data as input. Hence, we defined a ‘customer 

transformation’ pipeline using IPTE to convert customer data 

into numeric data that can be used as the basis for clustering. 

One of the rules was to map gender values to 0 (male) and 1 

(female). 

2)  Attribute based Recommendation 

Recommender Systems (RSs) are software tools and 

techniques that can be used to provide suggestions for items. 

Suggestions can relate to various decision-making processes, 

such as what items to buy, what music to listen to, or what 

online news to read. Attribute based recommendations uses 

user attributes / item attributes for recommendation [6]. 

Similar to customer segmentation, custom attribute 

information and item attribute information (used by the 

recommendation system) was transformed by IPTE into 

corresponding numeric equivalents. 

3) Data Masking: 

Data Masking is a technique where sensitive personal or 

business data is hidden from unauthorized persons. In most 

cases, sensitive information is replaced by real-looking, 

innocuous data. This method of data transformation is 

commonly used in testing. Presently, we are implementing 

IPTE in a data masking solution for Big Data testing. In the 

solution, the source data is stored on HDFS, but not available 

to the testers. Only selected portions of the data are made 

available for testing, where the data selection is performed 

using an IPTE transformation pipeline Given that we are 

dealing with a Big Data application, we need to test the 

scalability and volume processing capabilities of the 

application (that needed to be tested). By using IPTE, it is 

possible to define multiple transformation pipelines such that 

the source data gets transformed into multiple sets, depending 

on the test conditions to be executed. By using IPTE, it is 

possible to keep the data safe, by allowing only a few select 

users and IPTE to access it. 

6 CONCLUSION  

As discussed in this paper, we started with the need to have a 

scalable, high-performance data transformation engine that 

can be used as part of the analytics solutions that IGATE 

develops for its customers. After surveying multiple tools, we 

decided to go for custom development of the transformation 

engine, where-in we decided to decouple the high-

performance transformation portion from the extract and load 

operations.  

To account for varying needs of projects, IPTE has been 

implemented in multiple flavours. Customers can choose a 

suitable implementation, as per their performance needs. 

While presently the rule library supported by IPTE is a bit 

limited, new rules can easily be added, to enhance the power 



Nilendra Chaudhari, IJECS Volume 4 Issue 4 April, 2015 Page No.11558-11562                                                         Page 11562 

of IPTE. Implemented, in-progress as well as new use cases 

are expected to help grow the rule library. 

References  

[1] Apache Hadoop,  https://hadoop.apache.org/ 

[2] Apache Spark, https://spark.apache.org/ 

[3] Mike Ferguson “Offloading and Accelerating Data 

Warehouse ETL Processing Using Hadoop”, Seventh 

Intelligent Business Strategies, 2013. 

http://info.mapr.com/WP_OffloadingandAcceleratingD

ataWarehouseETLProcessingUsingHadoop.html 

[4] Stephen Swoyer  “Using Hadoop to Turbocharge ETL 

the Smart Way”, TDWI, 2013.  

[5] Sanghamitra Mitra, Nilendra Chaudhari “Scalable 

Approach for Analytics based Customer 

Segmentation”, CSI Communications, vol. 38, no. 4, 

July 2014. 

[6] Sanghamitra Mitra, Nilendra Chaudhari, Bipin 

Patwardhan “Leveraging Hybrid Recommendation 

System in Insurance Domain”, International Journal of 

Engineering and Computer Science, Oct 2014. 

[7] Making the Elephant Dance, 

http://gcitsolutions.com/?p=2149 

[8] Parallel ETL Tools Are Dead, 

http://blog.syncsort.com/2012/08/parallel-etl-tools-are-

dead/ 

[9] Adopting Hadoop In the Enterprise, 

http://www.induscorp.com/sites/indus/files/uploads/ad

optinghadoopintheenterprise.pdf 

[10] Drools, http://www.drools.org/ 

[11] Talend, https://www.talend.com/ 

[12] JRulesEngine, http://jruleengine.sourceforge.net/ 

[13] Apache Spark Hardware Provisioning, 

https://spark.apache.org/docs/latest/hardware-

provisioning.html 

[14] Putting Spark to Use: Fast In-Memory Computing for 

Your Big Data Applications | 

http://blog.cloudera.com/blog/2013/11/putting-spark-

to-use-fast-in-memory-computing-for-your-big-data-

applications/ 

[15] Apache Hadoop: Best Practices and Anti-Patterns | 

https://developer.yahoo.com/blogs/hadoop/apache-

hadoop-best-practices-anti-patterns-465.html 

[16] The Small Files Problem | 

http://blog.cloudera.com/blog/2009/02/the-small-

files-problem/ 

12 key steps to keep your Hadoop Cluster running strong 

and performing optimum | 

https://cloudcelebrity.wordpress.com/2013/08/14/12-key-

steps-to-keep-your-hadoop-cluster-running-strong-and-

performing-optimum/ 

https://hadoop.apache.org/
https://spark.apache.org/
http://info.mapr.com/WP_OffloadingandAcceleratingDataWarehouseETLProcessingUsingHadoop.html
http://info.mapr.com/WP_OffloadingandAcceleratingDataWarehouseETLProcessingUsingHadoop.html
http://gcitsolutions.com/?p=2149
http://blog.syncsort.com/2012/08/parallel-etl-tools-are-dead/
http://blog.syncsort.com/2012/08/parallel-etl-tools-are-dead/
http://www.induscorp.com/sites/indus/files/uploads/adoptinghadoopintheenterprise.pdf
http://www.induscorp.com/sites/indus/files/uploads/adoptinghadoopintheenterprise.pdf
http://www.drools.org/
https://www.talend.com/
http://jruleengine.sourceforge.net/
https://spark.apache.org/docs/latest/hardware-provisioning.html
https://spark.apache.org/docs/latest/hardware-provisioning.html
http://blog.cloudera.com/blog/2013/11/putting-spark-to-use-fast-in-memory-computing-for-your-big-data-applications/
http://blog.cloudera.com/blog/2013/11/putting-spark-to-use-fast-in-memory-computing-for-your-big-data-applications/
http://blog.cloudera.com/blog/2013/11/putting-spark-to-use-fast-in-memory-computing-for-your-big-data-applications/
https://developer.yahoo.com/blogs/hadoop/apache-hadoop-best-practices-anti-patterns-465.html
https://developer.yahoo.com/blogs/hadoop/apache-hadoop-best-practices-anti-patterns-465.html
http://blog.cloudera.com/blog/2009/02/the-small-files-problem/
http://blog.cloudera.com/blog/2009/02/the-small-files-problem/
https://cloudcelebrity.wordpress.com/2013/08/14/12-key-steps-to-keep-your-hadoop-cluster-running-strong-and-performing-optimum/
https://cloudcelebrity.wordpress.com/2013/08/14/12-key-steps-to-keep-your-hadoop-cluster-running-strong-and-performing-optimum/
https://cloudcelebrity.wordpress.com/2013/08/14/12-key-steps-to-keep-your-hadoop-cluster-running-strong-and-performing-optimum/

